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STABILITY AND GENERALIZED HOPY¥ BIFURCATION
THROUGH A REDUCTION PRINCIPLE

by
5. R. Bernfeld*, P, Negrini**, and L. Salvadori*

1. INTRODUCTION
We are Interested in obtaining an analysis of the bifurcating periodic

orbits arising in the generalized Hopf bifurcation problems in R", The
existence of these periodic orbits has often been obtained by using such
techniques as the Liapunov-Schmidt method or topological degree arguments
(see [5] and its references). Our approach, on the other hand, is based
upon stability properties of the equilibrium pointvof the unperturbed
system, Andronov et, al. [1] showed the fruitfulness of this approach in
studying bifurcation problems in R2 (for more recent papers see Negrini
and Salvadori [6] and Bernfeld and Salvadori [2]). 1In the case of Rz,
in contrast to that of Rn, n > 2, the stability arguments can be ef-
fectively applied because of the Poincaré-Bendixson theory. Bifurcation
problems in R" can be reduced to that of Rz when two dimensional in-
variant manifolds are known to exist., The existence of such manifolds
occurs, for example when the unperturbed system contains only two purely

imaginary eigenvalues,
In this paper we shall be concerned with the general situation in

n

R™ 1in which the unperturbed system may have several pairs of purely
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In contrast to (a) another property which we consider in this paper is:

(A) For any neighborhood N of f for any integer 3 » 0, for any neigh-

0*
borhood Ul of 0, aud for any number & > 0 there exists £ € N such
that (1.2) has 3 nontrivial periodic orbits lying in U1 whose period
is in  [2w-8, 214681,

In RZ, Andronov ec.al. [1] proved that property (a) is a consequence

of the origin of (i.1) being h-asymptotically stable or I completely un-

stable where h {s an odd integer and k = E%L. The origin of (1.1) in

RY 18 said to be h-asymptotically stable or h-completely unstable if h

is the smallest positive integer such thac the origin of (1.2) is agymptoticaliy

stable (completely unstable) for all £ for which £(p) - fo(p) = o(ﬁpnh)

(that 18 h 18 the smallest postive integer such that asymptotic stability

and complete instability of the origin for (1.1} are recognizable by inspectin:

the terms up to order b in the Taylor expansion of fo) (see Negrini and

Salvadori [6] for further information on the h-asymptotic stability). In

a recent paper Bernfeld and Salvadori {2] in R2 extended the results of

Andronov et.al, [1] by proving property (a) is equivalent to the h-asymptotic

stability (h-complete instability) of the origin of (1.1)(where again

k = h%l). 1t was also shown that property (A) is equivalent to the case‘in

which the origin of (1.1) 18 neither h-asymptotically stable nor h-completely

unstable for any positive integer h.

The problem in R" was first considered by Chefee [3]. Using the

Liapunov~-Schmidt method he obtained a determining equation ¢(§,f) = 0




of a two dimensional system appropriately related to the unperturbed system
(1.1). In addition, an algebraic procedure allows for a concrete solution
to the problem.

In a forthcoming paper, the authors will apply an extension of the
Poiucaré procedure [8], given by Salvadori {71 in order to compute in cer-

tain cases the number k directly from system (1.1).

2. RESULTS
By an appropriate change of coordinates depending on f we may write

systems (1.1) and (1.2) respectively in the form

;‘ - -y + xo(xi}”z)
(2.1) y = x+ Yo(x.y,Z)

z = Agz + 2y(x,y,2),
and

x = ax - By + X(x,¥,2)
(2.2) v = ay + 8x + Y(x,y,2)

z = Az + 2(x,y,2).

Here o,B are constants, A and A0 are (n-2) % (n-2) constant matrices,

and X, Y, xo, YO belong to Cw[Bn(rO).R] and Z,Z0 belong to

Cu[Bn(ro),Rn-zl. Moreover, X,Y,Z,XO,YO,ZO are of order greater than

-2
one and the eigenvalues of AO’ {Aj}§_1 satisfy the condition that

Aj pm, m=0, £1, .... We shall refer to the right hand sides of (2.1)

and (2.2) as fo and f respectively.




The two dimensional surface 2z = ¢(h)(x,y) is tangent at the origin
to the eigenspace corresponding to the eigenvalues +1i. This surface will
be called a quasi-invariant manifold of order h.

Given any h > 0 define the following two dimensional system

; = -y + XO(X3Y9¢(h)(XQY))

)
h (h)(x:Y))’

(s ‘
y = x + Yo(x,y,¢

(This is the system referred toc in the introduction),

We distinguish the two possible cases:

i

«
"
Q

1. There exists h > 1 (and then h must be odd) such that x
is either h-asymptotically stable or h-completely unstable for (Sh).

1I. Case 1 does not hold.

We are now able to state our main result.
Theorem 1. 1In case I property (a) holds with k = h%l. In case 1I, property

(A) holds.
If all the eigenvalues of AO have real part not equal to zero, then

ht+l

for every h > 1 there exists a C + two dimensional center manifold

which will be denoted by H We notice that if 2z = ¢(x,y) 1is the equation

hi
of this center manifold, we can write

sy = 6™ 9 + oy,

As a corollary of Theorem 1 the following result holds.

Theorem 2. Suppose that all the eigenvalues of A, have real part dif-
fergnt than zero. Then: (i) if there exists an h (and h must be odd)

such that the origin of the unperturbed system (2.1) is either h-asymptotically




Using the transformation

L =2 - ¢(h)(XQY);

we can rewrite the unperturbed system (2.1) as

; = -y -+ Xéh)(x,y,C)
3.1) y = x + Yéh)(x,y,C)
i = AOC + Wéh)(x,y,;),
where Xéh)(x,y,O) = XD(x,y,¢(h)(x,y)), Yéh)(x,y,O) = Yo(x,y,¢(h)(x,y)).

From (2.4) we observe that wgh)(x,y,O) is of order greater than h.

Analogously, we can rewrite the perturbed system (2.2) as

; = qx - By + x(h)(x’YQC)

(h) ¢

(3.2) y=ay + Bx + Y ¥ G)

. h
L = Ag + W( )(x,y,;),

where X(h)(x,y,O) = X(x,y,¢(h)(x,y)),Y(h)(x,Y.O) = Y(x,y,¢(h)(x,y)) and

(h) ) | (h)

y Y s W are of order > 2, For simplicity, we.shall again refer

to the right hand sides of (3.1) and (3.2) as fD and f respectively.
‘We'how state the following lemma whose proof is based on the implicit

function theorem.

Lemma 1, There exists L, e, § > 0 and a neighborhood N of fo such
that for every f € N and for every periodic solution (x(t,xo,yo,co).

n
y(t,xo,yo,;o),z(t,xo,yo,co)) of (3.2) lying in B (e) whose period is in




$
We now introduce for system (3.4) properties (a') and (A ) which

corresponds to properties (a) and (A) for system (3.2),

L
(a'){1) There exists a neighborhood N of f. and & neighborhood U of r =0,

0
v = 0 such that for every f € N there are at most k nontrivial 2w

periodic solutions of (3.4) lying in U'.

(11) For each integer j, 0 < § < k, for each neighborhood N of fo.
N C N, and for each neighborhood U; of r =0, v=0 there exists f €N
such that (3.4) has exactly ] nentrivial 27 periodic solutions lying in U;.

{
(A )For any neighborhood N of £ for any integer J > 0, and for any

0!
t
neighborhood Ul of r =0, v =0 there exists f € N such that (3.4)

L]
has j nontrivial 27 periodic orbits lying in Ul.

We then have!
Lemma 2. Property (a ) implies (a).

In order to prove Lemma 2, it is sufficient in view of Lemma 1, to
ascertain the following property: (b') the 21 periodic solutions of (3.4)
lying in a fixed neighborhood of r = 0, v = 0 tend to the>6rig1n-as f+fo.

A solution (r(8),v(8)) of (3.4) will be called a (2m,v) solution if
v(2n) = v(0), Every 2w periodic solution is a (2m,v) solution but the
converse is not, in general, true. 1In order to find the 27 periodic solu~
tions, we only need to analyze the set of (2m,v) solutions. Under our as-
sumptions on AO we can use the implicit function theorem to derive from
the second equation in (3.4) a ¢’ function T(c,f),1(0,f) = 0 s8uch that
a solution of (3.4) passing through (O,c,vg), with f-fo,c, and 0 suf-
ficlently small, is a (2n,v) solution if and only if Vo = t{c,f). Denote
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for (Sh) we have

ul(e,fo) =1, ui(Zﬂ,fO) =0, 1 =2 ... h-1, uh(2ﬂ,f0) ¢ 0,

thus implying (3.10) holds (see [6] for more details).

Let us extend the domain of V(c,f) to include negative values of c.
Since the origin is a solution of (3.4) for any £, an application of
Rolle's Theorem, in view of (3.10), implies that there exists a & > 0, and
a neighborhood N of fo such that for any f € N, V(c,f) has at most
h - 1 nonzero roots lying in [-6,8]. On the other hand, it is easy to
recognize that for each positive root of V{c,f) there is a negative root
of V(e¢,f). Thus, there are at most B%l 2w periodic solutions of (3.4)
lying in & neighborhood U' of r =0, v=0, This proves (a')(i) is
'satiéfied. |

Proﬁerty (a')(ii) can be proved by assuming a particular perturbed

system of the form

(h-3)/2
. i
x = -y + X(h)(x,y,t) + z a x(x2+y2)
0 i
1=0
(h=3}/2
. 2.1
y=x+ YWy, + 1 ayele?d)
0 84
120
t= s+ W y,0)
0 0 1 ¥Ys5)y
where a, are constants dépending on 3}, 0 <4<k, N and Ui.

1]
Since the roots of V(¢,f) = 0 approach zero as f+f0, property (b )

holds. Lemma 2 then implies (a) holds, proving Theorem 1 for case I.
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