Hindawi

Computational and Mathematical Methods in Medicine
Volume 2021, Article ID 1895764, 15 pages
https://doi.org/10.1155/2021/1895764

Research Article

Hindawi

Stability and Hopf Bifurcation Analysis of an Epidemic Model with

Time Delay

Yue Zhang®,' Xue Li(»,”> Xianghua Zhang®,’> and Guisheng Yin

ICollege of Computer Science and Technology, Harbin Engineering University, Harbin 150001, China
2School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
3College of Science, Heilongjiang University of Science and Technology, China

Correspondence should be addressed to Yue Zhang; yuezhang@hrbeu.edu.cn

Received 3 May 2021; Accepted 10 June 2021; Published 2 July 2021
Academic Editor: Lei Chen

Copyright © 2021 Yue Zhang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Epidemic models are normally used to describe the spread of infectious diseases. In this paper, we will discuss an epidemic model
with time delay. Firstly, the existence of the positive fixed point is proven; and then, the stability and Hopf bifurcation are
investigated by analyzing the distribution of the roots of the associated characteristic equations. Thirdly, the theory of normal
form and manifold is used to drive an explicit algorithm for determining the direction of Hopf bifurcation and the stability of
the bifurcation periodic solutions. Finally, some simulation results are carried out to validate our theoretic analysis.

1. Introduction

Today, the serious epidemics, such as SARS and HINI, are
still threatening the life of people continually. Plenty of math-
ematical models have been proposed to analyze the spread
and the control of these diseases [1-7].

However, many infectious diseases, for instance, gonor-
rhea and syphilis, occur and spread amongst the mature,
while some epidemics, for example, chickenpox and FMD,
only result in infection and death in immature. For this rea-
son, stage structure should be taken into consideration in
models. Aliello and Freedman [8] proposed a stage-
structured model described by

x(t) =« —yx(t) —ae Ty (t -
{ (t) = ay(t) - yx(t) y(t T)) )

J(t) = aey(t = 1) = By*(t)

where x(#) is the immature population density and y(¢)
represents the density of the mature population. «, y, 7, and
B are all positive constants. « is the birth rate, and y is the
natural death rate; 7 is the time from birth to maturity; f is
the death rate of the mature because of the competition with
each other.

And then, many infectious diseases with sage structure
have been built and investigated [9-14]. Xiao and Chen
[15] improved (1) by separating the population into mature
and immature and supposing that only the immature were
susceptible to the infection.

Based on the model in [15], supposing that only the
mature were susceptible, Jia and Li [16] built a new one
as follows:

X(t) = ae Vx(t — 1) — yx(t) — fx*(t) — mx(t)y(t)
J(t) =mx(t)y(t) = yy(t) = ey (t) = gy(1)
2(t) = ax(t) —yz(t) —ae V" x(t — 1)

9y(t) = YR(t)

N

R(t)

(2)

where x(t), y(t), and R(t) are the susceptible, infec-
tious, and recovered mature population densities, respec-
tively; z(¢) denotes the immature population density. All
the parameters are positive constants. «, 3, y, and 7 are
the same as those in (1); m is the transmission coefficient
describing the infection between the susceptible and the
infectious; ¢ is the death rate because of the epidemic; g
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is the recovery rate; ae ¥"x(t — 1) denotes the population
who were born at ¢ —7 and survive at t.

In systems (1) and (2), the time delay was also taken into
consideration. Indeed, time delay plays an important role in
the epidemic system, making the models more accurate. In
recent years, delays have been introduced in more and more
epidemic and predator-prey systems [17-19].

In this paper, on the basis of (2), we further assume that

(1) Both the susceptible and the infectious have fertility,
while in (2), only the susceptible is fertile

(2) For the infectious, there is competition with all the
susceptible and the infectious, while for the suscepti-
ble, there is only competition between generations

Meanwhile, all the death of the susceptible, the same as
that in (1), is only due to the competition. To simplify model
(2), we denote y + c + g = d, and let b(x(¢) + y(¢)) present the
transmission from immature to mature.

As a consequence, the new epidemic model could be
described as follows:

X(t) = b(x(t) + (1)) —w(x(t = 7) + y(t = 7))x(t) - mx(£)y(t)
y(t) = mx(t)y(t) —w(x(t) +y(t))y(t) - dy(t)

2(t) = a(x(t) + y(t)) - yz(t) — b(x(t) + y(t)) ’
R(t) = gy(t) — yR(t)

(3)

where w is the death rate of the mature because of the
competition.

We can notice that z(¢) depends on x(¢) and y(¢) and R
(t) depends on y(t); however, x(t) and y(t) have nothing to
do with z(t) and R(#). According to Qu and Wei [20], we will
mainly focus on x(¢) and y(¢), that is,

The rest of the paper is organized as follows. In Section 2,
we calculate the steady states of system (4) and prove the
existence and uniqueness of the positive equilibrium in par-
ticular. And then, the stability of the two nonzero equilibria
and the existence of the Hopf bifurcation are investigated in
Sections 3 and 4, respectively. In Section 5, the direction
and stability of the Hopf bifurcation at the positive equilib-
rium are studied by using the center manifold theorem and
the normal form theory [21]. And in the last section, some
numerical simulations are carried out to validate the theoret-
ical analysis.

2. The Existence and Uniqueness of the Positive
Equilibrium of the Model

In this section, we discuss the existence of the equilibria of (4)
and the positive one in particular.
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The equilibria are the solutions of the equations (5),

b(x - w(x x—mxy=0
{ (x+y) - w(x+y) y=0 )

[mx—w(x+y)—dly=0

Clearly, E, (0, 0) and E, (b/w, 0) are two equilibria of (4).
In the following, we will focus on the existence of the pos-
itive equilibrium.

Theorem 1. If b(m —w) > dw, (4) has one positive equilib-
rium E;(x*, y*), where

x* = (B+ \/K) (2m?),y* = (m-w) (B + \/Z)/(Zmzw) —d/w.
(6)

Proof. Positive equilibrium is the positive solution of the
equations (7),

b(x+y)-w(x+y)x—mxy=0 )
d=0 ’

mx —w(x+y) -
From the second equation of (7), we have
wy = (m—-w)x —d. (8)

Taking (8) into the first equation of (7), we can obtain

m?x* — (bm + dm + dw)x + bd =0, (9)
which leads to
A=B? - 4m*bd = (bm + dw — dm)* + 4d°mw >0,  (10)
where
B=bm+dm+dw. (11)
Together with

x; +x, = (bm + dm + dw)/m* > 0,and x, x, = bd/m* > 0,

(12)

we can know that both of the two solutions of (9) are
positive,
where

B- VA

2m?

B++vA

o (13)

X, =

> O0andx, =

If x=B— /Al2m?,
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then,

wy=(m-w)x—d
e

B—|bm + dw — dm| B
2

=(m-w)

<(m-w) d (14)

2m
B— (bm+dw - dm)
2m?

-d

So, x = B — v/A/2m? is dropped.
If x= B + V/A2m?,
then,

B+ VA
-d
2m?

4 2
—(m-w m>bd _d

2 (B Vi) (15
o)

wy = (m-w)

B-VA
=d(B- V&) [26(m-w) - (B~ V3)].

w>0, d>0, and B-vA=vVA+4m2bd — /A >0, so
y>0 & 2b(m—-w) - (B-+vA)>0,

A > B~ 4b(m - w)B + 4b* (m - w)* & m*d
- (m—-w)(bm—bw - bm — dm — dw)
<0=bm-w)>dw .b(m-w)>dwey>0.
(16)

Then, taking x = B++/A/2m? 2 x* into (8), we have

(m—w)(B+\/K> d

. (2m*w) S w

IL3

¥ (17)

Therefore, if b(m—w) >dw, (4) has the unique pos-
itive equilibrium E;(x*, y*). O

3. Stability Analysis of the
Equilibrium E, (b/w, 0)

In this section, we analyze the stability of the equilibrium
E,(blw, 0).

For convenience, the new variables u(t) = x(t) — b/w and
v(t) = y(t) are introduced, and then, around E, (b/w, 0), the
system (4) could be linearized as (18):

3
. bm
u(t)y==bu(t—1)=bv(t—1)+bv(t) - — (1)
w
. (18)
) bm
v(t) = ?v(t) —dv(t) - bv(t)
whose characteristic equation is given by
( —-At bm
A+ be ) A+b+d- —) =0, (19)
w
from which, we can get that
Az—(b+d—b—m), (20)
w
or
A+be M =0. (21)
Obviously, if b(m — w) > dw,
then
A=—<b+d—b—m>>0, (22)
w
which implies that the equilibrium E, is unstable.
If b(m - w) < dw,
then
A=—(b+d-bm/w) <0. (23)

As a consequence, we will discuss the other roots of (19),
that is, the roots of (21), under the condition b(m — w) < dw.
For 7 =0, equation (21) becomes

A+b=0, (24)
whose root is
A=-b<0. (25)
For 7> 0, if iw(w > 0) is a root of (21), then
iw+ b cos wt — ib sin wt = 0. (26)

(27) can be obtained by separating the real and the imag-
inary parts,

bcoswr=0
, (27)
b sin wt =w
which leads to
w® = b, (28)



4
from which, we can get the unique positive root
w, =b. (29)
Let
4j+1
j:Mj:(),l)z,...' (30)
2w,
Then, when 7 =7}, (21) has a pair of purely imaginary
roots +iw,.

Suppose
A1) = a(7) + iw(T), (31)
which is the root of (21) such that
a(7;) =0,andw(7;) = w,. (32)

To investigate the distribution of A(7), we will discuss the

trend of A(7) at =1,

Substituting A(7) into (21) and taking the derivative with
respect to 7, we can get

d\ e ar\
E—be (A+1$)—0, (33)

which yields,
] B M T (34)
dr| ~bA A

Together with (27), we have

w{rL )t

[cos W, T + 1 sin wo‘r} }
ibw,

{sm wo‘r} _sig {b sin wo‘r}
w() b2w0

I |
B

. }
Pw
1
72

which means that when undergoes 7 =7, A(7) will add a
pair of roots with positive real parts. That is, with the increase
of 7, the number of roots with positive real part is increasing,
leading to the change of the stability of the system (4).

Therefore, the distribution of the roots of (21) could be
obtained.

(=]

= n

S

(35)

Lemma 2. Let w, and T; (j=0,1,2,
and (30), respectively.

-+ ) be defined by (29)
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(1) If b(m —w) > dw, then (19) has at least one positive
root

(2) If b(m - w) < dw, and T =0, then both roots of (19)
are negative

(3) If b(m - w) < dw, and 7> 0, then (19) has a pair of
simple imaginary roots *iw, at T =1 furthermore, if
T < Ty, then all the roots of (19) have negative real
parts; if T € (1), 7;,), (19) has 2(j + 1) roots with pos-
itive real parts

Together with condition (35), the Hopf bifurcation theo-
rem [21], and Lemma 2, the following theorem could be
stated.

Theorem 3. Let T (j=0,1,2, -
we have

) be defined by (30), then

(1) If b(m — w) > dw, then the equilibrium E,(b/w, 0) of
(4) is unstable

(2) If b(m - w) < dw, then the equilibrium E,(b/w, 0) is
asymptotically stable when T € [0, T,), and it is unsta-
ble when 7> 7,

(3) If b(m - w) < dw, then system (4) undergoes a Hopf

bifurcation at the equilibrium E,(b/w, 0) for T =1,

4. Stability Analysis of Positive

Equilibrium E;(x*, y*)
In this section, we analyze the stability of the positive equilib-
rium E;(x*, y*).

For convenience, the new variables u(t) =x(t) —x* and

v(t) = y(t) — y* are introduced, and then, around E;(x*, y*),
the system (4) could be linearized as (36):

{ u(t)y=(b+d—mx" —my")u(t) —wx"u(t — ) + (b - mx")v(t) —wx"v(t — 1)
() = (= w)y"u(t) —wy"v(t) ’
(36)

whose characteristic equation is given by

2+ (wy” —k)A+ (A +my*)se ™ — kwy* — (m—w)y*n=0,

(37)
where
k=b+d-mx"—my",n=b—mx",s=wx". (38)
For 7 =0, equation (37) becomes

A+ (wy* —k+5)A+msy* —kwy* — (m-w)y*n=0. (39)
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Firstly, computing A, A,, we have

MA, =msy™ —kwy™ — (m—-w)y*n
=y [mwx” — (b+d)w+m(x* +y")w - (m—-w)b+ (m - w)mx"]

=y [mzx* +mwx” + m(mx* —wx* —d) - (dw + hm)}

=y" VA,
(40)
where A is the same as that in (10).
So,
MA, =msy” —kwy”™ — (m-w)y*n>0, (41)

which implies that the real parts of A; and A, have the
same signs.
Then, (A, + A,) is calculated:

AM+A,=—(wy" —k+5s)
=(b+d)—m(x"+y7)y’
=b+mx" —w(x" +y") -mx" —w(x" +y") - my"
my*Z

=- - *+9")<0.
PR w(x" +y7) <

(42)

Together with (41), we can get that both the real parts of
the two roots of (39) are negative.
For 7> 0, equation (37) can be rewritten as

M 4rd+ (sh+c)e? +p=0, (43)
where

r=(wy* —k),s=wx", c=msy*, p=—kwy* — (m—-w)y n.
(44)

If iw(w > 0) is a root of (37), then

—w2+irw+iswcosw‘r+swsian+cc0swT—icsian+p=0.

(45)

Separating the real and the imaginary parts, we have

€ €08 WT + 5w sin WT = w> — p
, (46)
¢ sin WT — sw oS WT = rw
which leads to
w' = (2p-7r +5)w +p* - =0. (47)
Let z=w? > 0, and then, (47) can be rewritten as
Z—(2p-r+)z+p’ - =0. (48)

5
Firstly, computing z,z,, we get
2z, =p" = =(p+c)(p-0), (49)
where
p—c=msy" —kwy" — (m—-w)y"n>0, (50)

has been proved in (41).
Then, we will calculate

p+c=—msy* —kwy" — (m-w)y*n
=y [-mwx* = (b+d)w+m(x" +y")w— (m—-w)b+ (m - w)mx"|
=y [mx* — mwx® + mwy” — (dw + bm)]

y
y [ (B+va) -3
=§[(m—w)\/z—w3].

(51)

If H(4-1): (m — w)v/A-wB <0,

then
p+c<O, (52)
and then,
2,2, <0, (53)
which implies that (48) has one unique positive solution
zp = w},
where
12
2p -1+ + \/(2p—r2+52)2—4(p2—(:2)
wy =
2
(54)
If H(4-2): (m - w)v/A-wB >0,
then
p+c>0, (55)
and then,
2,2, >0, (56)
Let
A = (2p—r2+52)2—4(p2—cz). (57)

If A, <0, then (48) has no real roots.

If A, >0and z, +z,=2p—r* +s* <0, then (48) has two
negative roots, and there no positive w for (47);

IfA,>0and z; +2,=2p—r* +5° >0,



then (48) has two positive roots, and there are two posi-
tive w for (47), which are

1/2

2p—r2+521-\/(Zp—r2+52)2—4(p2—c2)
w, = 5

(58)
Lemma 4.

(1) If (m—w)vA-wB<0, then (47) has one positive
root w,

(2) When (m —w)v/A-wB>0, if A, <0, orz, +z,=2p
— 1?2+ 52 <0, then (47) has no positive roots

(3) When (m —w)v/A-—wB>0,if A, >0and z, +z,=2
p—1?+5>>0, then (47) has two positive roots

In the following, we will discuss the expression of 7;.

Lemma 5. If
, (59)

where a> 0, t > 0, then

(1) If f(a) > 0, g(a) > 0, then

at = arccos (f(a)) + 2jm, or at = arcsin (g(a)) +2jm  (60)

(2) If f(a) <0, g(a) > 0, then

at = arccos (f(a)) + 2jm, or at = m — arcsin (g(a)) + 2jm

(61)

(3) If f(a) > 0, g(a) <0, then

at = 2 — arccos (f(a)) + 2jm, or at = 2 + arcsin (g(a)) + 2jm
(62)

(4) If f(a) <0, g(a) <0, then
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at = 2m — arccos (f(a)) + 2jm, or at = — arcsin (g(a)) + 2jn

(63)
In conclusion,
(1) If g(a) > 0, then at = arccos (f(a)) + 2jn
(2) If g(a) < 0, then at = 2t — arccos (f(a)) + 2jm,
where j=0,1,2, -
According to (46), we have
2o\ 2
COS WT = M :f(a))
2+ s2w? (64)
. sw(w? = p) + crw
sinwr= ————+——— =g(w)

2+ s*w?

If (m —w)v/A—wB <0, substituting w, defined in (54)
into (64), we can get f(w,) and g(w,). Together with
Lemma 5, the expression of 7; could be obtained.

If

g(wg) >0, (65)
then
2\ a2
T.= i arccos M +27-[j R j:()’ 1,2,---.
7w, 2+ 52w}
(66)
If
g(w,) <0, (67)
then

2N 2
€(wo ~p) ~srwp ;rw°}+2ﬂj},j:0,l,2,-'-.

1
Tj= — 27T — arccos T
w, c* + swyj

(68)

That is, when 7 = Tj the characteristic equation (37) has a
pair of purely imaginary roots +iw,,.

Suppose A(7) = a(7) + iw(7) is the root of (37), and then,
we have

a(7;) =0,andw(7;) = w,. (69)

To investigate the distribution of the A(7), we will discuss
the trend of A(7) at T=71;.

Substituting A(7) into (37) and taking the derivative with
respect to T, we can get

AeM(sA+c),  (70)

[2)\ +r+set - e_’\T(sA + C)T} Z—i =
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which leads to

P (71)

dA T Mo +s T
dr AMsh+c) A

Together with (46) and (54), we have

on S re [4A - on IR M(sA+c)+s
2 Rl 77 G Tl RS YO W N
J ]

_ sign { Re (cos w,yT + ‘i sin. w,T)(2iwy + 1) +5
iwy (iswy + ¢)

= sign {c(2w, cos w,T + 1 sin w,T)
— 5wy (1 €os T — 2w, sin w,T +5) }
= sign { 2wy (wy* — p) + r(rw,) }

=sign {2P—T2+$2+\/(Zp—r2+52)2_4(p2_62)
- (2p—r2+sz)}
=sign {\/(2p_72+52)2 _4(p2—c2)} >0,

(72)

which means that when undergoes 7 =7, A(7) will add a
pair of roots with positive real parts. That is, with the increase
of 7, the number of roots with positive real part is increasing,
leading to the change of the stability of the system (4).

If (m—w)yVA-wB>0,A,>0and z, +z,=2p— 1% +5°

> 0, then f(w,) and g(w,) could be calculated by substituting
w, defined in (58) into (64). According to Lemma 5, we can
get the expression of 77:

If
g(wi) >0, (73)
then
, 1 c(wl -p) - srw? A
T = w—i arccos W +27mj 0, j=0,1,2, -0
(74)
If
9(w,) <0, (75)
then
.1 ) c(wi - p) = srw; .
T = (Z {271’(]+ 1) — arccos {W} }, j=0,1,2,---.
(76)

That is, when 7 = T}i, the characteristic equation (37) has
a pair of purely imaginary roots tiw,.
Let A(7) = a(7) + iw(7) be the root of (37), satisfying

oc(Tf) =0, andw (T]i) =w,. (77)

To investigate the distribution of the A(7), we will discuss
the trend of A(7) at 7 =75.

Using the same method, we have

sign { Re %71 =sign {2w,> - (2p -1 +5")}
g ar . g +

i

=sign {2])71‘2 +57 \/(pr 2+ 52)2 —4(p? - 2)
-(p-r+s)}

= sign {i\/(Zp— 12 +s2)2 —4(p2 - CZ)}

=sign {£ /A, }.

(78)
This implies that
dA
[E] . >0, (79)
and
di

which means that when undergoes 7 =7/, A(7) will add a
pair of roots with positive real parts, while undergoes v =77,
A(t) will lose a pair of roots with positive real parts; if 7; >
T/,1» then the characteristic equation (37) must have roots
with positive real parts for 7> 77,

In conclusion, the distribution of the roots of (37) could
be obtained.

Lemma 6. Let w, be defined by (54), and 7; (j=0,1,2, ---)
be defined by (66) or (68), and w, be defined by (58), and
T;—' (j=0,1,2, ---) be defined by (74) or (76), respectively.

(1) When (m —w)v/A-wB >0, if A, <0, orz, +z,=2p
— 12+ 57 <0, then all the roots of (37) are with nega-
tive real parts

(2) When (m—w)vV/A-wB<0, (37) has a pair of
simple imaginary roots tiw, at T=1; furthermore,
if T €0, 1,), then all the roots of (37) are with negative
real parts; if T € (7}, 7;,,), then (37) has 2(j + 1) roots
with positive real parts

(3) When (m—-w)V/A-wB>0,if A, >0, and z, +z,=
2p—1? +5% >0, then (37) has a pair of simple imagi-
nary roots tiw, at T=1;; if T€[0,75) or T € (7],
T}1)» then all the roots of (37) are with negative real

parts; if T € (1},,,7),,), then (37) has a pair of roots

with positive real parts; if T, > 1}, ,, for T> 1}, ,, (37)

must have roots with positive real parts



Together with conditions (72) and (78), the Hopf bifur-
cation theorem [21], and Lemma 6, the following theorem
could be stated.

Theorem 7. Let T; (j=0,1,2, - ) bedefined by (66) or (68),
and Tf (j=0,1,2, ---) bedefined by (74) or (76), respectively,
and then we have

(1) When (m —w)v/A—wB>0, if A, <0, orz, +z,=2p
—r?+52<0, the equilibrium E;(x*,y*) of (4) is
asymptotically stable

(2) When (m — w)\/A—wB < 0, then the equilibrium E,
(x*,y*) is asymptotically stable when € [0,1,), and
it is unstable when T > 1, System (4) undergoes a
Hopf bifurcation at the equilibrium E;(x*,y*) for
T=1;

(3) When (m—w)v/A-wB>0, if A, >0, and z, + z, =
2p—1? +5% >0, then there is a positive h, such that
when T €[0,7)) U (1,5, 77) U (17, 73) U ---U(T)_p» TH)s
the equilibrium E;(x*,y*) is asymptotically stable,
and it is unstable when T € (1}, 7,) U (13, 7;) U (75,

Choose the space as C = C([-1, 0], R?); for any @ = (@,
D,) €C, let

Lo=(t+p) (m(Dl (0) = s, (-1) + nD,(0) — s@z(—l))’

(m = w)y*@,(0) — wy"®,(0)

and

—w®d,(0)[D;(-1) + D, (~1)] = mD,(0)D,(0
f(ip):(m)< (O (-1) + @2(~1)] - m, (0) <)>,

(1 = w)®; (0)®,(0) - wd,*(0)

{ u(ty=tbu)+v(t)+x" +y* ) —wu(t - 1) +v(t=1)+x" +y")(u(t) +x*) —m(u(t) + x*)(v(t) + y*)] .
v(t) = [m(u(t) +x7)(v(t) +y") —d(v(t) +y7) —w(u(t) +x7)(v(£) + "))
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7,) U --U(T)_p, Tj_;) U (7},+00). We call that system
(4) undergoes (h + 1) switches

System (4) undergoes a Hopf bifurcation at the equilib-
rium E;(x*, y*) for 7 =75,

5. The Direction and Stability of Hopf
Bifurcation at E;(x*, y*)

In the previous section, we have already gotten some condi-
tions making that the system (4) undergoes a Hopf bifurca-
tion at the positive equilibrium E;(x*,y") when 7=1j,
j=0,1,2, ---.In this section, under the conditions in Theo-
rem 7, the direction of Hopf bifurcation and stability of the
periodic solutions from E; will be investigated by using the
center manifold and normal form theories [21].

Without loss of the generality, let T be the critical value of
T=7,(7;),j=0,1,2, -

For convenience, let T=7+p, p € R, u(t) =x(t) — x*,
v(t)=y(zt) —y*, and then system (4) undergoes Hopf
bifurcation at p = 0; with 7 normalized by the time scaling
t —> t/t, (4) could be rewritten as

(51)
In fact, (6, p) could be chosen as
n(0,p)=(7+p) ( ) )6(9)
PN (55)
T 5(0+1),
(82) +(+P)<O 0)(+)
where
5(0) = 0, 6=0 o
()—{1, 020 (86)
(83) For any @ € C'([-1, 0], R?), we define
%’ 0¢[-1,0)
Alp)(6) = -

where s and n are the same as those in (37).

According to Riesz’s representation theorem, there is a
2 x2 matrix (6, p) (0 €[-1,0]), whose components are
bounded variation functions such that

L,®= JO dn(0, p)@(6) for O € C. (84)

Joldn(a, p)P(0), 0=0

and

0, 0¢[-1,0)

R(p)D = . 88
(°) {ﬂg@m,@:O (58)
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And then, system (4) could be translated into

X, = A(p)x; + R(p)x;, (89)
where
x,=x(t+p)= <té;:£;> (90)

For ¥ € C'([-1,0], (R*)"), define

—di(s), se[-1,0)
avi={ ° . (9)

J dn(t,0)¥(-t), s=0

and a bilinear form

where
n(6) =1(6,0). (93)

According to (87) and (91), we can get that A(0) and A*
are adjoint operators.

From the analysis in Section 4, we know that +iwT are a
pair of eigenvalues of A(0) and also eigenvalues of A*, where
w is w, or w_ defined in (58).

It is easy to verify that vectors q(6) and g*(s) are the
eigenvalues of A(0) and A* corresponding to the eigenvalues
iwT and —iwT, where

T
1) eiw‘?@)

- —iw —m +se“T | -
q"(s) :B<1, T ),
(m—-w)y*

q(0) = <(W£

m=w)y

For convenience, let
—iw — m + seT
(m-w)y*
iw + wy”
(m-w)y*’

M=
(95)

then

@ =sfam(Y)-[ [ aaerctano(Y)era)

0
(1, M)Be“™0d (6) (?)
eNeim?B
eeiw'?ﬂ

=B(M+N) - B(l,M)%(M)

=B(M+N) - BL

=B(M+N)- B(I,M).ril dn(@)(

=B(M +N) - Bs(N + 1)e ™",
(96)
We choose
B=[M+N-7s(N+1)e ], (97)
and then,
(a"(s)q(0)) =1 (q(0).q"(s)) =0. (98)

Using the same method as that in [21], the center mani-
fold C,, at p =0 is first computed. Suppose that x, is the solu-
tion of (81) when p =0, and define

2(t) =(q" x,(0)), W(t,0) = x,(0) -

Then, on the center manifold C,, we can get that

2Re {2(1)q(0)}. (99)

W(t,0) = W(z(t), 2(t), 6), (100)
where
W (z(1), 2(t), 0) = Wy (6) G Wy, (0)zz
2 \ (101)
+ Win(6) 5+ Wi (6) 5+

In the direction g* and §*, z and Zz are local coordinates
for center manifold C,. It is not difficult to note that when
x, is real, W is real. And the real solutions are considered
only.

For any solution x, € C,, since p =0, we can get that

z(t) = (q", %,) = iwtz(t) + 4" (0) (0, W(z(t), (1), 6)
+2 Re {2(1)q(0)})Fiwzz(t) + 77 (0)f, (2. 2),
(102)
where
o@D =fa o 4t fu e (103
We rewrite
z(t) = iwtz(t) + g9(2, 2), (104)
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with
z _ z2 7’z
9(22) =q" (0)fy(2:2) = 9oy 5 YIuEEt G Tt
(105)
Together with (83), we have
9(2.2) = 7" (0)f (0, W(z(1), 2(1), 6))

q
=q (0)f(0,x)

Computational and Mathematical Methods in Medicine

—w(Wl(O) +2zN + ZN) [Wl(—l) +zNe ™7 4 ZNe“T + (Wz(—l) +ze 9T 4 Ze"“’f)} - m(Wl (0) +2zN + EN) (WZ(O) +z+ Z)

= (1, M)B?

(m —w) (W'(0) + 2N +2N) (W*(0) + 2 +2) - w(W2(0) + 2 +2)°

2

=-2Bt[w(N*e¢™" + Ne ™) + mN]| % —BT[wN (N +1)e“" + wN(N +1)e™" +

- Bt{w[W},(0)(N + 1) +2W}, (0)(N + 1)e ™" + 2N (W7, (=1) + W}, (=1))] + m[W})(0) + 2W7, (0) + 2NW7,(0) + NW3,(0)

+2BTM|[(m - w)N - w]%2 +BTM [(N +N)(m -

+BTM{ (m —w) [ W}, (0) + 2W1,(0) + 2NW7,(0)] — 2w(2W7,(0) + W3,(0)) } =~.

Comparing with (105), we get

Gy = —2BT[w(N*e™™" + Ne ) + mN| + 2BTM[(m - w)N - w],
gy =Bt [wN(N +1)e“" + wN(N + 1)e™" + m(N +N)]
+BTM [(N + N)(m - w) - 2w]

9o = —2BT[wN(N +1)e“" + mN| + 2BtM [(m — w)N - w]

Gy = —BT{w[W}(0) (N + 1) +2W], (0)(N + 1)e ™"
+ ZN(W%( 1)+ W%l( ))] + m[Wéo( ) +2W7,(0)
+2NW3,(0) + NW30(0)]} + BTM{ (m — w) [W;(0)
+2W1,(0) + 2N W7, (0)] — 2w (2W7,(0) + W3,(0)) }.
(107)

All the numbers in the expressions of g,,, g;;> and g,
are known; however, W,;, and W,, in g,, are unknown,
which will be computed in the following.

From (89) and (99),

W=x,-29-2q
AW -2Re {q"(0)f,q(0)},  0€[-1,0)
= { ZAW + H(z(t), z(t), 0),
AW =2 Re {7"(0)fpq(0)} +f,, 0=0

(108)

w) - Zw} zZ+ ZB'?M[(m -w)N - w}

72
m(N +N)]2z - 2Be [wN(N + 1)e" + mN] 5

}}—
ey
ZZZ

(106)

where

H(z(t),z(t),0) = Hy,(0) %2 +H,,(0)zz + H,(0) %2+

(109)

When 6 € [-1, 0],

H(=(0)2(0,0) =7 (0)0(0) - 4" OFa®) 1)

=-9(22)q(9) - 9(

Comparing the coefficients in the expansions of (109)
and (110), we have

{Hzo(e)
. (111)
Hy(0) =-9,,9(9) — 9,,4(0)

Taking (5-18) into (5-17), we obtain

(A =2iwT)W,(0) = =Hy(0)AW,(0) = -

By (111) and (112), the following can be gotten

Wzo 0) =
Wu 0)

2i0TW,50(0) + 9509(0) + 50(6),

(113)
=919(9) + 9,,49(0)-
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F1GURE 1: The dynamic behaviors of system (4) with 7= 3.8 € [0, 7} ). (a) and (b) are the waveform plot and phase for system (4), respectively.
E,;(x*, y*) is asymptotically stable and the initial condition is (0.16,0.1).
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FIGURE 2: The dynamic behaviors of system (4) with T=4.4 € (1}, 7;). (a) and (b) are the waveform plot and phase for system (4),
respectively. E5(x*, y*) is unstable with the emergence of oscillation and the initial condition is (0.18,0.12).

Because and

Tl i Tl igy; —iWT!
4(6) = q(0)“, (114) Wy (60) =~ g(0)e + Tig(0)e T+ E,  (116)

) ) where E; and E, are unknown.
by integration, we have From (112) and the definition of A, we obtain

i . ig L . 0
W (0) = 02 q(0)¢" + 32 q(0)e T + By, (115) j dn(6) W (0) = 20T Wiy(6) ~ Hyg(0),  (117)
-1
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F1GURE 3: The dynamic behaviors of system (4) with 7 =11 € (75, 7] ). (a) and (b) are the waveform plot and phase for system (4), respectively.
E;(x*, y*) is asymptotically stable and the initial condition is (0.1,0.06).
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F1Gure 4: The dynamic behaviors of system (4) with 7 =23 € (77, 77). (a) and (b) are the waveform plot and phase for system (4), respectively.
E;(x*, y*) is unstable with the emergence of oscillation and the initial condition is (0.2,0.2).

and Substituting (115) and (119) into (117), we have
0 _ —iwT _
J dn(O)W,,(6) = —H,, (). (118) {Ziwﬂ - JO e"“’iedr](e)} E - 2( WN N 1] =) ) - (120)
_1 -1 (m—-w)N - w)
Then, together with (108), we get That is
Hyo(0) = ~g5d(0) = G0y (0) +2 < ~wN[Ne™" +1] = mN) > 2iw — m + se”HT —p + se 2T R ~wN[Ne ™ +1] - mN) )
(m—w)N‘—fu) _ —(m—-w)y* 2iw + wy” (m-w)N -w)
H1(0) = -9,14(0) - 3,00 +2<'w e e ]} ke {N})> (121)
(m-w)Re {N} -w)

(119) from which, E, can be determined.
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F1GURE 5: The dynamic behaviors of system (4) with 7 =30 € (77, 73 ). (a) and (b) are the waveform plot and phase for system (4), respectively.
E;(x*, y*) is asymptotically stable and the initial condition is (0.15,0.02).
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FiGure 6: The dynamic behaviors of system (4) with 7=36 € (13,+00). (a) and (b) are the waveform plot and phase for system (4),
respectively. E5(x*, y*) is unstable with the emergence of oscillation and the initial condition is (0.15, 0.14).

By (115), (117), and (119), we have That is

< -m+s —n+s>E _2<—wRe{N[Ne'i“’7+l}}—mRe{N})>
’ (m - w) Re {N} - w) ’

0 —w Re e—iw‘? — mRe _(m_w)y* lUy*
(J dn(0)>E2 - 2( Re {N[Ne™"+ 1]} - mRe{N}) ) (123)
-1 (m-w) Re {N} -w)

(122) from which, E, can be determined.
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Substituting E, and E, into (115) and (116), W,, and
W, could be obtained; furthermore, g,, can be calculated.
Then, the important parameters can be obtained:

i g9
C,(0) = sz(gzogu 2|gn|2 |goz| 21)

__RelG,(0)]

B Re N (7)

B, =2Re [C,(0)],
Im C,(0) + p, Im { ’(f)}
To=- wT ’

(124)

which determine the quantities of the bifurcation of sys-
tem (4) at 7=7, where u, determines the direction of the
bifurcation: Hopf bifurcation is subcritical (supercritical) if
Yy <0 (¢, >0) and the bifurcating periodic solutions exist
for 7 < 7 (7 > 7); B, determines the stability of the bifurcating
periodic solutions, which are stable (unstable) if 8, <0
(B, >0); T, determines the period of the periodic solutions,
which decreases (increases) if T, <0 (T, > 0).

From (78) in Section 4, we know that Re A’ (7) > 0 when

T—Tj,andReA (7) <O when7=1;.

Theorem 8. If (m — w)\/A—wB < 0, then the Hopf bifurca-
tion of system (4) at positive equilibrium E;(x*,y*) when T

=1 is supercritical (subcritical) and the bifurcating periodic

solutions on the manifold are stable (unstable) if Re [C,(0)]
<0 (Re [C,(0)] > 0).

Theorem 9. If (m — w)vV/A-wB>0, A, >0, and z, +z,=2
p—r°+5>>0, then when =17, the Hopf bifurcation of sys-
tem (4) at the positive equilibrium E;(x*, y*) is supercritical
(subcritical) and the bifurcating periodic solutions on the man-
ifold are stable (unstable) if Re [C,(0)] < 0 (Re [C;(0)] > 0);

when T =1}, the Hopf bifurcation of system (4) at the pos-
itive equilibrium E;(x*,y*) is subcritical (supercritical) and
the bifurcating periodic solutions on the manifold are stable
(unstable) if Re [C,(0)] < 0 (Re [C;(0)] > 0).

6. Numerical Simulations

In this section, some numerical simulations are carried out to
support our theoretical analysis.

There are so many different cases that only the most par-
ticular one in (3) of Theorem 7 is considered in this section.
The coefficients are chosen as follows: b=0.4,d=0.8, w=1,
and m = 6. Then, the conditions of (3) in Theorem 7 are sat-
isfied, where

(m - w)v/A - wB~13.166 3 0, A ~0.0110067
>0,and2p— 1 + & = 0.319612 > 0
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By direct calculation, we have

X* ~0.169906, y* ~ 0.049528 ; (125)

and

Ta ~4.25918, 7, = 9.66231, Tf = 17.8969, T = 28.8393, T;r
~31.5347, 7, =~ 48.0163, T; ~45.1725---,
(126)

where 735 > 7}.

From Theorem 7, we know that the positive equilibrium
E,;(0.169906, 0.049528) should be asymptotically stable
when 7 € [0, 75) U (15, 77) U (77, 73 ), and it is unstable when
1€ (14, 75) U (1], 7]) U (75,+00). The system (4) undergoes
3 switches.

All the simulation results for 7 in the six different inter-
vals are in consistent with the theoretical analysis, which
are shown in Figures 1-6.
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