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By considering that people may immunize their computers with countermeasures in susceptible
state, exposed state and using anti-virus software may take a period of time, a computer virus
model with time delay based on an SEIR model is proposed. We regard time delay as bifurcating
parameter to study the dynamical behaviors which include local asymptotical stability and local
Hopf bifurcation. By analyzing the associated characteristic equation, Hopf bifurcation occurs
when time delay passes through a sequence of critical value. The linerized model and stability
of the bifurcating periodic solutions are also derived by applying the normal form theory and the
center manifold theorem. Finally, an illustrative example is also given to support the theoretical
results.

1. Introduction

As globalization and development of communication networks have made computers more
andmore present in our daily life, the threat of computer viruses also becomes an increasingly
important issue of concern. In 2003, a virus, called worm king, rapidly spread and attacked
the global world, which results the network of the internet to be seriously congested and
server to be paralyzed [1]. In 2010, the report of pestilence about computer virus in China
revealed that more than 90% computers in China are infected computer virus.

Computer viruses are small programs developed to damage the computer systems
erasing data, stealing information. Their action throughout a network can be studied by
using classical epidemiological models for disease propagation [2–6]. In [7–9], based on
SIR classical epidemic model, Mark had proposed the dynamical models for the computer
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virus propagation, which provided estimations for temporal evolutions of infected nodes
depending on network parameters [10–12]. In [13], Richard and Mark propose a modified
propagation model named SEIR (susceptible-exposed-infected-recover) model to simulate
virus propagation. In [14], on this basis of the SIR model, Yao et al. proposed a SIDQVmodel
with time delay which add a quarantine state to clean the virus. However, both above models
assume the viruses are cleaned in the infective state. In fact, in addition to clean viruses in
state I, people may immunize their computers with countermeasures in state S and state E in
the real world. Moreover there may be a time lag when the node uses antivirus software to
clean the virus.

In this paper, in order to overcome the above-mentioned limitation, we present a new
computer virus model with time delay which is depending on the SEIR model [15]; time
delay can be considered the period of the node uses antivirus software to clean the virus.
This model provides an opportunity for us to study the behaviors of virus propagation
in the presence of antivirus countermeasures, which are very important and desirable for
understanding of the virus spread patterns, as well as for management and control of the
spread. The remainder of this paper is organized as follows. In Section 2, the stability of
trivial solutions and the existence of Hopf bifurcation are discussed. In Section 3, a formula
for determining the direction of Hopf bifurcation and the stability of bifurcating periodic
solutions will be given by using the normal form and center manifold theorem introduced by
Hassard et al. in [16]. In Section 4, numerical simulations aimed at justifying the theoretical
analysis will be reported.

2. Mathematical Model Formulation

Our model is based on the traditional SEIR model [7–9, 15, 17]. The SEIR model has four
states: susceptible, exposed (infected but not yet infectious), infectious, and recovered. Our
assumptions on the dynamical model are as follows.

(1) In the real world, in addition cleaning viruses in state I, people may immunize their
computers with countermeasures in state S and state E (after virus being cleaned),
which may result in new state transition paths in comparison with SIR model:

S-R: using countermeasure of real-time immunization,

E-R: using real-time immunization after virus codes cleaning.

(2) In state S, when people install the antivirus software on their computer, we assume
that their computer can be immunized at a unit time.

(3) In state E, since the computer is infected by the virus, the antivirus software may
use a period to search the document and clean the viruses.

(4) Denote the period of time of killing viruses when users find that their computers
are infected by viruses.

(5) While the computer is installed the antivirus software, it will not be quarantine or
replacement. On the basis of the above hypotheses (1)–(5), the dynamical model
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can be formulated by the following equations:

dS(t)

dt
= uN − βI(t)S(t) −

(

ρSR + µ
)

S(t),

dE(t)

dt
= βI(t)S(t) −

(

α + µ
)

E(t) − ρERE(t − τ),

dI(t)

dt
= αE(t) −

(

γ + µ
)

I(t),

dR(t)

dt
= ρSRS(t) + ρERE(t − τ) + γI(t − τ) − µR(t),

(2.1)

where ρSR describes the impact of implementing real-time immunization, ρER describes the
impact of cleaning the virus and immunizing the nodes, and µ describes the impact of
quarantine or replacement. α is the transition rate from E to I, and γ is the recovery rate
from I to R. τ is the time delay that the node usees antivirus software to clean the virus. β is
the transition rate from S to E.

3. Local Stability of the Equilibrium and Existence of Hopf Bifurcation

Wemay see that the first three equations in (2.1) are independent of the fourth equation, and
therefore, the fourth equation can be omitted without loss of generality. Hence, model (2.1)
can be rewritten as

dS(t)

dt
= uN − βI(t)S(t) −

(

ρSR + µ
)

S(t),

dE(t)

dt
= βI(t)S(t) −

(

α + µ
)

E(t) − ρERE(t − τ),

dI(t)

dt
= αE(t) −

(

γ + µ
)

I(t).

(3.1)

For the convenience of description, we define the basic reproduction number of the infection
as

R0 =
µNβα

(

ρSR + µ
)(

α + ρER + µ
)(

γ + µ
) . (3.2)

Clearly, we have the following results with respect to the stable state of system (3.1). Here,
the proof is omitted (see [17] for the details).

Theorem 3.1. IfR0 < 1, system (3.1) has only the disease-free equilibrium E0 = (µN/(ρSR+µ), 0, 0)
and is globally asymptotically stable. If R0 > 1, E0 becomes unstable and there exists a unique positive
equilibrium Eve, where Eve = (µN/(ρSR + µ)R0, µN(R0 − 1)/R0(α + µ + ρER), αE

∗/(γ + µ)).
Furthermore, for any τ > 0, E0 is asymptotically stable if R0 < 1 and unstable if R0 > 1.

To investigate the qualitative properties of the positive equilibrium E∗ with τ > 0, it is
necessary to make the following assumption:

(H1) R0 > 1.
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Under hypothesis (H1), the Jacobian matrix of the system (3.1) about Eve is given by

J(Eve) =

⎡

⎣

−a1 0 −a2

a3 −a4 − a7e
−λτ a2

0 a5 −a6

⎤

⎦, (3.3)

where a1 = βI + ρSR + µ, a2 = βS, a3 = βI, a4 = α + µ, a5 = α, a6 = γ + µ, a7 = ρER.
We can obtain the following characteristic equation:

λ3 + b1λ
2 + b2λ + b3 + e−λτ

(

b4λ
2 + b5λ + b6

)

= 0, (3.4)

where

b1 = a1 + a4 + a6, b2 = a1a6 + a4(a1 + a6) − a2a5, b3 = a1a4a6 − a1a2a5 + a2a3a5,

b4 = a7, b5 = a7(a1 + a6), b6 = a1a6a7.

(3.5)

If iω (ω > 0) is a root of (3.4), then

−iω3 − b1ω
2 + b2iω + b3 + e−iωτ

(

−ω2b4 + b5iω + b6
)

= 0. (3.6)

Separating the real and imaginary parts of (3.6), we have

b5ω sinωτ +
(

b6 − b4ω
2
)

cosωτ = b1ω
2 − b3,

b5ω cosωτ −
(

b6 − b4ω
2
)

sinωτ = ω3 − b2ω.
(3.7)

Adding up the squares of (3.7) yields

ω6 +
(

b21 − 2b2 − b24

)

ω4 +
(

b22 − 2b1b3 + 2b4b6 − b25

)

ω2 +
(

b23 − b26

)

= 0. (3.8)

Letting z = ω2, c1 = b21 − 2b2 − b24, c2 = b22 − 2b1b3 + 2b4b6 − b25, c3 = b23 − b26, then (3.8) becomes

z3 + c1z
2 + c2z + c3 = 0. (3.9)

Letting z∗ = (1/3)(−c1 +
√

c21 − 3c2), h(z
∗) = (z∗)3 + c1(z

∗)2 + c2z
∗ + c3, then we have the

following results (see [18–22] for details) about the distributions of the positive roots of (3.9).

Lemma 3.2 (see [18–22]). (i) If c3 < 0, then (3.9) has at least one positive root.
(ii) If c3 ≥ 0 and c21 − 3c2 ≤ 0, then (3.9) has no positive root.
(iii) If c3 ≥ 0 and c21−3c2 > 0, then (3.9) has positive roots if and only if z∗ > 0 and h(z∗) ≤ 0.
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Suppose (3.9) has positive roots; without loss of generality, we assume that it has three
positive roots defined by ωk =

√
zk, k = 1, 2, 3. By (3.7), we have

cos(ωkτ) =

(

b1ω
2
k
− b3
)(

b6 − b4ω
2
k

)

+ b5ω
2
k

(

ω2
k
− b2
)

b25ω
2
k
+
(

b6 − b4ω
2
k

)2
. (3.10)

Thus, denoting

τ
j

k
=

1

ωk
arc cos

(

b1ω
2
k
− b3
)(

b6 − b4ω
2
k

)

+ b5ω
2
k

(

ω2
k
− b2
)

b25ω
2
k
+
(

b6 − b4ω
2
k

)2
+
2jπ

ωk
, (3.11)

where k = 1, 2, 3; j = 0, 1, . . ., then ±iω is a pair of purely imaginary roots of (3.4) with τ
j

k
.

Define

τ0 = τ0k0 = min
k=1,2,3

{

τ0k0

}

, ω0 = ωk0 . (3.12)

Note that when τ = 0, (3.4) becomes

λ3 + (b1 + b4)λ
2 + (b2 + b5)λ + (b3 + b6) = 0. (3.13)

In addition, Routh-Hurwitz criterion [13] implies that, if the following condition holds, then
all roots of (3.13) have negative real parts.

(H2) (b1 + b4) > 0, (b1 + b4)(b2 + b5) − (b3 + b6) > 0.
Till now, we can employ a result from Ruan andWei [23] to analyze (3.4), which is, for

the convenience of the reader, stated as follows.

Lemma 3.3 (see [23]). Consider the exponential polynomial

P
(

λ, e−λτ , . . . , e−λτm
)

=λn + p
(0)
1 λn−1+· · · + p

(0)
n−1λ + p

(0)
n +

[

p
(1)
1 λn−1 + · · · + p

(1)
n−1λ + p

(1)
n

]

e−λτ

+ · · · +
[

p
(m)

1 λn−1 + · · · + p
(m)

n−1λ + p
(m)
n

]

e−λτm ,

(3.14)

where τi ≥ 0 (i = 1, 2, . . . , m) and p
(i)
j (j = 1, 2, . . . , m) are constants. As(τ1, τ2, . . . , τm) vary, the sum

of the order of the zeros of P(λ, e−λτ , . . . , e−λτm) on the open right half plane can change only if a zero
appears on or crosses the imaginary axis.

Using Lemmas 3.2 and 3.3we can easily obtain the following results on the distribution
of roots of the transcendental (3.4).

Lemma 3.4. (2.1) If c3 > 0 and c21 − 3c2 ≤ 0, then all roots with positive real parts of (3.4) have the
same sum as those of the polynomial (3.13) for all τ ≥ 0.

(3.1) If either c3 < 0 or c3 ≥ 0 and c21 − 3c2 > 0, z∗ > 0, h(z∗) ≤ 0, then all roots with positive
real parts of (3.4) have the same sum as those of the polynomial (3.13) for τ ∈ [0, τ0).
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Lemma 3.5. If 3w4
k
+ c1w

1
k
+ c2 /= 0, then the following transversality condition holds:

sgn

{

Re

{

(

dλ

dτ

)−1}}

/= 0 when τ = τ0. (3.15)

Proof. Differentiating (3.4)with respect to τ yields

[

3λ2 + 2b1λ + b2 +
(

2b4λ + b5 − τ
(

b4λ
2 + b5λ + b6

)

e−λτ
)]dλ

dτ
= λ
(

b4λ
2 + b5λ + b6

)

e−λτ .

(3.16)

For the sake of simplicity, denoting ω0 and τ0 by ω, τ respectively, then

(

dλ

dτ

)−1
=

3λ2 + 2b1λ + b2

λ(b4λ2 + b5λ + b6)e−λτ
+

2b4λ + b5
λ(b4λ2 + b5λ + b6)

− τ

λ

= − 2λ3 + b1λ
2 − b3

λ2(λ3 + b1λ2 + b2λ + b3)
+

b4λ
2 − b6

λ(b4λ2 + b5λ + b6)
− τ

λ

=
−2iω3 − b1ω

2 − b3
ω2(b3 − b1ω2 − i(ω3 − b2ω))

+
b4ω

2 + b6
ω2(b6 − b3ω2 + b4iω)

− τ

iω
.

(3.17)

Then we get

Re

{

(

dλ

dτ

)−1}

= − 1

ω2

[

b33 − 2ω6 −
(

b21 − 2b2
)

ω4

(b3 − b1ω2)
2
+ (ω3 − b2ω)

2
+

b26 − b24ω
4

(b6 − b4ω2)
2
+ b25ω

2

]

=
2ω6 + c1ω

4 − c3

ω2
(

(b6 − b4ω2)
2
+ b25ω

2
) =

3ω4 + c1ω
2 + c2

(

(b6 − b4ω2)
2
+ b25ω

2
) .

(3.18)

Then, if 3ω4 + c1ω
2 + c2 /= 0, we have sgn{Re{(dλ/dτ)−1}}/= 0, we complete proof.

Thus from Lemmas 3.2, 3.3, 3.4, and 3.5, and we have the following.

Theorem 3.6. Suppose that (H1) and (H2) hold, then the following results hold.

(1) The positive equilibrium of (3.1) is asymptotically stable, if c3 > 0 and c21 − 3c2 ≤ 0;

(2) if either c3 < 0 or c3 ≥ 0 and c21−3c2 > 0, z∗ > 0, h(z∗) ≤ 0, system (3.1) is asymptotically
stable for τ ∈ [0, τ0) and system (3.1) undergoes a Hopf bifurcation at the origin when
τ = τ0.

4. Direction of the Hopf Bifurcation

In this section, we derive explicit formulae for computing the direction of the Hopf
bifurcation and the stability of bifurcation periodic solution at critical values τ0 by using the
normal form theory and center manifold reduction.
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Letting x1 = S − S∗, x2 = E − E∗, x3 = I − I∗, xi(t) = xi(τt), τ = τ0 + µ, and dropping
the bars for simplification of notation, system (3.1) is transformed into an FDE as

ẋ(t) = Lµ(xt) + f
(

µ, xt

)

, (4.1)

with

Lµϕ =
(

τ0 + µ
)[

B1ϕ(0) + B2ϕ(−1)
]

, (4.2)

where

B1 =

⎡

⎢

⎢

⎣

−a1 0 −a2

a3 −a4 a2

0 a5 −a6

⎤

⎥

⎥

⎦

, B2 =

⎡

⎢

⎢

⎣

0 0 0

0 −a7e
−λτ 0

0 0 0

⎤

⎥

⎥

⎦

,

f
(

µ, ϕ
)

=
(

τ0 + µ
)

⎛

⎜

⎜

⎝

−βϕ1(0)ϕ2(0)

βϕ1(0)ϕ2(0)

0

⎞

⎟

⎟

⎠

.

(4.3)

Using the Riesz representation theorem, there exists a function η(θ, µ) of bounded variation
for θ ∈ [−1, 0], such that

Lµϕ =

∫0

−1
dη
(

θ, µ
)

ϕ(θ) ϕ ∈ C. (4.4)

In fact, we can choose

η
(

θ, µ
)

=
(

τ0 + µ
)

[B1δ(θ) + B2δ(θ + 1)], (4.5)

where δ(θ) is Dirac delta function.
In the next, for ϕ ∈ [−1, 0], we define

A
(

µ
)

ϕ =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

dϕ

dθ
, θ ∈ [−1, 0),

∫0

−1
dη
(

θ, µ
)

ϕ(θ), θ = 0,

(4.6)

R
(

µ
)

ϕ =

⎧

⎨

⎩

0, θ ∈ [−1, 0],

f
(

µ, ϕ
)

, θ = 0.
(4.7)
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Then system (4.2) can be rewritten as

ẋ(t) = A
(

µ
)

xt + R
(

µ
)

xt, (4.8)

where xt(θ) = x(t + θ).
The adjoint operator A∗ of A is defined by

A∗(µ
)

ψ =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

−dψ(s)
dθ

, s ∈ (0, 1],

∫0

−1
dηT (t, 0)ψ(−t), s = 0,

(4.9)

where ηT is the transpose of the matrix η.
For ϕ ∈ C1[−1, 0] and ψ ∈ C1[0, 1], we define

〈

ψ, ϕ
〉

= ψ(0) · ϕ(0) −
∫0

θ=−1

∫θ

ξ=0

ψ(ξ − θ)dη(θ)ϕ(ξ)dξ, (4.10)

where η(θ) = η(θ, 0). We know that ±iτ0ω0 is an eigenvalue of A(0), so ±iτ0ω0 is also an
eigenvalue of A∗(0). We can get

q(θ) =

⎛

⎝

1
q1
q2

⎞

⎠eiτ0ω0θ, −1 < θ ≤ 0. (4.11)

From the above discussion, it is easy to know that

Aq(0) = iτ0ω0q(0). (4.12)

Hence we obtain

q1 =
iω0q2

a5
,

q2 = − iω0 + a1

a2
.

(4.13)

Suppose that the eigenvector q∗ of A∗ is

q∗(s) =

⎛

⎝

1
q1

∗

q2
∗

⎞

⎠eiτ0ω0s, (4.14)

Then the following relationship is obtained:

A∗q(0) = −iτ0ω0q
∗(0). (4.15)
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Hence we obtain

q∗1 =
a1 − iω0

a3
,

q∗2 =
a4 + a7e

iω0τ0

a5
q∗

1
.

(4.16)

Let

〈

q∗, q
〉

= 1. (4.17)

One can obtain

〈

q∗, q
〉

= q∗(0) · q(0) −
∫0

θ=−1

∫θ

ξ=0

q∗
T
(ξ − θ)dη(θ)ϕ(ξ)dξ

=
1

ρ

(

1 + q1q1
∗
+ q2q2

∗)

−
∫0

θ=−1

∫θ

ξ=0

τ0
1

ρ

(

1 q1
∗ q2

∗)
⎡

⎣

⎛

⎝

−a1 0 −a2

a3 −a4 a2

0 a5 −a6

⎞

⎠δ(θ)

+

⎛

⎝

0 0 0
0 −a7 0
0 0 0

⎞

⎠δ(θ + 1)

⎤

⎦

⎛

⎝

1
q1
q2

⎞

⎠eiτ0ω0θdξ dθ

=
1

ρ

(

1 + q1q1
∗
+ q2q2

∗) − 1

ρ
τ0e

−iω0τ0a7q1q1
∗.

(4.18)

Hence we obtain

ρ =
(

1 + q1q1
∗
+ q2q2

∗) − τ0e
−iω0τ0a7q1q1

∗. (4.19)

In the remainder of this section, by using the same notations as in Hassard et al. [16],
we first compute the coordinates for describing the center manifold C0 at µ = 0. Leting xt be
the solution of (4.1)with µ = 0, we define

z(t) =
〈

q∗, xt

〉

,

W(t, θ) = xt − 2Re
{

z(t)q(θ)
}

.
(4.20)

On the center manifold C0 we have

W(t, θ) = W(z, z, t), (4.21)

where

W(z, z, t) = W20(θ)
z2

2
+W11(θ)

zz

2
+W02(θ)

z2

2
+ · · · . (4.22)
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In fact, z and z are local coordinate for C0 in the direction of q and q∗. Note that, if xt

is, we will deal with real solutions only. Since µ = 0

ż(t) =
〈

q∗, ẋt

〉

=
〈

q∗, A
(

µ
)

xt + R
(

µ
)

xt

〉

=
〈

q∗, Axt

〉

+
〈

q∗, Rxt

〉

= iτ0w0z + q∗(0) · f
(

0,W(t, 0) + 2Re
[

z(t)q(0)
])

.
(4.23)

Rewrite (4.23) as

ż(t) = iτ0ω0z + g(z, z), (4.24)

where

g(z, z) = g20
z

2

2
+ g11zz + g02

z2

2
+ g21

z2z

2
+ · · · . (4.25)

From (4.1) and (4.24), we have

Ẇ = ẋt − żq − żq̇ =

⎧

⎪

⎨

⎪

⎩

AW − 2Re
[

q∗(0) · f(z, z)q(θ)
]

, θ ∈ [−2τ, 0),

AW − 2Re
[

q∗(0) · f(z, z)q(θ)
]

+ f0(z, z), θ = 0.

(4.26)

Let

Ẇ = AW +H(z, z, θ), (4.27)

where

H(z, z, θ) = H20(θ)
z2

2
+H11(θ)

zz

2
+H02(θ)

z2

2
+ · · · . (4.28)

Expanding the above series and comparing the corresponding coefficients, we obtain

(A − 2iw0)W20(θ) = −H20(θ), AW11(θ) = −H11(θ), (A + 2iw0)W02(θ) = −H02(θ).
(4.29)

Since xt = x(t + θ) = W(z, z, θ) + zq + z · q, we have

xt =

⎛

⎜

⎜

⎝

W (1)(z, z, θ)

W (2)(z, z, θ)

W (3)(z, z, θ)

⎞

⎟

⎟

⎠

+ z

⎛

⎜

⎜

⎝

1

q1

q2

⎞

⎟

⎟

⎠

eiω0θ + z

⎛

⎜

⎜

⎝

1

q1

q2

⎞

⎟

⎟

⎠

e−iω0θ. (4.30)
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Thus, we can obtain

ϕ1(0) = z + z +W
(1)
20 (0)

z2

2
+W

(1)
11 (0)zz +W

(1)
02 (0)

z2

2
,

ϕ2(0) = zq1 + zq∗1 +W
(1)
20 (0)

z2

2
+W

(1)
11 (0)zz +W

(1)
02 (0)

z2

2
.

(4.31)

So

ϕ1(0)ϕ2(0) = q1z
2 + q1z

2
+
(

q1 + q2
)

zz +

(

W
(2)
11 +

1

2
W

(2)
20 +W

(1)
11 q1 +

1

2
W

(1)
20 q

)

z2z. (4.32)

It follows from (4.24) and (4.25) that

f
(

ϕ, µ
)

=

⎛

⎜

⎜

⎝

K11z
2 +K12zz +K13z

2
+K14z

2z

K21z
2 +K22zz +K23z

2
+K24z

2z

0

⎞

⎟

⎟

⎠

, (4.33)

where

K11 = −βq1, K12 = −βq1, K13 = −β
(

q1 + q1
)

,

K14 = −β
(

W
(2)
11 +

1

2
W

(2)
20 +W

(1)
11 q1 +

1

2
W

(1)
20 q

)

,

K21 = βq1, K22 = βq1, K23 = β
(

q1 + q1
)

,

K24 = β

(

W
(2)
11 +

1

2
W

(2)
20 +W

(1)
11 q1 +

1

2
W

(1)
20 q

)

.

(4.34)

Since q∗(0) = (1/ρ)(1, q∗1, q
∗
2)

T , we have

g(z, z) =
1

ρ

(

1, q∗1, q
∗
2

)

⎛

⎜

⎜

⎝

K11z
2 +K12zz +K13z

2
+K14z

2z

K21z
2 +K22zz +K23z

2
+K24z

2z

0

⎞

⎟

⎟

⎠

. (4.35)

Comparing the coefficients of the above equation with those in (4.27), we have

g20 =
1

ρ

(

K11 +K21q
∗
1

)

, g11 =
1

ρ

(

K12 +K22q
∗
1

)

,

g02 =
1

ρ

(

K13 +K23q
∗
1

)

, g21 =
1

ρ

(

K14 +K24q
∗
1

)

.

(4.36)
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In what follows, we focus on the computation of W20(θ) and W11(θ). For the expression of
g21, we have

H(z, z, θ) = −2Re
[

q∗(0) · f(z, z)q(θ)
]

= −
(

g20
z

2

2
+ g11zz + g02

z2

2
+ · · ·

)

q(θ) −
(

g20

z

2

2

+ g11zz + g02

z2

2
+ · · ·

)

q(θ).

(4.37)

Comparing the coefficients of the above equation, we can obtain that

H20(θ) = −g20q(θ) − g02q(θ), θ ∈ [−1, 0), (4.38)

H11(θ) = −g11q(θ) − g11q(θ), θ ∈ [−1, 0). (4.39)

Substituting (4.39) into (4.27) and (4.38) into (4.27), respectively, we get

Ẇ20(θ) = 2iτ0ω0W20(θ) + g20q(θ) + g20q(θ),

Ẇ11(θ) = +g11q(θ) + g11q(θ).
(4.40)

So

W20(θ) =
ig20

τ0ω0
q(0)eiτ0ω0θ −

g02

3iτ0ω0
q(0)e−iτ0ω0θ + E1e

2iτ0ω0θ,

W11(θ) =
g11

iτ0ω0
q(0)eiτ0ω0θ −

g11

iτ0ω0
q(0)e−iτ0ω0θ + E2.

(4.41)

In the sequel, we will determine E1 and E2. Form the definition of A in (4.8), we have

∫0

−1
dη(θ)W20(θ) = 2iτ0ω0W20(0) −H20(0), (4.42)

∫0

−1
dη(θ)W11(θ) = −H11(0). (4.43)

From (4.6) and (4.38)-(4.39), we have

H20(θ) = −g20q(θ) − g02q(θ) + (K11, K21, 0)
T , (4.44)

H11(θ) = −g11q(θ) − g11q(θ) + (K12, K22, 0)
T . (4.45)
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Substituting (4.41) and (4.44) into (4.42) and noticing that

(

iω0I −
∫0

−1
eiω0θdη(θ)

)

q(0) = 0,

(

−iω0I −
∫0

−1
e−iω0θdη(θ)

)

q(0) = 0,

(4.46)

we can obtain

(

2iω0I −
∫0

−1
e2iτ0ω0θdη(θ)

)

E1 =
(

K11 K21 0
)T
, (4.47)

which leads to

⎛

⎜

⎜

⎝

2iω0 + a1 0 a2

−a3 2iω0 + a4 + a7e
−2iω0τ0 −a2

0 −a5 2iω0 + a6

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

E
(1)
1

E
(2)
1

E
(3)
1

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

K11

K21

0

⎞

⎟

⎟

⎠

,

⎛

⎜

⎜

⎝

a1 0 a2

−a3 a4 + a7 −a2

0 −a5 a6

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

E
(1)
2

E
(2)
2

E
(3)
2

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

K12

K22

0

⎞

⎟

⎟

⎠

.

(4.48)

It follows that

E
(1)
1 =

K11 − a2E
(3)
1

2iω0 + a1
,

E
(2)
1 =

2iω0 + a6

a5
E
(3)
1 ,

E
(3)
1 =

K22 −K11/(2iω0 + a1)

a2a3/(2iω0 + a1) + (2iω0 + a4 + a7e−2iω0τ0)((2iω0 + a6)/a5) − 2iω0 − a6
,

E
(1)
2 =

K12 − a2E
(3)
2

a1
, E

(2)
2 =

a6

a5
E
(3)
2 , E

(3)
2 =

a1a5K22 − a5K12

a2a3a5 + (a4 + a7)a1a6 − a1a5a6
.

(4.49)

Based on the above analysis, we can see each gij in (4.37) is determined by parameters and
delays in (3.1). Thus, we can compute the following quantities:

µ2 = −ReC1(0)

Reλ′(τ0)
,

T2 = − ImC1(0) + µ2 Imλ′(0)

ω0
,

β2 = −2ReC1(0).

(4.50)
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Figure 1: τ = 13 < τ0. The positive equilibrium E∗ of system (3.1) is asymptotically stable.

Theorem 4.1. In (4.50), the following results hold.

(1) The sign of µ2 determines the directions of the Hopf bifurcation: if µ2 > 0 (µ2 < 0) then
the Hopf bifurcation is forward (backward) and the bifurcating periodic solutions exist for
τ > τ0 (τ < τ0).

(2) The sign of β2 determines the stability of the bifurcating periodic solutions: the bifurcating
periodic solutions are stable (unstable) if β2 < 0 (β2 > 0).

(3) The sign of T2 determines the period of the bifurcating periodic solutions: the period
increases (decreases) if T2 > 0 (T2 < 0).

5. Numerical Examples

In this section, some numerical results of system (3.1) are presented to justify the Previous
theorem above. As an example, considering the following parameters: µ = 0.01, N =

10000, γ = 0.08, α = 0.1, β = 0.01, ρSR = 0.2, ρER = 0.2, then R0 = 1.706, c3 = −3.6284e − 5,
and E∗ = (279, 133.6, 148.4). According to the Lemma 3.2, (3.9) has one positive real root
ω = 0.1194. Correspondingly, by (3.13), we obtain τ0 = 14.05. First, we choose τ = 13 < τ0,
the corresponding wave form and phase plots are shown in Figure 1; it is easy to see from
Figure 1 that system (3.1) is asymptotically stable. Finally, we choose τ = 14.15 > τ0 the
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Figure 2: τ = 14.15 > τ0. The bifurcation periodic solution for system (3.1) is stable.

corresponding wave form and phase plots are shown in Figure 2; it is easy to see that Figure 2
undergoes a Hopf bifurcation.

6. Conclusions

In this paper, considering that in addition to cleaning viruses in state I, people may immunize
their computers with countermeasures in state S and state E, and since using antivirus
software will take a period of time, we have constructed a computer virus model with time
delay depending on the SEIR model. The theoretical analyses for the computer virus models
are given. Furthermore, we have proved that when time cross through the critical value, the
system exist a Hopf bifurcation. Finally, simulation clarifies our results.
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