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In this paper, we investigate an SLBRS computer virusmodel with time delay and impact of antivirus so	ware.�e proposedmodel
considers the entering rates of all computers since every computer can enter or leave the Internet easily. It has been observed that
there is a stability switch and the system becomes unstable due to the e
ect of the time delay. Conditions under which the system
remains locally stable and Hopf bifurcation occurs are found. Su�cient conditions for global stability of endemic equilibrium are
derived by constructing a Lyapunov function. Formulae for the direction, stability, and period of the bifurcating periodic solutions
are conducted with the aid of the normal form theory and center manifold theorem. Numerical simulations are carried out to
analyze the e
ect of some of the parameters in the system on the dynamic behavior of the system.

1. Introduction

Computer viruses are programs created to carry out activities
in a computer without consent of its owner. �ey not only
disrupt the normal functionalities of computer system and
damage data �les in the computer, but also cause heavy
economic losses and tremendous social impacts [1–3]. In
recent years, mathematical modeling enjoys popularity in
both analyzing and controlling computer viruses based on the
similarity between computer viruses and biological viruses.
A few works proposing SIR models have appeared in the
literatures [4–6]. In [4], Amador studied a stochastic SIRA
epidemic model for computer viruses and analyzed the qua-
sistationary distribution, the extinction time, and the number
of infections in order to understand the spreading mecha-
nism of computer viruses. In [5], Ozturk and Gulsu proposed
an approximate solution to a modi�ed SIR computer virus
model by using the shi	ed Chebyshev collocation method.
In [6], Khanh studied the stability and approximate iterative
solutions of an SIR computer virus model with antidotal
component.

Considering the latent period of computer viruses, some
models with latency are proposed by some scholars [1, 7–10].
In [7], Yang investigated global stability of a VEISV network

worm attack model by using the Li-Muldowney geometric
approach. In [8], Keshri et al. proposed a reduced SEIR scale-
free networkmodel and studied its stability. In [9],Hosseini et
al. formulated a discrete-time SEIRSmodel of computer virus
propagation in scale-free networks and analyzed the local and
global stability of the model. In [1], Guillen et al. proposed
an improved SEIRS worm model with considering accurate
positions for dysfunctional hosts and their replacements in
state transition. In [10], Ren and Xu investigated an SEIR-KS
computer virus propagation model based on the kill signals.
�ey studied the local and global stability of the model by
applying Routh-Hurwitz criterion and Lyapunov functional
method. �ere are also some other models considering the
latency of computer viruses with quarantine [11–14] and
vaccination [15–19].

However, as stated in [20], those above models with the
exposed compartment neglect the fact that a computer can
infect other computers through �le copying or �le down-
loading. �erefore, to overcome the above-mentioned defect,
computer virus models with infectivity in latent period have
received much attention in recent years [21–26]. Unfortu-
nately, most of these models still have some defects. On
the one hand, they ignore the e
ect of time delay. As is
known, there are some time delays of one type or another
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Table 1: Parameters and their meanings in this paper.

Parameter Description�1 Entering rate of susceptible computers�2 Entering rate of latent computers�3 Entering rate of breaking computers�4 Entering rate of recovered computers� Rate of latent computers break� Infection rate of susceptible computers�1 Recovery rate of all computers�0 Leaving rate of all computers� Rate of recovered computers lose immunity�2 Rate of latent and breaking computers reinstall the operating system

in the transmission process of computer viruses due to latent
period, temporary immunity period, or other reasons. On the
other hand, only the susceptible computers are regarded as
the entering computers, but every computer can enter or leave
the Internet easily in reality. Finally, they neglect the e
ect of
antivirus so	ware, especially the e
ect of antivirus so	ware
on the susceptible computers. Based on the discussion above,
we investigated a delayed SLBRS computer virus model with
impact of antivirus so	ware based on the following model
proposed in [27]:�	 (
)�
 = �1 + �2� (
) + �2� (
) + � (
) − �1	 (
)− �0	 (
) − � (� (
) + � (
)) 	 (
) ,�� (
)�
 = �2 + � (� (
) + � (
)) 	 (
) − �1� (
) − �2� (
)− �0� (
) − �� (
) ,�� (
)�
 = �3 + �� (
) − �1� (
) − �2� (
) − �0� (
) ,� (
)�
 = �4 + �1� (
) + �1� (
) + �1	 (
) − �0 (
)− � (
) ,

(1)

where 	(
), �(
), �(
), and (
) denote the numbers of
susceptible, latent, breaking, and recovered computers at
time 
, respectively. More parameters are listed in Table 1 as
follows.

Considering the temporary immune period of the recov-
ered computers, we incorporate the time delay due to the
temporary immunity period into system (1) and obtain the
following delayed model:�	 (
)�
 = �1 + �2� (
) + �2� (
) + � (
 − �) − �1	 (
)− �0	 (
) − � (� (
) + � (
)) 	 (
) ,�� (
)�
 = �2 + � (� (
) + � (
)) 	 (
) − �1� (
) − �2� (
)− �0� (
) − �� (
) ,

�� (
)�
 = �3 + �� (
) − �1� (
) − �2� (
) − �0� (
) ,� (
)�
 = �4 + �1� (
) + �1� (t) + �1	 (
) − �0 (
)− � (
 − �) ,
(2)

where � is the time delay due to the temporary immunity
period.

�e remainder of the paper is structured as follows.
In Section 2, conditions for local stability of the endemic
equilibrium and the existence of Hopf bifurcation are per-
formed. Section 3 deals with global stability of the endemic
equilibrium. Section 4 is devoted to establishing the formulae
to determine the direction, stability, and period of the
bifurcating periodic solutions. Some numerical simulations
are presented to illustrate the theoretical results in Section 5.
We end the paper with a brief conclusion in Section 6.

2. Local Stability and Existence of
Hopf Bifurcation

By a direct computation, it can be concluded that system (2)
has the endemic equilibrium �∗(	∗, �∗, �∗, ∗) where	∗ = (�1 + �2 + �0 + �) �∗ − �2� (�∗ + (�3 + ��∗) / (�1 + �2 + �0)) ,�∗ = �3 + ��∗�1 + �2 + �0 ,∗ = (�4 + (�1 + �2 + �3 + �4) /�0)(�0 + � + �1) ,

(3)

where �∗ is the positive root of (4)�̃2�2 + �̃1� + �̃0, (4)

where �̃0 = �2�5 + �4,�̃1 = �1�5 + �2�6 − �3,�̃2 = �1�6, (5)
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and

�1 = � + ���1 + �2 + �0 ,�2 = �3��1 + �2 + �0 ,�3 = (�1 + �0) (�1 + �2 + �0 + �) ,�4 = �2 (�1 + �0) ,�5 = �1 + �2 + �3�2�1 + �2 + �0 + �∗,
�6 = −(�1 + �0) (�1 + �2 + �0 + �)�1 + �2 + �0 .

(6)

�e Jacobian matrix of system (2) evaluated at �∗ is
��∗ = (�11 �12 �13 �14�−���21 �22 0 00 �32 �33 0�41 �42 �43 �44 + �44�−��), (7)

where �11 = − [�1 + �0 + � (�∗ + �∗)] ,�12 = �2 − �	∗,�13 = �2 − �	∗,�21 = � (�∗ + �∗) ,�22 = �	∗ − (�1 + �2 + �0 + �) ,�32 = �,�33 = − (�1 + �2 + �0) ,�41 = �1,�42 = �1,�43 = �1,�44 = −�0,�14 = �,�44 = −�.

(8)

�e corresponding characteristic equations is�4 + �3�3 + �2�2 + �1� + �0+ (�3�3 + �2�2 + �1� + �0) �−�� = 0, (9)

with�0 = �33�44 (�11�22 − �12�21) + �13�32�44�21,�1 = �12�21 (�33 + �44) − �13�32�21− �11�33 (�22 + �44) − �22�44 (�11 + �33) ,�2 = �11�33 + �22�44 + (�11 + �33) (�22 + �44)− �12�21,�3 = − (�11 + �22 + �33 + �44) ,�0 = �21�44 (�13�32 − �12�33)+ �21�14 (�33�42 − �32�43) − �22�33�41�14,�1 = �12�21�44 − �44 (�11�22 + �11�33 + �22�33)+ �41�14 (�22 + �33) − �21�42�14,�2 = �44 (�11 + �22 + �33) − �41�14,�3 = −�44.

(10)

For � = 0, (9) becomes�4 + (�3 + �3) �3 + (�2 + �2) �2 + (�1 + �1) � + �0+ �0 = 0. (11)

Clearly, �3 +�3 = 3�1 + 4�0 + 2�2 + � + � + �(�∗ + �∗) >0. Hence, it follows from the Hurwitz criterion that all the
roots of (11) have negative real parts, if (!1): �0 + �0 > 0,(�2+�2)(�3+�3) > �1+�1 and (�1+�1)(�2+�2)(�3+�3) >(�0 + �0)(�3 + �3)2 + (�1 + �1)2 holds.

For � > 0, let � = "#(# > 0) be the root of (9). �en,(�1# − �3#3) sin �# + (�0 − �2#2) cos �#= �2#2 − #4 − �0,(�1# − �3#3) cos �# − (�0 − �2#2) sin �#= �3#3 − �1#.
(12)

�us, #8 + �̃3#6 + �̃2#4 + �̃1#2 + �̃0 = 0, (13)

with �̃0 = �20 − �20,�̃1 = �21 − 2�0�2 − �21 + 2�0�2,�̃2 = �22 + 2�0 − 2�1�3 + 2�1�3 − �22,�̃3 = �23 − 2�2 − �23.
(14)

Let #2 = ], then (13) becomes

]
4 + �̃3]3 + �̃2]2 + �̃1] + �̃0 = 0. (15)
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Suppose that (!2) (15) has a positive root ]0. �en, (13)
has a positive root #0 = √]0 such that (9) has a pair of purely
imaginary roots ±"#0. For #0,�0 = 1#0 × arccos{&1 (#0)&2 (#0)} , (16)

where&1 (#0) = (�2 − �3�3) #60+ (�3�1 + �1�3 − �2�2 − �0) #40+ (�2�0 + �0�2 − �1�1) #20 − �0�0,&2 (#0) = �23#60 + (�22 − 2�1�3) #40+ (�21 − 2�0�2) #20 + �20.
(17)

Di
erentiating on both sides of (9) with respect to �, one can
obtain[����]−1 = − 4�3 + 3�3�2 + 2�2� + �1� (�4 + �3�3 + �2�2 + �1� + �0)+ 3�3�2 + 2�2� + �1� (�3�3 + �2�2 + �1� + �0) − �� (18)

Further, we have

Re [����]−1�=�0 = 5� (]0)&2 (#20) , (19)

where 5(]) = ]
4 + �̃3]3 + �̃2]2 + �̃1] + �̃0 and ]0 = #20.

�erefore, if (!3): 5�(]0) ̸= 0, then Re[��/��]�=�0 ̸=0. �us, we have the following results based the Hopf
bifurcation theorem in [28].

�eorem 1. For system (2), if (!1)-(!3) hold, then�∗(	∗, �∗, �∗, ∗) is locally asymptotically stable when� ∈ [0, �0); system (2) undergoes a Hopf bifurcation at�∗(	∗, �∗, �∗, ∗) when � = �0 and a family of periodic
solutions bifurcate from �∗(	∗, �∗, �∗, ∗). �0 is defined as in
(16).

3. Global Stability Analysis

�eorem 2. Ifmin{81, 82, 83, 84} > 0, with81 = 191	∗ (�1 + �2�∗ + �2�∗ + �∗) − �(93;2 + 1)
− �1;4 (1 + �94� ( 1;4 + 1;1)) ,82 = � + 192�∗ (�2 + ��∗	∗) − �2;1 − �;3

− �1;4 (1 + �94� ( 1;4 + 1;1)) ,
83 = � + 193�∗ (�3 + ��∗) − �2;1 − �	∗;2− �1;4 (1 + �94� ( 1;4 + 1;1)) ,
84 = �( 194 − ( 1;1 + 1;4)(1 + �� + �94�;4 ))

+ 1∗ ( 194 − ��( 1;1 + 1;4))× (�4 + (	∗ + �∗ + �∗) �1) ,
(20)

where ;1 < 	(
) < 91, ;2 < �(
) < 92, ;3 < �(
) < 93,
and ;4 < (
) < 94 for 
 > 0, then the endemic equilibrium�∗ is globally asymptotically stable.

Proof. Let 	 (
) = 	∗��(�),� (
) = �∗�	(�),� (
) = �∗�
(�), (
) = ∗��(�).
(21)

�en �∗(	∗, �∗, �∗, ∗) becomes the trivial equilibrium@(
) = A(
) = B(
) = C(
) = 0 for all 
 > 0, and system (2) can
be reduced to the following form:�@�
= −1	 (�1 + �2�∗ + �2�∗ + �∗) (��(�) − 1)+ �∗ (�2	 − �) (�	(�) − 1)+ �∗ (�2	 − �) (�
(�) − 1) + �∗	 (��(�−�) − 1) ,

(22)

�A�
= − 1� (�2 + ��∗	∗) (�	(�) − 1)+ �	∗ (�� + 1) (��(�) − 1)+ ��∗	∗� (�
(�) − 1) ,
(23)

�B�
 = ��∗� (�	(�) − 1) − 1� (�3 + ��∗) (�
(�) − 1) , (24)
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 = �1	∗ (��(�) − 1) + �1�∗ (�	(�) − 1)+ �1�∗ (�
(�) − 1) − �∗ (��(�−�) − 1)− 1 (�4 + �1 (	∗ + �∗ + �∗) − �∗) (��(�) − 1) .
(25)

Now, we have

��(�−�) = ��(�) − ∫�
�−�

��(�) �C�G �G. (26)

Now, (22) can be rewritten as follows by using above relation,�@�
 = −1	 (�1 + �2�∗ + �2�∗ + �∗) (��(�) − 1)+ �∗ (�2	 − �) (�	(�) − 1) + �∗ (�2	 − �) (�
(�)− 1) + �∗	 (��(�) − 1) − �∗	 ∫�
�−�

��(�) �C�G �G,= −1	 (�1 + �2�∗ + �2�∗ + �∗) (��(�) − 1)+ �∗ (�2	 − �) (�	(�) − 1) + �∗ (�2	 − �) (�
(�)− 1) + �∗	 (��(�) − 1) − �∗	⋅ ∫�
�−�

��(�) {�1	∗ (��(�) − 1) + �1�∗ (�	(�) − 1)+ �1�∗ (�
(�) − 1)− 1 (�4 + �1 (	∗ + �∗ + �∗) − �∗) (��(�) − 1)− �∗ (��(�−�) − 1)} �G,

(27)

Let K1(
) = |@(
)|. It follows from the above equation

L+K1 ≤ − 191 (�1 + �2�∗ + �2�∗ + �∗) NNNNN��(�) − 1NNNNN+ �∗ ( �2;1 − �) NNNNN�	(�) − 1NNNNN + �∗ ( �2;1 − �) NNNNN�
(�)− 1NNNNN + �∗;1 NNNNN��(�) − 1NNNNN + �∗;1⋅ ∫�
�−�

��(�) {�1	∗;4 NNNNN��(�) − 1NNNNN + �1�∗;4 NNNNN�	(�) − 1NNNNN

+ �1�∗;4 NNNNN�
(�) − 1NNNNN+ 194 (�4 + (	∗ + �∗ + �∗) �1) NNNNN��(�) − 1NNNNN+ 1;4 �∗ NNNNN��(�) − 1NNNNN + �∗94 NNNNN��(�−�) − 1NNNNN} �G,
(28)

We �nd that there exists a 
1 > 0, such that ∗��(�) < 94 for
all 
 > 
1 and for 
 > 
1 + �, we have
L+K1 ≤ − 191 (�1 + �2�∗ + �2�∗ + �∗) NNNNN��(�) − 1NNNNN+ �∗ ( �2;1 − �) NNNNN�	(�) − 1NNNNN + �∗ ( �2;1 − �) NNNNN�
(�)− 1NNNNN + �∗;1 NNNNN��(�) − 1NNNNN + �94;1 ∫�

�−�
{�1	∗;4 NNNNN��(�) − 1NNNNN+ �1�∗;4 NNNNN�	(�) − 1NNNNN + �1�∗;4 NNNNN�
(�) − 1NNNNN+ 194 (�4 + (	∗ + �∗ + �∗) �1) NNNNN��(�) − 1NNNNN+ 1;4 �∗ NNNNN��(�) − 1NNNNN + �∗94 NNNNN��(�−�) − 1NNNNN} �G

(29)

Again due to form of (29) we consider the following func-
tional:K11 (
) = K1 (
) + �94;1 ∫�

�−�
∫�
V

{�1	∗;4 NNNNN��(�) − 1NNNNN+ �1�∗;4 NNNNN�	(�) − 1NNNNN + �1�∗;4 NNNNN�
(�) − 1NNNNN+ 194 (�4 + (	∗ + �∗ + �∗) �1) NNNNN��(�) − 1NNNNN+ 1;4 �∗ NNNNN��(�) − 1NNNNN + �∗94 NNNNN��(�−�) − 1NNNNN} �G�V
+ �2∗�;1 ∫�

�−�

NNNNN��(�) − 1NNNNN �G,
(30)

whose derivative along the solution of system (2) is given by

L+K11 (
) ≤ L+K1 (
) + �94�;1 {�1	∗;4 NNNNN��(�) − 1NNNNN+ �1�∗;4 NNNNN�	(�) − 1NNNNN + �1�∗;4 NNNNN�
(�) − 1NNNNN + 194 (�4+ (	∗ + �∗ + �∗) �1) NNNNN��(�) − 1NNNNN + �∗;4 NNNNN��(�) − 1NNNNN}
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+ �2∗�;1 NNNNN��(�) − 1NNNNN − �94;1 ∫�
�−�

{�1	∗;4 NNNNN��(�) − 1NNNNN+ �1�∗;4 NNNNN�	(�) − 1NNNNN + �1�∗;4 NNNNN�
(�) − 1NNNNN+ 194 (�4 + (	∗ + �∗ + �∗) �1) NNNNN��(�) − 1NNNNN+ �∗;4 NNNNN��(�) − 1NNNNN + �∗94 NNNNN��(�−�) − 1NNNNN} �G
≤ {− 191 (�1 + �2�∗ + �2�∗ + �∗) + �94�1	∗�;1;4 }
⋅ NNNNN��(�) − 1NNNNN + �∗ { �2;1 − � + �94��1;1;4 } NNNNN�	(�) − 1NNNNN+ �∗ { �2;1 − � + �94��1;1;4 } NNNNN�
(�) − 1NNNNN + {�∗;1 (1
+ �� + �94�;4 ) + ��;1 (�4 + (	∗ + �∗ + �∗) �1)}⋅ NNNNN��(�) − 1NNNNN

(31)

Again let K2(
) = |A(
)| and K3(
) = |B(
)|. Now calculate the
derivative ofK2(
) andK3(
)with the solution of (2), it follows
from, respectively, (23) and (24)

L+K2 ≤ �	∗ (93;2 + 1) NNNNN��(�) − 1NNNNN− 192 (�2 + ��∗	∗) NNNNN�	(�) − 1NNNNN+ ��∗	∗;2 NNNNN�
(�) − 1NNNNN ,
(32)

L+K3 ≤ ��∗;3 NNNNN�	(�) − 1NNNNN − 193 (�3 + ��∗) NNNNN�
(�) − 1NNNNN , (33)

Now, (25) can be rewritten as follows by using (26),�C�
 = �1	∗ (��(�) − 1) + �1�∗ (�	(�) − 1)+ �1�∗ (�
(�) − 1) − �∗ (��(�) − 1) − 1 (�4+ �1 (	∗ + �∗ + �∗) − �∗) (��(�) − 1) + �∗⋅ ∫�
�−�

��(�) �C�G �G.= �1	∗ (��(�) − 1) + �1�∗ (�	(�) − 1) + �1�∗ (�
(�)

− 1) − �∗ (��(�) − 1) − 1 (�4 + �1 (	∗ + �∗+ �∗) − �∗) (��(�) − 1) + �∗⋅ ∫�
�−�

��(�) {�1	∗ (��(�) − 1) + �1�∗ (�	(�) − 1)+ �1�∗ (�
(�) − 1) − �∗ (��(�−�) − 1)− 1 (�4 + �1 (	∗ + �∗ + �∗) − �∗)⋅ (��(�) − 1)} �G.
(34)

Again let K4(
) = |C(
)|. It follows from the above equation

L+K4 ≤ �1	∗;4 NNNNN��(�) − 1NNNNN + �1�∗;4 NNNNN�	(�) − 1NNNNN+ �1�∗;4 NNNNN�
(�) − 1NNNNN − �∗94 NNNNN��(�) − 1NNNNN+ (−�4 + �1 (	∗ + �∗ + �∗)94 + �∗;4 ) NNNNN��(�) − 1NNNNN+ �∗;4 ∫�
�−�

��(�) {�1	∗;4 NNNNN��(�) − 1NNNNN + �1�∗;4 NNNNN�	(�) − 1NNNNN+ �1�∗;4 NNNNN�
(�) − 1NNNNN + �∗94 NNNNN��(�−�) − 1NNNNN+ (�4 + �1 (	∗ + �∗ + �∗)94 + �∗;4 )⋅ NNNNN��(�) − 1NNNNN} �G.

(35)

We �nd that there exists a 
1 > 0, such that ∗��(�) < 94 for
all 
 > 
1 and for 
 > 
1 + �, we have

L+K4 ≤ �1	∗;4 NNNNN��(�) − 1NNNNN + �1�∗;4 NNNNN�	(�) − 1NNNNN+ �1�∗;4 NNNNN�
(�) − 1NNNNN − �∗94 NNNNN��(�) − 1NNNNN+ (−�4 + �1 (	∗ + �∗ + �∗)94 + �∗;4 ) NNNNN��(�) − 1NNNNN+ �94;4 ∫�
�−�

{�1	∗;4 NNNNN��(�) − 1NNNNN + �1�∗;4 NNNNN�	(�) − 1NNNNN+ �1�∗;4 NNNNN�
(�) − 1NNNNN + �∗94 NNNNN��(�−�) − 1NNNNN
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+ (�4 + �1 (	∗ + �∗ + �∗)94 + �∗;4 )⋅ NNNNN��(�) − 1NNNNN} �G.
(36)

Again due to the above form of (36)we consider the following
functional:K44 (
) = K4 (
) + �94;4 ∫�

�−�
∫�
V

{�1	∗;4 NNNNN��(�) − 1NNNNN+ �1�∗;4 NNNNN�	(�) − 1NNNNN + �1�∗;4 NNNNN�
(�) − 1NNNNN+ �∗94 NNNNN��(�−�) − 1NNNNN+ (�4 + �1 (	∗ + �∗ + �∗)94 + �∗;4 )⋅ NNNNN��(�) − 1NNNNN} �G�V + �2∗�;4 ∫�
�−�

NNNNN��(�)− 1NNNNN �G,

(37)

whose right derivative along the solution of the system (2) is
given byL+V44 (
) ≤ L+K4 (
) + �94�;4 {�1	∗;4 NNNNN��(�) − 1NNNNN+ �1�∗;4 NNNNN�	(�) − 1NNNNN + �1�∗;4 NNNNN�
(�) − 1NNNNN+ (�4 + �1 (	∗ + �∗ + �∗)94 + �∗;4 ) NNNNN��(�) − 1NNNNN}+ �2∗�;4 NNNNN��(�) − 1NNNNN − �94;4 ∫�

�−�
{�1	∗;4 NNNNN��(�) − 1NNNNN+ �1�∗;4 NNNNN�	(�) − 1NNNNN + �1�∗;4 NNNNN�
(�) − 1NNNNN+ �∗94 NNNNN��(�−�) − 1NNNNN+ (�4 + �1 (	∗ + �∗ + �∗)94 + �∗;4 )⋅ NNNNN��(�) − 1NNNNN} �G,

≤ �1	∗;4 {1 + �94�;4 } NNNNN��(�) − 1NNNNN + �1�∗;4 {1
+ �94�;4 } NNNNN�	(�) − 1NNNNN + �1�∗;4 {1 + �94�;4 } NNNNN�
(�)

− 1NNNNN + {�∗;4 (1 + �� − ;494 + �94�;4 ) + ( ��;4− 194) (�4 + �1 (	∗ + �∗ + �∗))} NNNNN��(�) − 1NNNNN
(38)

Let us de�ne a Lyapunov functional K(
) asK (
) = K11 (
) + K2 (
) + K3 + K44 (
)> |@ (
)| + |A (
)| + NNNNB (
)NNNN + |C (
)| . (39)

Computing the upper right derivative of K(
) along the
solution of system (2) and by using (31)-(33) and (38), we
obtainL+K(
) = L+K11 (
) + L+K2 (
) + L+K3 (
)+ L+K44 (
) ≤ {− 191 (�1 + �2�∗ + �2�∗ + �∗)+ �94�1	∗�;1;4 } NNNNN��(�) − 1NNNNN + �∗ { �2;1 − �

+ �94��1;1;4 } NNNNN�	(�) − 1NNNNN + �∗ { �2;1 − � + �94��1;1;4 }
⋅ NNNNN�
(�) − 1NNNNN + {�∗;1 (1 + �� + �94�;4 ) + ��;1 (�4+ (	∗ + �∗ + �∗) �1)} NNNNN��(�) − 1NNNNN + �	∗ (93;2 + 1)⋅ NNNNN��(�) − 1NNNNN − 192 (�2 + ��∗	∗) NNNNN�	(�) − 1NNNNN+ ��∗	∗;2 NNNNN�
(�) − 1NNNNN + ��∗;3 NNNNN�	(�) − 1NNNNN − 193 (�3+ ��∗) NNNNN�
(�) − 1NNNNN + �1	∗;4 {1 + �94�;4 } NNNNN��(�) − 1NNNNN+ �1�∗;4 {1 + �94�;4 } NNNNN�	(�) − 1NNNNN + �1�∗;4 {1
+ �94�;4 } NNNNN�
(�) − 1NNNNN + {�∗;4 (1 + �� − ;494+ �94�;4 ) + ( ��;4 − 194) (�4+ �1 (	∗ + �∗ + �∗))} × NNNNN��(�) − 1NNNNN= −	∗ { 191	∗ (�1 + �2�∗ + �2�∗ + �∗)− �(93;2 + 1) − �1;4 (1 + �94� ( 1;4 + 1;1))}⋅ NNNNN��(�) − 1NNNNN − �∗ {� + 192�∗ (�2 + ��∗	∗) − �2;1
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− �;3 − �1;4 (1 + �94� ( 1;4 + 1;1))} NNNNN�	(�) − 1NNNNN− �∗ {� + 193�∗ (�3 + ��∗) − �2;1 − �	∗;2− �1;4 (1 + �94� ( 1;4 + 1;1))} × NNNNN�
(�) − 1NNNNN− ∗ {�( 194− ( 1;1 + 1;4)(1 + �� + �94�;4 )) + 1∗ ( 194− ��( 1;1 + 1;4)) (�4 + (	∗ + �∗ + �∗) �1)} NNNNN��(�)− 1NNNNN = −	∗81 NNNNN��(�) − 1NNNNN − �∗82 NNNNN�	(�) − 1NNNNN− �∗83 NNNNN�
(�) − 1NNNNN − ∗84 NNNNN��(�) − 1NNNNN ,
(40)

where 81, 82, 83, and 84 are de�ned above in (20).
Since themodel system (2) is positive invariant, therefore,

for all 
 > 
∗1 , we have	∗��(�) = 	 (
) > 	,�∗�	(�) = � (
) > �,�∗�
(�) = � (
) > �,∗��(�) =  (
) > .
(41)

Using the mean value theorem, we have	∗ NNNNN��(�) − 1NNNNN = 	∗�1(�) |@ (
)| > ;1 |@ (
)| ,�∗ NNNNN�	(�) − 1NNNNN = �∗�2(�) |A (
)| > ;2 |A (
)| ,�∗ NNNNN�
(�) − 1NNNNN = �∗�3(�) NNNNB (
)NNNN > ;3 NNNNB (
)NNNN ,∗ NNNNN��(�) − 1NNNNN = ∗�4(�) |C (
)| > ;4 |C (
)| ,
(42)

where 	∗�1(�) lies between 	∗ and 	(
), �∗�2(�) lies between�∗ and �(
),�∗�3(�) lies between �∗ and �(
), and∗�4(�) lies
between ∗ and (
). �erefore,L+K (
) ≤ −81	 |@ (
)| − 82� |A (
)| − 83� NNNNB (
)NNNN− 84 |C (
)|≤ −8 (|@ (
)| + |A (
)| + NNNNB (
)NNNN + |C (
)|) ,

where 8 = min {81	, 82�, 83�, 84} .
(43)

Note that K(
) > |@(
)| + |A(
)| + |B(
)| + |C(
)|. Hence,
from theory of global stability and (43), we conclude that
the zero solution of the reduced system (22)-(25) is globally
asymptotically stable. �erefore, the endemic equilibrium �∗
of model system (2) is globally asymptotically stable.

4. Direction and Stability of Hopf Bifurcation

Let � = �0 + U(U ∈ R), V1 = 	(�
), V2 = �(�
), V3 = �(�
), andV4 = (�
). System (2) becomesV̇ (
) = �� (V�) + & (U, V�) , (44)

where V(
) = (V1, V2, V3, V4)� ∈ X = X([−1, 0],R4) and ��:X Y→ R4 and &: R × X Y→ R4 are de�ned as follows:��\ = (�0 + U) (���	\ (0) + ���	\ (−1)) , (45)

and

& (U, \) = (�0 + U)[[[[[[
−�\1 (0) (\2 (0) + \3 (0))�\1 (0) (\2 (0) + \3 (0))00

]]]]]] (46)

with

���	 = (�11 �12 �13 0�21 �22 0 00 �32 �33 0�41 �42 �43 �44),
���	 = (0 0 0 �140 0 0 00 0 0 00 0 0 �44),

(47)

�us, there exists �(f, U) such that��\ = ∫0
−1

�� (f, U) \ (f) , 5gh \ ∈ X. (48)

In fact,� (f, U) = (�0 + U) (���	i (f) + ���	i (f + 1)) , (49)

where i(f) is the Dirac delta function.
For \ ∈ X([−1, 0], 4), de�ne

j (U) \ = {{{{{{{
�\ (f)�f , −1 ≤ f < 0,∫0
−1

�� (f, U) \ (f) , f = 0, (50)

and  (U) \ = {{{0, −1 ≤ f < 0,& (U, \) , f = 0. (51)

�en system (44) is equivalent toV̇ (
) = j (U) V� +  (U) V�. (52)
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For o ∈ X1([0, 1], (4)∗), de�ne
j∗ (o) = {{{{{{{

−�o (G)�G , 0 < G ≤ 1,∫0
−1

��� (G, 0) o (−G) , G = 0, (53)

and the bilinear inner form for j and j∗⟨o (G) , \ (f)⟩ = o (0) \ (0)− ∫0
=−1

∫
�=0

o (r − f) �� (f) \ (r) �r, (54)

where �(f) = �(f, 0).
Let V(f) = (1, V2, V3, V4)����0�0 be the eigenvector of j(0)

corresponding to +"�0#0 and V
∗(G) = L(1, V∗2 , V∗3 , V∗4 )����0�0�

be the eigenvector of j∗(0) corresponding to −"�0#0, respec-
tively. Based on the de�nition of j(0) and j∗, we obtain

V2 = �21"#0 − �22 ,
V3 = �32V2"#0 − �33 ,
V4 = "#0 − �11 − �12V2 − �13V3�14�−��0�0 ,
V
∗
2 = "#0 + �11 + �41V4�21 ,
V
∗
3 = −�13 + �43V4"#0 + �33 ,
V
∗
4 = − �14��0�0"#0 + �44 + �44��0�0 .

(55)

From (54), the expression of � can be obtain as follows:L = [1 + V2V
∗
2 + V3V

∗
3 + V4V

∗
4+ �0�−�0�0V4 (�14 + �44V∗4 )]−1 , (56)

such that ⟨V∗, V⟩ = 1 and ⟨V∗, V⟩ = 0.
Next, we can obtain the expressions of u20, u11, u02, andu21 by the algorithms in [28] and the computation process in

[29–31]:u20 = 2�0L� (V∗2 − 1) (V2 + V3) ,u11 = �0L� (V∗2 − 1) (Re {V2} + Re {V3}) ,u02 = 2�0L� (V∗2 − 1) (V2 + V3) ,u21 = 2��0L(V∗2 − 1) (v(1)11 (0) V2 + 12v(1)20 (0) V2+v(2)11 (0) + 12v(2)20 (0) + v(1)11 (0) V3+ 12v(1)20 (0) V3 + v(3)11 (0) + 12v(3)20 (0)) ,
(57)

withv20 (f) = "u20V (0)�0#0 ���0�0 + "u02V (0)3�0#0 �−��0�0+ �1�2��0�0,v11 (f) = − "u11V (0)�0#0 ���0�0 + "u11V (0)�0#0 �−��0�0 + �2. (58)

�1 and�2 can be obtained by the following two equations:
�1 = 2(2"#0 − �11 −�12 −�13 −�14�−2��0�0−�21 2"#0 − �22 0 00 −�32 2"#0 − �33 0−�41 −�42 −�43 2"#0 − �44 − �44�−2��0�0)

−1

× (−�(V2 + V3)� (V2 + V3)00 ) ,
�2 = −(�11 �12 �13 �14�21 �22 0 00 �32 �33 0�41 �42 �43 �44 + �44)

−1 ×(−� (Re {V2} + Re {V3})� (Re {V2} + Re {V3})00 ).
(59)

�en, one can obtainX1 (0) = "2�0#0 (u11u20 − 2 NNNNu11NNNN2 − NNNNu02NNNN23 ) + u212�2 = − Re {X1 (0)}
Re {�� (�0)} ,

�2 = 2Re {X1 (0)} ,y2 = − Im {X1 (0)} + �2 Im {�� (�0)}�0#0 ,
(60)

In conclusion, we have the following results.
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Figure 1: Time plots of 	, �, �, and  with � = 3.2575 < �0 = 3.4685.
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Figure 2: Dynamic behavior of system (61): projection on S-L-B with � = 3.2575 < �0 = 3.4685.
�eorem 3. For system (2), if �2 > 0 (�2 < 0), then the Hopf
bifurcation is supercritical (subcritical); if �2 < 0 (�2 > 0), then
the bifurcating periodic solutions are stable (unstable); ify2 > 0
(y2 < 0), then the period of the bifurcating periodic solutions
increases (decrease).

5. Numerical Simulations

In this section, we develop some numerical simulations in
order to support the obtained results in our paper. A set of
parameters of system (2) are chosen as follows: �1 = 1, �2 = 1,�3 = 2, �4 = 1, � = 0.35, � = 0.03, �1 = 0.1, �2 = 0.3, � = 0.5,
and �0 = 0.01. �en, we obtain the following speci�c case of
system (2):�	 (
)�
 = 1 + 0.3� (
) + 0.3� (
) + 0.5 (
 − �)− 0.11	 (
) − 0.03 (� (
) + � (
)) 	 (
) ,�� (
)�
 = 1 + 0.03 (� (
) + � (
)) 	 (
) − 0.76� (
) ,�� (
)�
 = 2 + 0.35� (
) − 0.41� (
) ,

� (
)�
 = 1 + 0.1� (
) + 0.1� (
) + 0.1	 (
) − 0.01 (
)− 0.5 (
 − �) ,
(61)

�en, (4) becomes the following form:−0.0113�2 + 2.4034� + 6.7325 = 0, (62)

from which we can obtain the unique positive root�∗ = 215.4556. Further, we can verify that system (61)
has a unique endemic equilibrium �∗(13.4193, 215.4556,188.8036, 83.6066) and all the conditions given in�eorem 1
are satis�ed.

By means of Matlab so	ware, we get #0 = 2.0684, �0 =3.4685, and ��(�0) = 0.0081 + 1.0307". �us, we can obtainX1(0) = −0.0560 + 0.0092", �2 = 6.9136, �2 = −0.1120,
and y2 = −0.9945. It follows that �2 > 0, �2 < 0, andy2 > 0. Fix � = 3.2575 < �0, then we can see that the
solution of system (61) would tend to the endemic equi-
librium �∗(13.4193, 215.4556, 188.8036, 83.6066). In other
words, �∗(13.4193, 215.4556, 188.8036, 83.6066) is locally
asymptotically stable, which can be illustrated by Fig-
ures 1–3. However, when � passes through the critical
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Figure 3: Dynamic behavior of system (61): projection on L-B-R with � = 3.2575 < �0 = 3.4685.
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Figure 4: Time plots of 	, �, �, and  with � = 3.6755 > �0 = 3.4685.
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Figure 5: Dynamic behavior of system (61): projection on S-L-B with � = 3.6755 > �0 = 3.4685.
value �0, �∗(13.4193, 215.4556, 188.8036, 83.6066) loses its
stability, and a Hopf bifurcation occurs and a family
of periodic solutions bifurcate from �∗(13.4193, 215.4556,188.8036, 83.6066). �is property can be shown as in Figures
4–6. Since �2 > 0, �2 < 0, and y2 < 0, we can conclude that
the Hopf bifurcation occurring at �0 = 3.4685 is supercritical
and the bifurcating periodic solutions are stable and decrease.
Next, we are interested to study the e
ect of some other
parameters on the dynamics of system (62).

(i) E
ect of the recovered rate (�1): in Figures 7(a)–7(d),
we can see that the numbers of susceptible and recovered
computers increase; nevertheless, the numbers of latent
and breaking computers decrease, when the number of �1
increases. And the system changes its behavior from limit
cycle to stable focus as we increase the value of �1, from 0.1
to 0.3, which can be shown as in Figure 8.

(ii) E
ect of the rate of latent and breaking computers
reinstall the operating system (�2): in the same manner,
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Figure 6: Dynamic behavior of system (61): projection on L-B-R with � = 3.6755 > �0 = 3.4685.
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Figure 7: Time plots of 	, �, �, and  for di
erent �1 at � = 3.2575. Rest of the parameters are taken as given in the text.

we can see from Figures 9(a)–9(d) that the numbers of
susceptible and latent computers increase and the number
of breaking computers decreases, when the number of �2
increases. But it does not a
ect the number of recovered
computers, which can be also seen from the expression of∗ in Section 2. Also, we observe that �2 does not a
ect

the dynamics of the system; it remains at limit cycle when
we choose � = 3.6755. �is property can be illustrated by
Figure 10.

(iii) E
ect of the entering rates (�1, �2, �3, �4): as is
shown in Figures 11–14, the numbers of all computers increase
when the numbers of �1 and �4 increase. However, the
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Figure 8: Dynamic behavior of system (61): projection on L-B-R with � = 3.6755 > �0 = 3.4685 for di
erent �1. Rest of the parameters are
taken as given in the text.
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Figure 9: Time plots of 	, �, �, and  for di
erent �2 at � = 3.2575. Rest of the parameters are taken as given in the text.
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Figure 10: Dynamic behavior of system (61): projection on L-B-R with � = 3.6755 > �0 = 3.4685 for di
erent �2. Rest of the parameters are
taken as given in the text.
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Figure 11: Time plots of 	, �, �, and  for di
erent �1 at � = 3.2575. Rest of the parameters are taken as given in the text.
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Figure 12: Time plots of 	, �, �, and  for di
erent �2 at � = 3.2575. Rest of the parameters are taken as given in the text.

number of susceptible computers decreases and the numbers
of latent, breaking, and recovered computers increase, when
the numbers of �2 and �3 increase. In addition, we �nd that the
entering rates does not a
ect the dynamics of the systems.

6. Conclusions

In this paper, a delayed SLBRS computer virus model is pre-
sented by incorporating the time delay due to the temporary
immunity period of the recovered computers based on the
model proposed in [27]. Compared with the model in [27],
wemainly consider the e
ect of the time delay on its dynamic
behavior. Compared with other computer virus models, we
assume that every computer can enter the Internet, which is
consistent with the reality. Further, we also consider the e
ect
of antivirus so	ware on the susceptible computers in the
presented model. �us, the computer virus model proposed
in our paper is more general.

It has been shown that the endemic equilibrium�∗(	∗, �∗, �∗, ∗) is locally asymptotically stable when

� ∈ [0, �0) under some certain conditions. In this case,
the propagation of the computer virus in system (2) can
be controlled easily. Once the value of the time delay
passes through �0, �∗(	∗, �∗, �∗, ∗) loses its stability and a
Hopf bifurcation occurs and a family of periodic solutions
bifurcate from �∗(	∗, �∗, �∗, ∗). In this case, the numbers
of the four classes computers in system (2) will oscillate in
the vicinity of �∗(	∗, �∗, �∗, ∗). Namely, the propagation
of the computer virus will be out of control. �erefore, the
results obtained in the present paper can help us to gain
insight into the spreading process of computer viruses.
Also, su�cient conditions for global stability of the endemic
equilibrium are derived by constructing a suitable Lyapunov
function. Furthermore, properties of the Hopf bifurcation
are investigated by using the normal form theory and center
manifold theorem. Numerical simulations are presented to
verify the analytical predictions. In addition, it has been
observed in our simulations that the recovered rate �1
can change the dynamics of the system from limit cycle
to stable focus as its value increases. �us, it is strongly
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Figure 13: Time plots of 	, �, �, and  for di
erent �3 at � = 3.2575. Rest of the parameters are taken as given in the text.

recommended that users of computers connected to Internet
should periodically run antivirus so	ware of the newest
version. From the point of this view, we can conclude that
the results of the proposed model in our paper can be
used to evaluate the e
ectiveness of antivirus so	ware. In
addition, the numbers of latent and breaking computers
decrease, when the reinstalling of the operating system
rate increases. �us, it can be concluded that users should
reinstall operating system if necessary. Finally, the numbers
of latent and breaking computer will also increase, when
the values of entering rates of all computers �1, �2, �3, and �4
increase. �erefore, the manager of a network should control
the number of computers connected to the network properly.

Of course, when we pursue a low level of infections, we
should also consider the cost of the measures we carry out. In
addition, it should be pointed out that the model investigated
in the literature [27] and our present paper assumes that the
latent computers and the breaking computers have the same
infection rate �. In the near future, we will investigate the
optimal control problem of the following general system (63)

so as to achieve a low level of infections at a low cost by using
the method introduced in [32]:�	 (
)�
 = �1 + �2� (
) + �2� (
) + � (
 − �) − �1	 (
)− �0	 (
) − �1	 (
) � (
) − �2	 (
) � (
) ,�� (
)�
 = �2 + �1	 (
) � (
) + �2	 (
) � (
) − �1� (
)− �2� (
) − �0� (
) − �� (
) ,�� (
)�
 = �3 + �� (
) − �1� (
) − �2� (
) − �0� (
) ,� (
)�
 = �4 + �1� (
) + �1� (
) + �1	 (
) − �0 (
)− � (
 − �) ,

(63)

where �1 and �2 are the infection rate of the latent computers
and the breaking computers, respectively.
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Figure 14: Time plots of 	, �, �, and  for di
erent �3 at � = 3.2575. Rest of the parameters are taken as given in the text.
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