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Stability and Hopf bifurcation of a general delayed

recurrent neural network
Wenwu Yu, Student Member, IEEE, Jinde Cao, Senior Member, IEEE, and Guanrong Chen, Fellow, IEEE

Abstract— In this paper, stability and bifurcation of a general
recurrent neural network with multiple time delays is consid-
ered, where all the variables of the network can be regarded as
bifurcation parameters. It is found that Hopf bifurcation occurs
when these parameters pass through some critical values where
the conditions for local asymptotical stability of the equilibrium
are not satisfied. By analyzing the characteristic equation and
using the frequency domain method, the existence of Hopf
bifurcation is proved. The stability of bifurcating periodic solu-
tions is determined by the harmonic balance approach, Nyquist
criterion and graphic Hopf bifurcation theorem. Moreover,
a critical condition is derived under which the stability is
not guaranteed, thus a necessary and sufficient condition for
ensuring the local asymptotical stability is well understood,
and from which the essential dynamics of the delayed neural
network are revealed. Finally, numerical results are given to
verify the theoretical analysis, and some interesting phenomena
are observed and reported.

Index Terms— Hopf bifurcation, frequency domain approach,
harmonic balance, recurrent neural network, stability

I. INTRODUCTION

In the last three decades, neural networks, particularly the

Hopfield Neural Network (HNN) [1] and Cohen-Grossberg

Neural Network (CGNN) [2], have received increasing atten-

tion due to their wide and important applications in such areas

as signal processing, image processing, pattern recognition

and optimizations. Some applications of neural networks

require the knowledge of dynamical behaviors of the neural

networks, such as the uniqueness and asymptotical stability of

an equilibrium point of a specific neural network. Therefore,

the problem of stability analysis for neural networks has been

a focal topic of research in this field.

In practice, due to the finite speeds of the switching

and transmitting signals, time delays exist in various neural

networks and therefore should be taken into consideration

[3]-[6][37][38]. It is well known that time delays may result
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in oscillatory behaviors or network instability (periodic os-

cillation and chaos) [10]-[18][30][31][34], hence the study of

delayed neural networks is very important. In fact, stability

problems of delayed neural networks have been intensively

studied [7][8][28][38] where, however, most derived condi-

tions are sufficient conditions for the asymptotical stability

and are generally too conservative.

Stability of equilibrium point in neural networks is widely

investigated in associative memory, pattern recognition and

optimization, which can be considered as a single storage

or memory pattern, or an optimum object. Owing to the

limited information stored in equilibrium point, there have

been great interests in using periodic solutions for associative

memory and pattern recognition. It is known that periodic

solutions can restore various complex patterns unlike most

existing patterns based on the stable equilibrium point. When

the dynamics of neural network pass the Hopf bifurcation,

various local periodic solutions arise from the equilibrium

point of neural networks. In order to realize a memory

system, the authors examined the neural network dynamics

phenomenon as bifurcations of attractors in [33]. A noisy

self-organizing neural network with bifurcation dynamics

for combinatorial optimization is investigated in [32]. Hopf

bifurcation can not only provide a guide to design stable

neural networks, but also paves the way for the application of

periodic solutions. Therefore, in order to reveal the dynamics

of artificial neural networks, it is very urgent and significant

to study the bifurcation analysis of the neural network model.

In [17], Olien and Bélair investigated the following system

with two delays:

ẋ1(t) = −x1(t) + a11f(x1(t − τ1)) + a12f(x2(t − τ2)),

ẋ2(t) = −x2(t) + a21f(x1(t − τ1)) + a22f(x2(t − τ2)),

for which several cases were discussed, such as τ1 = τ2,

a11 = a22 = 0, etc.

In [11], Yu and Cao extended the above model and studied

the following delayed network model:

ẋ1(t) = −a1x1 + b11f1(x1(t − τ)) + b12f2(x2(t − τ)),

ẋ2(t) = −a2x2 + b21f1(x1(t − τ)) + b22f2(x2(t − τ)),

where ai(i = 1, 2) are positive constants, x1(t) and x2(t)
denote the activations of two neurons, τ denotes the synaptic

transmission delay, bij(1 ≤ i, j ≤ 2) are the synaptic

weights, fi(i = 1, 2) are the activations function and fi :
R −→ R are C3 smooth functions with fi(0) = 0.

In [18], Campbell et al. studied a neural network model
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with multiple delays:

Cj u̇j(t) = −
1

Rj

+ Fj(uj(t − σ)) + Gj(uj−1(t − τ)),

j = 1, 2, · · · , n,

where Cj > 0 and Rj > 0 represent the capacitance and

resistance of each neuron, respectively, and Fj and Gj are

nonlinear functions representing, respectively, the feedback

from neuron j to itself and the connection from j to j − 1,

for which only the case of n = 4 was discussed.

In [13], Song et al. considered a simplified BAM neural

network model as follows:




ẋ1(t) = −µ1x1(t) + c21f1(y1(t − τ2))
+c31f1(y2(t − τ2)),

ẏ1(t) = −µ2y1(t) + c12f2(x1(t − τ1)),
ẏ2(t) = −µ3y2(t) + c13g3(x1(t − τ1)).

And, in [10], Yu and Cao studied a more complex BAM

neural network model:




ẋ1(t) = −µ1x1(t) + c11f11(y1(t − τ3))
+c12f12(y2(t − τ3)),

ẋ2(t) = −µ2x2(t) + c21f21(y1(t − τ4))
+c22f22(y2(t − τ4)),

ẏ1(t) = −µ3y1(t) + d11g11(x1(t − τ1))
+d12g12(x2(t − τ2)),

ẏ2(t) = −µ4y2(t) + d21g21(x1(t − τ1))
+d22g22(x2(t − τ2)).

From the above introduction, it is easy to see that bi-

furcation analysis about delayed systems under investigation

today are mainly lower-dimensional systems with a few time

delays. The dimensions of the delayed systems studied in [9]-

[18][29] are no more than four, and actually with no more

than two delays as bifurcation parameters. Though in [4], an

n-dimensional delayed model was investigated, the model

is very simple with only one delay. It is well known that

neural networks are very complex and large-scale nonlinear

systems, but neural network models under study today have

been dramatically simplified [10]-[18][29]. In this paper, a

general model with multiple delays is investigated, aiming at

giving a clearer understanding of the transition from stability

to bifurcation and explaining some phenomena that otherwise

cannot be interpreted by the existing results.

Hopf bifurcation of dynamical systems is investigated in

[9][10][22][35] by using the normal form method and center

manifold theorem. Then a new method of multiple scales

versus center manifold is used for order reduction of retarded

nonlinear systems [36]. However, these approaches are still

difficult to analyze Hopf bifurcation of a general system

with multiple delays. To the best of our knowledge, the

Hopf bifurcation of a general neural network model with

multiple time delays has not been investigated elsewhere.

In this paper, we try to find out some critical conditions

under which the stability is not guaranteed and the Hopf

bifurcation occurs when the parameters of the network model

pass through some critical values. The results obtained in

this paper give an explicit view of the dynamics of a general

delayed neural network based on Hopf bifurcation analysis

from the harmonic balance approach, Nyquist criterion and

graphic Hopf bifurcation theorem [20][21], rather than the

normal form method and center manifold theorem [22].

The rest of the paper is organized as follows: in sec-

tion 2, local asymptotical stability analysis is established

by analyzing the characteristic equation and using Nyquist

criterion. Then applying harmonic balance approach and

graphic Hopf bifurcation theorem, existence and stability of

bifurcating periodic solutions of a general neural network are

investigated in section 3. In section 4, simulation examples

are constructed to verify the theoretical analysis in this paper.

Finally, the conclusions are drawn.

II. LOCAL ASYMPTOTICAL STABILITY ANALYSIS

Consider the following delayed recurrent neural network

model:

ẋ(t) = −Cx(t) + Af(x(t)) + Bf(x(t − τ)) + E, (1)

namely,

ẋi(t) = −cixi(t) +

n∑

j=1

aijfj(xj(t))

+

n∑

j=1

bijfj(xj(t − τj)) + Ei,

i = 1, 2, · · · , n, (2)

where n denotes the number of neurons in the net-

work, τj (j = 1, 2, · · · , n) are the time delays,

x(t) = (x1(t), x2(t), · · · , xn(t))T ∈ Rn is the state

vector associated with the neurons, E = (E1, E2,
· · · , En)T ∈ Rn is the external input vector, f(x(t)) =
(f1(x1(t)), f2(x2(t)), · · · , fn(xn(t)))T ∈ Rn and f(x(t −
τ)) = (f1(x1(t − τ1)), f2(x2(t − τ2)), · · · , fn(xn(t −
τn)))T ∈ Rn correspond to the activation functions and

delayed activation functions of neurons, respectively, C =
diag(c1, c2, · · · , cn) > 0, A = (aij)n×n and B = (bij)n×n

are the connection weight matrix and the delayed connection

weight matrix, respectively, and the initial conditions are

given by φi(t) ∈ C([−r, 0], R), where r = max1≤i≤n{τi},

with C([−r, 0], R) denoting the set of all continuous functions

from [−r, 0] to R.

Assume that model (1) has an equilibrium x∗ =
(x∗

1, x
∗
2, · · · , x∗

n) for a given E. Without loss of generality,

assume the equilibrium point x∗. Using the transformation

y(t) = x(t) − x∗, y(t − τ) = x(t − τ) − x∗,

model (1) can be transformed into the following form:

ẏ(t) = −Cy(t) + Ag(y(t)) + Bg(y(t − τ)), (3)
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namely,

ẏi(t) = −ciyi(t) +
n∑

j=1

aijgj(yj(t))

+
n∑

j=1

bijgj(yj(t − τj)), i = 1, 2, · · · , n, (4)

where g(y(t)) = (g1(y1(t)), g2(y2(t)), · · · , gn(yn(t)))T ∈
Rn with gi(yi(t)) = fi(yi(t) + x∗

i ) − fi(x
∗
i ) and g(0) = 0.

Next, the stability and Hopf bifurcation of delayed system

(3) are discussed.

By introducing a ‘state-feedback control’ u, one obtains a

linear system with a non-linear feedback, which is equivalent

to (3), as follows:




ẏ(t) = −Cy(t) + u(z(t)),
z(t) = −y(t),
u(z(t)) = Ag(−z(t)) + Bg(−z(t − τ)),

(5)

where z(t) = (z1(t), z2(t), · · · , zn(t))T ∈ Rn and z(t−τ) =
(z1(t − τ1), z2(t − τ2), · · · , zn(t − τn))T ∈ Rn.

In order to study the Hopf bifurcation of delayed neural

networks, then one can parameterize the feedback system (5)

as




ẏ(t) = −C(µ)y(t) + u(z(t);µ),
z(t) = −y(t),
u(z(t);µ) = A(µ)g(−z(t);µ) + B(µ)

×g(−z(t − τ(µ));µ),

(6)

where µ is the bifurcation parameter.

Next, taking a Laplace transform L(·) on (6) yields

L(y) = [sI + C(µ)]−1L(u(z;µ)),

and

L(z) = −L(y) = −[sI + C(µ)]−1L(u(z;µ))

= −G(s;µ)L(u(z;µ)), (7)

where

G(s;µ) = [sI + C(µ)]−1 (8)

is the standard transfer matrix of the linear part of the system.

Throughout this paper, I is the n-dimensional identity matrix.

It follows from (7) that one may only deal with z(t) in

the frequency domain, without directly considering y(t). In

so doing, first observe that if y∗ is an equilibrium solution

of the first equation of (6), then

z∗ = −G(0;µ)u(z∗;µ). (9)

Let u(z(t);µ) = A(µ)ũ(z(t);µ)+Bũ(z(t−τ(µ));µ), where

ũ(z(t);µ) = g(−z(t);µ).
Clearly, y = 0 is the equilibrium of the linearized feedback

system. If one linearizes the feedback system about the

equilibrium z∗, then the Jacobian of ũ is given by

J(µ) =

(
∂ũ

∂z

)∣∣∣∣
z=0

, (10)

where J(µ) = (Jij)n×n, Jij =
∂ũi

∂zj

∣∣∣∣
y=0

(i, j =

1, 2, · · · , n). The Jacobian of the nonlinear feedback u is

then given by J̃(s;µ) = A(µ)J(µ) + B(µ)J(µ)e−sτ(µ),

where e−sτ(µ) = diag(e−sτ1(µ), e−sτ2(µ), · · · , e−sτn(µ)).
The closed-loop transfer matrix of the linearized feedback

system (6) is

H(s;µ) = −[I + G(s;µ)J̃(s;µ)]−1G(s;µ). (11)

To this end, stability analysis is established based on the

Nyquist stability criterion [27]. Let ℜ{·} be the real part of

the complex constant.

Lemma 1 [21] Let G ∈ R have p(G) poles in ℜ(s) > 0 and

let D be a simple closed contour consisting of an interval

[−iω, iω] on the imaginary axis together with a semicircle in

ℜ(s) > 0, large enough to contain all the poles in ℜ(s) > 0.

Suppose D is indented if necessary to exclude any poles

on the imaginary axis. Let ΓG be the image of D under G
as D is traversed clockwise. Then, H , defined in (11), has

no poles in ℜ(s) ≥ 0 if ΓG encircles −1/J̃(s) p(G) times

anticlockwise, and |1 + G(s)J̃(s)| 9 0 as |s| → ∞.

Next, a theorem is given to ensure the local asymptotical

stability of the nonlinear feedback system (6).

Theorem 1 [21] Let G(s)J̃(s) ∈ Rn×n have characteristic

functions λ1(s), λ2(s), · · · , λq(s), with a total of p(GJ̃)
poles counted according to multiplicity. Let the jth char-

acteristic locus Γλj
encircle −1 for a total of nj times

anticlockwise. Then, the closed-loop system (5) is stable if∑q

j=1 nj = p(GJ̃). In this case, the recurrent neural network

(3) is locally asymptotically stable.

Applying the generalized Nyquist stability criterion, the

following result can be established.

Theorem 2 [20] If an eigenvalue of the corresponding Jaco-

bian of the nonlinear system, in the time domain, assumes a

purely imaginary value iω0 at a particular value µ = µ0,

then the corresponding eigenvalue of the constant matrix

[G(iω0;µ0)J̃(iω0;µ0)] in the frequency domain must assume

the value −1 + i0 at µ = µ0.

Set

h(λ, s;µ) = |λI − G(s;µ)J̃(s;µ)|. (12)

To apply Theorem 2, let λ̂ = λ̂(iω;µ) be the eigenvalue of

G(iω;µ)J̃(iω;µ) that satisfies λ̂(iω0;µ0) = −1 + i0. Then

h(−1, s;µ) = | − I − (sI + C)−1(AJ + BJe−sτ )|. (13)

Let h(−1, s;µ) = 0. Then

|(sI + C) + (AJ + BJe−sτ )| = 0. (14)

It is easy to see that (14) is equivalent to the characteristic

equation of (3).

III. EXISTENCE AND STABILITY OF BIFURCATING

PERIODIC SOLUTIONS

Based on Theorem 1, Theorem 2 and the results in

[23]−[26], we now derive some formulas for the existence
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and the stability of bifurcating periodic solutions.

Suppose that a second-order harmonic balance approxima-

tion for the solution has the following form:

z(t) = z∗ + ℜ

{
2∑

k=0

Zkeikωt

}
, (15)

where z∗ is the equilibrium point.

Let G(iω) = G(s;µ)|s=iω . Then, equating the input and

output of (6) gives

Zk = −G(iω)Fk, k = 0, 1, 2, (16)

where Fk is the Fourier coefficients of u(z(t);µ). Formula

(16) is known as the second-order harmonic balance equa-

tions [20][24][25][26]. By expanding the trial expression for

z, which contains the time delays, one has

z(t − τ(µ)) = z∗ + ℜ

{
2∑

k=0

e−ikωτ(µ)Zkeikωt

}
. (17)

In order to derive the main results, it is convenient to use

the following notations:

D1
2 = A(µ̃)

∂2ũ(z; µ̃)

∂z2

∣∣∣∣
z=0

+ B(µ̃)
∂2ũ(z; µ̃)

∂z2

∣∣∣∣
z=0

×(I ⊗ e−iω̃τ(µ̃)), (18)

D2
2 = A(µ̃)

∂2ũ(z; µ̃)

∂z2

∣∣∣∣
z=0

+ B(µ̃)
∂2ũ(z; µ̃)

∂z2

∣∣∣∣
z=0

×(eiω̃τ(µ̃) ⊗ e−2iω̃τ(µ̃)), (19)

D3 = A(µ̃)
∂3ũ(z; µ̃)

∂z3

∣∣∣∣
z=0

+ B(µ̃)
∂3ũ(z; µ̃)

∂z3

∣∣∣∣
z=0

×(e−iω̃τ(µ̃) ⊗ e−iω̃τ(µ̃) ⊗ eiω̃τ(µ̃)), (20)

D3
2 = A(µ̃)

∂2ũ(z; µ̃)

∂z2

∣∣∣∣
z=0

+ B(µ̃)
∂2ũ(z; µ̃)

∂z2

∣∣∣∣
z=0

×(e−iω̃τ(µ̃) ⊗ eiω̃τ(µ̃)), (21)

D4
2 = A(µ̃)

∂2ũ(z; µ̃)

∂z2

∣∣∣∣
z=0

+ B(µ̃)
∂2ũ(z; µ̃)

∂z2

∣∣∣∣
z=0

×(e−iω̃τ(µ̃) ⊗ e−iω̃τ(µ̃)), (22)

where ⊗ is the tensor product operator, µ̃ is the fixed value

of the parameter µ, and ω̃ is the frequency of the intersection

between the λ̂ locus and the negative real axis closest to the

point (−1 + i0).
Combining (15)-(22), one obtains

Z0 = −G(0; µ̃)F0.

= −G(0; µ̃)

[
J(0; µ̃)Z0 +

D3
2

2!

(
1

2
Z1 ⊗ Z̄1

)
+ ρ0

]
,

(23)

Z1 = −G(iω̃; µ̃)F1.

= −G(iω̃; µ̃)

[
J(iω̃; µ̃)Z1 +

D1
2

2!
(2Z0 ⊗ Z1) +

D2
2

2!

×(Z̄1 ⊗ Z2) +
D3

3!

(
3

4
Z1 ⊗ Z1 ⊗ Z̄1

)
+ ρ1

]
,

(24)

Z2 = −G(2iω̃; µ̃)F2.

= −G(2iω̃; µ̃)

[
J(2iω̃; µ̃)Z2 +

D4
2

2!

(
1

2
Z1 ⊗ Z1

)

+
ρ2

2

]
, (25)

where ·̄ denotes the complex conjugate, and ρ0, ρ1, ρ2 are

higher-order terms. From (23)-(25), one can calculate Z0 and

Z2 as functions of Z1, which yields

Z0 = −[I + G(0; µ̃)J(0; µ̃)]−1G(0; µ̃)
D3

2

2!

×

(
1

2
Z1 ⊗ Z̄1

)
, (26)

Z2 = −[I + G(2iω̃; µ̃)J(2iω̃; µ̃)]−1G(2iω̃; µ̃)

×
D4

2

2!

(
1

2
Z1 ⊗ Z1

)
.

(27)

The complex number ξ1(ω̃), which is used to calculate the

amplitude of the emerging periodic solution, is given by

ξ1(ω̃) =
−wT [G(iω̃; µ̃)]p1

wT v
, (28)

where

p1 =

[
D1

2(V02 ⊗ v) +
1

2
D2

2(v̄ ⊗ V22)

+
1

8
D3(v ⊗ v ⊗ v̄)

]
,

(29)

V02 = −
1

4
[I + G(0; µ̃)J(0; µ̃)]−1G(0; µ̃)D3

2(v ⊗ v̄), (30)

V22 = −
1

4
[I + G(2iω̃; µ̃)J(2iω̃; µ̃)]−1G(2iω̃; µ̃)

×D4
2(v ⊗ v), (31)

and wT and v are the left and right eigenvectors of

[G(iω̃; µ̃)]J(iω̃; µ̃), respectively, associated with the value

λ̂(iω̃; µ̃) that is closest eigenvalue to the critical point (−1+
i0). Clearly, V02 and V22 are given by (30) and (31) after

the replacements Y1 = vθ, Y0 = V02θ
2 and Y2 = V02θ

2,

where θ is a measure of the amplitude of the periodic solution

[24][25][26]. For more details about the harmonic balance

approach, the reader is referred to the book [20].

Now, the following Hopf bifurcation theorem formulated

in the frequency domain can be stated [20]:

Theorem 3 (The Graphical Hopf Bifurcation Theorem)
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Suppose that when ω varies, the vector ξ1(ω̃) 6= 0, where

ξ1(ω̃) is defined in (28), and that the half-line L1, starting

from −1+ i0 and pointing to the direction parallel to that of

ξ1(ω̃), first intersects the locus of the eigenvalue λ̂(iω; µ̃) at

the point

P̂ = λ̂(ω̂; µ̃) = −1 + ξ1(ω̃)θ2, (32)

at which ω = ω̂ and the constant θ = θ(ω̂) ≥ 0. Sup-

pose, furthermore, that the above intersection is transversal,

namely,
∣∣∣∣
ℜ{ξ1(ω̂)} ℑ{ξ1(ω̂)}

ℜ{ d
dω

λ̂(ω; µ̃)|ω=ω̂} ℑ{ d
dω

λ̂(ω; µ̃)|ω=ω̂}

∣∣∣∣ 6= 0. (33)

Then, the following conclusions hold:

(1) The nonlinear system (6) has a periodic solution y(t) =
y(t; ŷ). Consequently, there exists a unique limit cycle in the

nonlinear equation (3).

(2) If the half-line L1 first intersects the locus of λ̂(iω) when

µ̃ > µ0 (< µ0), then the bifurcating periodic solution exists

and the Hopf bifurcation is supercritical (subcritical).

(3) If the total number of anticlockwise encirclements of the

point P1 = P̂ + εξ1(ω̃), for a small enough ε > 0, is equal

to the number of poles of λ(s) that have positive real parts,

then the limit cycle is stable; otherwise, it is unstable.

It is easy to see that s = −ci (i = 1, 2, · · · , n) are the

poles of λ(s), and the number of poles of λ(s) that have

positive real parts is zero. Hence, the following Corollary is

established:

Corollary 1 Let k be the total number of anticlockwise

encirclements of the point P1 = P̂ + εξ1(ω̃) for a small

enough ε > 0, where P̂ is the intersection of the half-line L1

and the locus λ̂(iω). Then, the following conclusions hold:

(1) If k = 0, then the bifurcating periodic solutions of system

(3) are stable.

(2) If k 6= 0, then the bifurcating periodic solutions of system

(3) are unstable.

IV. NUMERICAL EXAMPLES

In this section, some numerical examples are given to

verify the theoretical analysis. Stability of system (3) can be

justified by Theorem 1, and thus the stability of the delayed

system (1) can be discussed by a transformation. The half-

line L1 and the locus λ̂(iω) are shown by the corresponding

frequency graphs. If they intersect, a limit cycle exists, or

else, no limit cycle exists. Corollary 1 implies that the

stability of the bifurcating periodic solution is determined by

the total number k of the anticlockwise encirclements of the

point P1 = P̂ + εξ1(ω̃) for a small enough ε > 0. Suppose

that the half-line L1 and the locus λ̂(iω) intersect. If k = 0,

the bifurcating periodic solutions of system (3) is stable; if

k 6= 0, the bifurcating periodic solutions of system (3) is

unstable.

Example 1. Consider the following delayed recurrent

neural network:

ẏ(t) = −Cy(t) + Ag(y(t)) + Bg(y(t − τ)), (34)

where C =

(
1 0
0 2

)
, A =

(
0 0
0 0

)
, B =

(
1 2
2 3

)
,

g(y) =

(
− tanh(y)
− tanh(y)

)
are the same as those discussed

in [11]. From [11], τ0 = 0.5183 is a bifurcation parameter

if τ1 = τ2. If τ1 = τ2 < τ0, system (34) is locally

asymptotically stable; otherwise, if τ1 = τ2 > τ0, a periodic

solution emerges. A lot of published papers [10]-[18] have

considered the case of only one delay as the bifurcation

parameter.

In this paper, the two delays τ1 and τ2 are both considered

as bifurcation parameters. First, we choose τ1 = 0.48 and

τ2 = 0.52, respectively. The corresponding waveform, phase

and frequency graph are shown in Fig. 1. The half-line L1

and locus λ̂(iω) do not intersect, so no limit cycle exists. By

Theorem 1 and Theorem 3, we know that in Fig. 1 its zero

solution is asymptotically stable.

Next, we choose τ1 = 0.50 and τ2 = 0.53, respectively.

The corresponding waveform, phase and frequency graph are

shown in Fig. 2. By Theorem 3, we know that the half-line L1

intersects the locus λ̂(iω), so a limit cycle exists. The total

number k of the anticlockwise encirclements of the point

P1 = P̂ + εξ1(ω̃) for a small enough ε > 0 is 0, i.e. k = 0,

so by Corollary 1 a stable periodic solution exists.

Finally, we show a bifurcation diagram in a local region

to verify the theoretical analysis, which is shown in Fig. 3.

Here, τ1 and τ2 are considered as parameters. In some region

of Fig. 3, system (34) is locally asymptotically stable, while

in some other region it is unstable. Hopf bifurcation occurs

when τ1 and τ2 pass through some critical values where the

stability condition of the equilibrium is not satisfied.

Example 2. Consider the following delayed recurrent

neural network:

ẏ(t) = −Cy(t) + Ag(y(t)) + Bg(y(t − τ)), (35)

where C =

(
c1 0
0 2

)
, A =

(
0 0
0 0

)
, B =

(
1 2
2 3

)
,

g(y) =

(
− tanh(y)
− tanh(y)

)
, and τ1 = 0.51 is fixed. Here,

τ2 and c1 are both considered as bifurcation parameters.

The results can be hardly obtained by the previous analysis.

First, we choose τ2 = 0.515 and c1 = 1.1, respectively.

The corresponding waveform, phase and frequency graph are

shown in Fig. 4. The half-line L1 and locus λ̂(iω) do not

intersect, so no limit cycle exists. By Theorem 1 and Theorem

3, we know that in Fig. 4 its zero solution is asymptotically

stable.

Next, we choose τ2 = 0.53 and c1 = 0.9, respectively.

The corresponding waveform, phase and frequency graph are

shown in Fig. 5. By Theorem 3, we know that the half-line L1

intersects the locus λ̂(iω), so a limit cycle exists. The total

number k of the anticlockwise encirclements of the point

P1 = P̂ + εξ1(ω̃) for a small enough ε > 0 is 0, i.e. k = 0,

so by Corollary 1 a stable periodic solution exists.

Finally, we show a bifurcation diagram in a local region

to verify the theoretical analysis, which is shown in Fig. 6.

Here, τ2 and c1 are considered as parameters. In some region
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Fig. 1 Waveform, phase, frequency and magnification of the frequency graph (τ1 = 0.48, τ2 = 0.52).
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Fig. 2 Waveform, phase, frequency and magnification of the frequency graph (τ1 = 0.50, τ2 = 0.53).
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Fig. 5 Waveform, phase, frequency and magnification of the frequency graph (c1 = 0.9, τ2 = 0.53).
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of Fig. 6, system (35) is locally asymptotically stable, while

in some other region it is unstable. Hopf bifurcation occurs

when τ2 and c1 pass through some critical values where the

stability condition of the equilibrium is not satisfied.

In [28], some delay-dependent conditions are given to

ensure the stability of the equilibrium point. However, these

delay-dependent conditions are too conservative and depend

on the maximum bound of all the time delays. The method

used in many papers [10]-[17] can not be used to solve

the above problem, where more than one time delay (which

are system bifurcation parameters) are greater than τ0. The

method developed in this paper, however, can be applied.

In addition, a general high-dimensional Hopf bifurcation is

analyzed.

V. CONCLUSIONS

In this paper, we have discussed the local asymptotical

stability and Hopf bifurcation of a general model of delayed

recurrent neural networks, which gives a better understand of

the situation when the stability of delayed recurrent neural

networks is not guaranteed and a Hopf bifurcation occurs.

To the best of our knowledge, there are very few results

available about the bifurcation analysis of higher-dimensional

system with multiple delays, which may lead the system to

instability. The analytical results obtained in this paper may

therefore give new insights on the dynamics of multi-delayed

recurrent neural networks.
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