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ABSTRACT

This paper is a continuation of the series of papers on application of

the improved fluid force model for lightly loaded shafts rotating in a fluid

environment. The fluid force model is based on the strength of the cir-

cumferential flow. The considered two—mode rotor is supported in two

fluid—lubricated bearings, thus it contains two potential sources of instabi-

lity. The eigenvalue solution predicts thresholds of stability and provide

natural frequencies and modes of the system, including the flow—induced

modes The nonlinear model of the rotor/bearing system allows for evalua-

tion of parameters of after instability onset self—excited vibrations (whirl

and whip). Experimental data illustrate the dynamic phenomena predict-

ed by the model. In particular, they show an undocumented new phe-

nomenon, the simultaneous existence of two whip vibrations with frequen-

cies corresponding to two modes of the rotor. A radial preload of the
rotor results in specific changes of the fluid forces (an increase of radial

stiffness and reduction of circumferential velocity) providing better

stability of the rotor. This effect predicted by the model is illustrated by

the experimental data.

NOMENCLATURE

A1,...,A4 Amplitudes of rotor lateral self-excited vibrations

D1,D2	Bearing fluid film radial damping coefficients

D s t,D S 2 Rotor modal damping coefficients

1,51	Integers

j=V- 1
K1,...,K8 Rotor modal stiffnesses (coupled two-mode rotor)

K0 5 ,K02 Bearing fluid film radial stiffnesses

M1,...,M4 Rotor modal masses

s=jW	Eigenvalue

xq,yi	Rotor horizontal and vertical displacements rnspcctively

zl,...,z5	Rotor lateral displacements

a1,a2,a3 Phases of rotor lateral self-excited vibrations

fl.	Modal function phase angles
tv

ILt,...,1c4 Complex dynamic stiffnesses of the rotor system (Eqs. (5))
. 1,.X2	Bearing fluid circumferential average velocity ratios

tft .

Modal function amplitudes

01b2	Bearing fluid film radial stiffness nonlinear functions of journal

eccentricities
t^J	Complex eigenvalue,	also frequency of rotor self-excited

Wn	Natural frequency	 vibrations

SZ	Rotative speed

12 s t	Stability threshold

INTRODUCTION

Dynamic phenomena induced by interaction between the rotor and the
surrounding fluid, such as occurs in fluid—lubricated bearings and seals of
fluid—handling machines have been recognized for over 60 years. Re-
sulting rotor lateral self—excited vibrations are known as "whirl," "whip,"
or simply "rotor instability." Most of the existing literature documented
occurrences of these phenomena in low ranges of rotative speeds (Kirk et
al, 1980, Wachel, 1982, Doyle, 1980, Baxter, 1983, Schmied, 1988, Laws,
1985). Classical literature on fluid—lubricated bearings which concentrates
on lubrication problems rather than instabilities, reports only occurrences
of whirl vibrations of rigid rotors. When the rotating shaft and surround-
ing fluid involved in motion are considered as one system, it is evident
that vibration modes interact. If the whirl or whip vibrations occur at
relatively low rotative speed, the shaft would vibrate as either rigid body
(whirl), or at its first lateral mode (whip)(Muszynska, 1986a). With the
rotative speed increase, there is a smooth transition from the whirl to
whip. It is obvious that both these phenomena are generated by the same
source. With an increase of rotative speed, higher mode whirl or whip vi-
brations may be induced (Muszynska, 1988a). Modal approach in rotor
system modeling allows for clear interpretation of the occurring vibrational
phenomena.

This paper is a continuation of the series of papers (Muszynska,
1986a,b, 1988a,b, 1990, Bently et al., 1988, 1989) on applications of the
improved model of the fluid force for lightly loaded shafts rotating in a
fluid environment. Following Bolotin (1963) and Black (1969, 1970), the
fluid force model is based on the strength of circumferential flow gener-
ated mainly by the shaft rotation (Muszynska, 1988c). This model can be
used for bearings as well as seals (with or without preswirls and/or injec-
tions). The fluid force model identified experimentally by using perturba-
tion techniques (Muszynska, 1986c) allows for more adequate prediction of
stability thresholds, and evaluation of the post—stability fluid-induced
rotor lateral self—excited limit cycle vibration (whirl and whip)
parameters.

In the previous papers (Muszynska, 1986a,b, 1988a,b, Bently, 1988,
1989) the considered rotor models included one and two lateral, isotropic
rotor modes, and one source of fluid force in a bearing or a seal. The
paper by Muszynska (1990) discussed a case of one mode isotropic rotor
supported in two fluid—lubricated bearings, thus containing two sources of
potential instability of the rotor. In the present paper the isotropic rotor
model includes two lateral modes. The rotor is supported in two
fluid—lubricated bearings.

As previously, the modal approach is applied in rotor modeling. The
rotor system eigenvalue problem is solved, and approximate values of nat-
ural frequencies and thresholds of stability are given. It is shown that
there exist fluid—generated natural frequencies of the system and the cor-
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responding modes. The nonlinear model allows for calculation of the

after-threshold self—excited vibration parameters of the whirl or whip

type.

The most important and new result presented in this paper is the si-

multaneous existence of the self-excited vibrations corresponding to two

lateral modes of the rotor. The results of experiments are given. The

model predicts this phenomenon, and provides measures to control it.

MATHEMATICAL MODEL OF A TWO—MODE SHAFT ROTATING

IN TWO FLUID—LUBRICATED BEARINGS

Consider a balanced isotropic rotor supported by two fluid 360 ° lubri-
cated bearings (Fig. 1). The equations of lateral vibrations of the shaft
concentrically rotating in the bearings are as follows:

Mlzi+DS1z1+K6z1—K5z2—KIz3=0

M2i2 + Ds2g2 + K7z2 —KSzI —K4z4 = 0

M3Z3+D1(z3 jAj z3)+(K1+KB1)z3+z301(Iz3I)—K1zI=0	
(1)

M4z4 + D2(z4j)s2Qz4) + (K4+KB2)z4 + z4'b2( I 24I) — K4z2 = 0

	

_ K2zl+K3z2	 1

^ 5

_
 K2+K3+K5	 Ke = KI + 1	1

K2 + K3+K5

	1	_ 
1	1 1
	(2)

K7 = K4 + 1
	Kg	 K_	 _ 	K 5

K3 + K2+Ks	 K2 + K3 + K2 K3

zi(t) = xi(t) + Jyi(t),	I zi I = x? + y, i=1,...,4,	j=F	(3)
	1 	1

where xi, yi are rotor horizontal and vertical displacements, Mi, Ki,
i-1,...,4, Ds1, Ds2 are rotor generalized (modal) masses, stiffnesses, and

damping coefficients respectively. Note that the rotor model includes two
modes. The corresponding modal parameters can be obtained analytically

by modal reduction of the finite element model or identified expermentally

(Muszynska et al., 1989). In Eqs. (1) KB 1 , KB2, DI, D2 are bearing fluid
film radial stiffnesses and radial damping coefficients respectively; Al and
.^2 are circumferential average velocity ratios, as defined by Muszynska,
1988c. With a simplification, )1 can be represented by the ratio of the
bearing cross stiffness to the product of radial damping and rotative speed.
In the classical literature A is a priori assumed constant and equal to 0.5
(Bolotin 1963, Black 1969, 1970). K5 is the stiffness of an additional

supporting spring, $l is the rotative speed, t/11,1I3 are the fluid nonlinear
stiffness functions of corresponding radial displacements of the rotor
(Muszynska, 1986a). They are assumed here in the very general
functional form, thus the results are valid for any type of fluid—lubricated
bearings. The rotor lateral displacements are expressed using the complex

number formalism. For clarity of presentation, the unbalance forces, cross

damping, fluid inertia, and other nonlinear functions are omitted.

EIGENVALUE PROBLEM: NATURAL FREQUENCIES, THRESH-
OLDS OF STABILITY, AND MODES

The eigenvalue problem for linear Eqs. (1) (i.e., when 'tli1=2=0) pro-
vides the following characteristic equation:

(klk3—K1)(/c2K4—K) — K8K3s4 = 0	(4)

where

KI = Ks + jDs1w — M1w2, K3 = K1 + KB! + jD1(w—A1ll) — M3W 2
(5)

K2 = K7 + jDs2u — M2W 2, K4 = K4 + KB2 -I- jD2(W—A2Q) — M4w2

254 Z2}

Z34 K y = z4A

K, K 2	K 3 K4 l/L/2

r97llllll. M, ^ 5 M 2 rr^^lrr^,

4
INBOARD OUTBOARD
BEARING BEARING

FIG. 1 ROTOR MODEL.
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FIG. 2 IMAGINARY AND REAL PARTS OF THE EIGENVALUES . = jW.

are system dynamic stiffnesses and W is a complex eigenvalue.

Parametric analysis of Eq. (4) using the coefficient values in the range
identified from real systems yields the generalized results regarding the

system natural frequencies and thresholds of stability. They are qualita-
tively summarized in Fig. 2. Two natural frequencies are close to the
values Alf and .A252, thus are due to the bearing fluid circumferential
flow ("whirl" frequencies, Muszynska, 1986a). The corresponding real
parts of these eigenvalues s=jW have negative and positive values, so they
provide the important thresholds of stability (onsets). The next two

eigenvalues are close to

	s = — (DI/M3) — j.12 ,	s = — (D2/M4) — 3A2 12 ,	 (6)

and their constant negative real parts assure stability.

The remaining four eigenvalues s have imaginary parts close to the

two-mode rotor natural frequencies ("whip" frequencies, Muszynska

1986a):

1/2
2	

KUn1,2,3,4 t Ke + K7 t KB K7
 1 2

 +	̂	(7)2M1 2M2	[2M1	2M2J	M1 M2

The real parts corresponding to the negative frequencies (7) are nega-
tive, approaching the values —D S 1/2Ml, —D S2/2M2 respectively, so they
assure stability of the system. The real parts corresponding to the positive

natural frequencies (7) may be negative or positive, thus provide addition-

al thresholds of stability (cessations). All thresholds of stability depend
directly on the bearing fluid circumferential average velocity ratios. They
are inverse proportional to either AI or A2, or a combination of both.

Following the results of Muszynska, 1990, the approximate values of

the first mode whirl instability onsets driven by the first and second

bearings are respectively:

1Qstl -	

[^ 2

 r 	(8)

I 1 + KB1	3Un1

	

l	Kml
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K, = 695 lb/in = 121708 N/m
K, = K a = 2891 lb/in = 50960 N/m
K 4 = 434 lb/in = 76002 N/m
K, = 50 lb/in = 5756 N/m	 2

M 1 =M 2 =0.017 lb s 2/in=2.98 kg 
M, = 0.005 lb s 2/In	0.88 kg

MQ	0.006 lb s 2/in — 1.05 kg	 0'; 6ryc'
D s ,	D,, = 0.1 lb s/in = 17.5 kg/s	 aS

= D 2 = 800 lb s/in — 140096 kg/s 	- 
l	K s, = 650 lb/in = 113828 N/m 	 -	-

a,	0.37	 :	/`
^-- a3- 0362 —^ - 1	---y. ...	T3	='

2

s'`3	{

0	...	.5	 l

ROTATIVE SPEED R [RPM . 10 4 ]

— K s2 = 280 lb/in = 49034 N/m

-	 -} K5, = 500 lb/in = 87560 N/m

-	- 	..a-KB2 = 700 lb/in = 122584 N/m

3
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lb s 2/in=2.98 kg
lb s'/in 1.23 kg

Ds,=D s ,=0.11bs
D, = D, = 1000

/m=17.5kg/s

4 -	K s , = Ks, = 100
lb s/in = 175120 kg/s]

A,=0.6
lb/in = 17512 N/m

'.!^	.. A2 = 0.3
_^l1	I

ROTATIVE SPEED B [RPM . 10 4 ]

K, = 521 lb/in = 91238
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FIG. 3 ROTOR SYSTEM EIGENVALUES FOR PARTICULAR CASES. NOTE CHANGES IN STA-
BILITY THRESHOLDS WITH INCREASE OF THE OUTBOARD BEARING FLUID FILM RADIAL

STIFFNESS. THE OTHER REAL AND IMAGINARY PARTS OF EIGENVALUES ARE PRAC-

TICALLY INSENSITIVE TO KB 2 . WITH AN INCREASE OF Ern, BOTH ONSETS OF INSTABI-
LITY DRIVEN BY THE OUTBOARD BEARING OCCUR AT HIGHER ROTATIVE SPEEDS. FOR

SUFFICIENTLY HIGH KBI , ONLY THE SECOND INSTABILITY EXISTS.

Wnl	1
Qst2Z^ 1—

2I

(

1 + KB2—M4Wn2f 1

	l 	KmI J

where Wn 1 is the rotor first mode positive natural frequency (7) and Km 1 is
the corresponding rotor first mode modal stiffness. The role of the fluid
circumferential velocity ratios and fluid film radial stiffnesses in the rotor
stability are evident: A decrease of )s1,A2 and/or increase of KBI, KB2
cause an increase of the stability onsets. For sufficiently high radial stiff-
ness KB2, this first mode whirl instability onset will not occur (see Fig. 3).
With another step of approximation, the similar formulas as Eqs. (8), with
Wn 2 and K m 2 i respectively, correspond to the second mode whirl instability

onsets.
Some numerical examples are given in Figs. 3 and 4. It can be noticed

that for relatively high values of the fluid damping D1 iD2, the coupling of

the system causes the cross sections of the positive constant and rotative
speed-dependent natural frequencies to degenerate into hyperbolas. This

effect does not take place for negative frequencies.

The modal functions 41. = z. /z of the linear system (1) can be
	v 	I v

defined as complex displacement ratios related to the first disk (11=1).

They represent complex numbers as follows:

,1, 21 _ ,1, 21eJF'21 = Kk4 I (1112-K2) — K2 ^3] = K$ („1 — K1/K3) , (9 )

W	W	 K	L	8	1	 (	̂ 31 = ^31e] 31 = K3
	 (1 0 )

FIG. 4 ROTOR SYSTEM EIGENVALUES FOR A PARTICULAR CASE.

4141 = 4424121 = 441eJ/41 = $421eJ(1342+1321)  = 104 $31e3021	(11)

where the modal function amplitudes 4•v and phases QiV can easily be

calculated from Eqs. (5) for the corresponding eigenvalues W obtained
from Eq. (4). The rotor modes at "whip” frequencies (7) are classical.
The rotor disks vibrate in phase for the lower natural frequency and 180 °

out of phase for the higher one. Interesting are modal function phase
angles of the inboard journal relative to the first disk (031), and the

outboard journal relative to the second disk (1342):

031 =	
D1 , 1c2—W

	

arctan K I +KB̂ 	 (12)

Q42 = arctan D 2 A3 I—W
K4+Kg2—
	13
M4W	 ( )

For the whirl driven by the inboard bearing W U ) l0, thus 031 equals

either zero or 180 ° , depending on whether l < 1	K1	1 or 12 >
M3

>	K1 Ki  . This means that for the lower mode whirl vibrations,

the journal and the first disk vibrate in phase; for the higher modes, they
are out of phase. The similar reasoning holds true in case of the second
disk and outboard journal phase, when the whirl is driven by the outboard

bearing (Eq. (13)).
If the whirl is driven by the inboard bearing, and A l > ) 2, then 042

falls either between 270 ° and 360 ° when 12<	K4MKB2 , or be-
4

K4tween 180 ° and 270 ° if 12 >	 ^ ,approaching 180' when the
4
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FIRST MODE
WHIRL ONSET	 sa.

FIRST MO.
WHIP CES

SECOND M
WHIRL ON

SECOND MODE
WHIP CESSATION

THIRD MODE
WHIRL ONSET

FIG. 5 ROTOR MODES AT THRESHOLDS OF STABILITY. THREE MODES DRIVEN BY THE
OUTBOARD BEARING ARE NOT DISPLAYED.

speed 1l increases. If Al < .X2, then either 0 ° < /42 < 90' for the respec-
tive lower speed range, or 90' < 042 <180' for the higher range, also ap-

proaching 180 ° with the speed increase. At the whip cessations, 031 and

042 are close to 90 ° or 270 ° . Note that all modes are three dimensional.
The summary of rotor modes at instability thresholds driven by the in-

board bearing is presented in Figure 5. The classical rotor modes are la-
beled "whip" modes. In the most unstable case there exist two whip and

six whirl modes; the latter are driven by each bearing separately.

SYMMETRIC CASE

In case of axial symmetry, i.e. when M1=M3, M3=M4, K6=K7,

K1=K4, KBI=KB2, D51=D52, D1=D2, Al=)2, the linear system dynamic
stiffnesses are equal respectively, /c1= 12, 13= 14• The characteristic
equation (4) reduces to the following form:

(X1143—K i) 2 — KBk3 = 0

which can be simplified, as follows:

k3(k1±K8) — K1 = 0	 (14)

Eq. (14) is of the same format, as discussed by Muszynska, 1986a,
except that the expression Ic1±K8 describes now two modes of the rotor,

with two natural frequencies Wn = t (Ke±K8)/M1 ("whip" frequencies).
Following the results of Muszynska, 1986a and 1988a, the four onsets of
whirl instability occur approximately at the following rotative speeds:

f1st1,4,4,9I KZMI + 
K2M3 B1 t

t [ K2MKg	K 1+ 1, 2 + MKM3

Note that the instability onsets practically do not depend on damping.
Two approximate values for the middle onset "4" are given. They differ
by the level of approximation.

The cessations of instability for the first and the second mode "whips"

occur approximately at the following rotative speeds:

wn1,2r K2f 1
^st3,5 ll + J  )

D1DstlrJnP2 15

The role of both shaft and fluid dampings is evident here: the higher

their values, the lower rotative speed at which rotor becomes stable again.

If Qst3<1st1 or f1 st5<nst4, then the corresponding instability modes will

not occur at all (see Fig. 3).

SELF—EXCITED VIBRATIONS

The nonlinear Eqs. (1) have exact periodic solutions

zl = A le j( t+a1) z3 = A 3ej(wt+a3)

(16)
^ 2 = 

A2e
j(u t+a2)	z4 = A4e)(Jt

with frequency (or frequencies) w, amplitudes Al, A2, A3, A4 and phases
a,, C12, a3 relative to the phase ct4=0 of the outboard bearing journal.

Eqs. (16) describe the rotor lateral self—excited vibrations, known as whirl

and whip. They occur as limit cycles after the onsets of instability.

The frequencies, amplitudes, and phases of Eqs. (16) can be calculated

from the set of nonlinear algebraic equations obtained by substituting (16)

into Eqs. (1), and dividing all terms by e lUA .

klAlela1 8A2eIa2 1A3e3a3 = 0 , [,3+ 11(A3)]A3e3a3—KiAle3a1 = 0

(17)

I42A2e1a2—K8A1e1a1—K4A4 = 0, tK4+2(A4)1A4—K4A2e1a2 = 0

Note that with assumed solution (16) the arguments of the nonlinear func-

tions become equal to the corresponding vibration amplitudes. Similarly
to the results obtained for other rotor systems (Muszynska, 1986a, 1988a),
it is concluded here that the frequencies calculated from Eqs. (17) are nu-
merically very close to the natural frequencies of the linear equations (1)

at thresholds of stability. The amplitudes A3 and A4 of the journal self-
excited vibrations depend on the nonlinear characteristics of the functions

ti1(A3) and '2(A4). The self—excited limit cycle vibration amplitudes

and phases of the rotor disks, calculated from Eqs. (17), are as follows:

ja1 = K4K8A4 + K2K1A3eia3 ' jag K1K8A3 + ic1K4A4
Ae A —

1 K1k2—K K1K2—K • (18)

The vibrations at the journals act as exciting forces transmitted to the
disks. The disk responses depend on the amount of this excitation, and on
the rotor dynamic stiffness characteristics, as well. The expression stand-

ing in the denominators of Eqs. (18), when equalized to zero, represents
the two—mode rotor characteristic equation, yielding the natural frequen-
cies (7). Thus, it is clear that when the self—excited vibration frequency is
close to any of the values (7), the amplitudes Al and A2 become high.

These self—excited vibrations are known as "whip." The other self-
-excited vibration frequencies are close to the values .11 and . 211, and

the self—excited vibrations are known as "whirl." The whirl and whip
vibrations can be driven by either inboard or outboard bearing fluid

forces. It is possible that several self-excited vibrations with different
frequencies, and corresponding to different modes, occur at the same time.
This event was confirmed by experimental data, described later in this
paper.

Note that the phase angle (a3—al) corresponds to the angle 031, and

C32 corresponds to 042 discussed previously. The only difference in com-
parison to Eqs. (12) and (13) is the addition of 1b1(A3) to KB1 and ',i2(A4)
to KB2. This suggests that the free modes will only slightly differ from
the shaft deflection lines during the self—excited vibrations.

RADIAL PRELOAD EFFECT

A constant radial force applied to the rotor results mainly in static dis-

placement of the journals to eccentric positions inside the bearings (some
slight increase of the rotor stiffness can also take place). The journal ec-
centric rotation results in fluid film radial stiffness and damping increase,
and a reduction of the circumferential velocity ratios (Muszynska 1986b,
1988c) in a specific radial direction of the rotor static displacement. The
rotor characteristics become anisotropic.
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In a rough approximation, the preloaded system can still be modeled
by Eqs. (1), with higher values of DI, D2, KB!, and KB2 i and lower AI, A2
than for the concentric rotor. The latter four parameters have significant
influence on the stability threshold increase. The effect of fluid stiffness

increase is shown on the numerical example illustrated in Figure 3. A re-
duction of the fluid circumferential velocity ratio causes an increase of the
instability onsets. An increase of the fluid radial damping moves the ces-

sation thresholds down to the lower rotative speed range.

In summary, the rotor eccentricity due to the external radial preload,
causing changes in the fluid forces, results in the well-known rotor stabili-

zation, discussed widely in the literature. This effect is illustrated by the
following experimental data.

EXPERIMENTAL RESULTS

The test rotor rig was built to demonstrate destabilizing effects of fluid

dynamic forces in the two oil-lubricated bearing rotor system (Fig. 6). A
flexible two-mass well-balanced shaft is supported at each end by circu-
lar 360 ° lubricated bearings. The lubricant is T-10 oil. Each bearing of
0.7" (1.78 ■ 10 -2m) length and 6 mil (152 x10 - em) radial clearance has
four equally spaced, radial inlet ports entering at the center of four
"canoe" shaped symmetric axial grooves. Each groove is 24 mil (6.1 at
10-4m) deep at the center and has a total axial length of 0.5" (12.7 x

10 -3m). This allows for even fluid pressure around the journal. The

ports are connected to one oil pressure regulator. The pressure in each
bearing can be controlled separately. In this experiment the oil pressure

in both bearings was maintained constant at 3 psi (20683 N/ma). The oil

temperature (affecting viscosity) was also maintained constant, and moni
tored using a thermocouple that was located in the drain tube of the out-
board bearing.

The rotational energy is derived from a 0.5 hp electric motor which is

connected to the rotor through a flexible coupling. A speed controller was
used to control rotative speed and acceleration. Supporting orthogonal

springs at each end of the rotor and at its midspan allow balancing the
force of gravity, and may provide radial preload forces on the shaft. The
shaft equilibrium can be obtained at any eccentric shaft position in the

bearing. To obtain the shaft lateral vibration data, the eddy current dis-

placement probes were mounted at both ends of the shaft in an XY

configuration. An optical Keyphasor® was used to provide angular
orientation, rotative speed, and/or timing information. A computerized
data acquisition and processing system was used.

The results of start-up responses of the concentric rotor and the

eccentric rotor with four radial preload cases are presented in Table 1 and
in the form of spectrum cascade plots (Figures 7 to 11).

On the concentrically rotating rotor, the first onset of stability occurs
at -4000 rpm (Fig. 7). At this speed the self-excited limit cycle vibra-

tions are clearly visible in the spectrum. With the first natural (first
balance resonance) frequency Wn 1 1769 rpm, the fluid velocity ratio at
calculated from the first part of Eq. (8) must be lower than 0.44. Since
the instability occurs in the transition range from the whirl to whip
frequency, at higher rotative speeds only the whip vibrations exist. At the
rotative speed -8700 rpm, the second mode whirl occurs. The
whirl-to-rotative- speed ratio at this instability onset is 0.48, thus the
fluid velocity ratio must then be lower than 0.48. Changes in the
frequency of vibration with the rotative speed increase are characteristic
for the whirl. Soon, however, the second mode whirl transforms into the

second mode whip, and its frequency approaches the second natural

frequency of 4309 rpm. At high rotative speeds the rotor vibrations are
very violent, especially near mid-span locations. The whip vibrations

measured at the inboard and outboard locations were filtered using a

vector filter manually tuned to respective whip frequencies. The phases of
vibration obtained by further signal processing indicate that at the first
mode whip, both shaft ends vibrate almost in phase; however, the shaft
outboard end lags the inboard end by about 2 degrees. This indicates
that this mode is driven by the inboard bearing. In the second mode
whip the average phase lag of the shaft inboard versus outboard ends is
about 182 degrees. This means that this mode has been driven by the
outboard bearing.

The rotor system was modeled, using Eqs. (1), and the eigenvalues are
presented in Figure 3. The rotor modal parameters have been identified

using the method described in the paper by Muszynska et al. (1989); note

the natural frequencies matching the experimental results (Fig. 7). With

estimated (not fully identified) fluid force parameters, the calculated first

instability onset driven by both bearings occurs at 3962 rpm, the second

mode onset at 9156 rpm (Fig. 3), thus is slightly higher than the one ob-
served in the experiment. The parametric sensitivity test of the eigen-
values reveals that the second mode whip is driven by the outboard bear-
ing. An increase of the outboard fluid film stiffness moves the stability
onsets to higher rotative speed range. The model predicts it, and the fur-

ther experiments with preload cases confirm this effect. Some discrepan-
cies between analytical and experimental results are due to the fact that
when the second mode whirl then whip occur, the experimental rotor is al-
ready at the first mode whip conditions. This means that the fluid film

radial stiffnesses and circumferential velocity ratios are different than be-
fore the first onset of instability. For a more adequate calculation of the
second mode instability onset, the rotor model parameters should then be
slightly modified. The linear model indicates that there exist cessations of

instability for the whip vibrations of both modes of the rotor. These ces-
sation speeds correspond, however, to the, original parameters of the rotor,

while, actually, the rotor is already at the whip conditions. The stability
of rotor zero lateral vibrations predicted by the linear model differs from
the stability of whirl/whip vibrations (Musaynska, 1988b).

The figures 8 to 11 illustrate the rotor behavior when the radial
preload was applied. The preloading of the outboard side of the rotor
does not affect the first mode whip; it stabilizes, however, the second

mode whirl/whip in the considered range of rotative speeds (Fig. 8; com-

pare with positions of stability thresholds illustrated in Fig. 3 for several
values of the outboard bearing fluid film radial stiffness). The preloading

of the rotor inboard side revealed that the inboard bearing fluid was the

main driving factor of the lower instability onset. The first mode whip

still occurs, but its onset is at higher speed (A1<0.38, Fig. 9), and the vi-
bration amplitudes are smaller.

E	 a.^	:>E	i' ii	F

-

41 44444

I.

N

A - 0.5 HP AC MOTOR	 F - CIRCULAR DISK
B - FLEXIBLE THOMAS COUPLING, MODEL CB25 G - OPTICAL KEYPHASOR PROBE
C - 360 OIL LUBRICATED BEARING, L/D=0.75	H - .375" DIAMETER SHAFT
D - XY EDDY CURRENT DISPLACEMENT PROBES I - SPEED CONTROLLER
E - SPRING SUPPORT, STIFFNESS 50 LB/IN	J - ROTOR BASE

FIG. 6 EXPERIMENTAL ROTOR RIG.

Table 1. Resonant Frequencies and Thresholds of Stability of the Experimental Rotor

Case 1 2 3 4 5

Figure Number 7 8 9 10 11

Preload
pbl/

Inboard 0 0 55.5/315' 23.62/270' 32.3/315'

IdegreeJ Outboard 0 55.5/315' 0 23.62/90' 32.3/315'

Rotor
Inboard Vertical 0 0.12 8.12 0.86 6.84

Inboard Horizontal 0 0.13 10.01 8.67 8.79
Displacement

t°]
Outboard Vertical 0 8.85 0.12 0.67 7.63

Outboard Horiaontal 0 10.99 0.55 8.28 10.56

Resonant First Mode 1769 1827 1890 1798 1950
Frequency
[rpm] Second Mode 4309 4408 4410 4309 4365

Stability
Threshold

First Mode 4000 4000 5000 8000 Above 1000

[rpm] Second Mode 8700 Above	9600	rpm

Predicted
Stability
Threshold

First Mode
(K1r280

3962
(K1,=50016/in)

3947`

[rpm] (Fig. 3) Second Mode 9156 10182

`Calculated by using isotropic model (Fig. 3). Agreement qualitative only.
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FIG. 8 SPECTRUM CASCADE AND SELECTED ORBITS OF THE INBOARD (a) AND OUT-

BOARD (b) VERTICAL RESPONSES OF THE ROTOR PRELOADED AT THE OUTBOARD SIDE
(CASE 2).	THE NUMBERS AT THE ORBITS INDICATE THE CORRESPONDING TIME MO-

MENTS OF CONSECUTIVE ROTATIONS.
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FIG. 7 SPECTRUM CASCADE OF THE START-UP AND SELECTED ORBITS OF THE INBOARD

(a) AND OUTBOARD (b) VERTICAL RESPONSES OF THE CONCENTRIC ROTOR (CASE 1).

THE SELF-EXCITED LIMIT CYCLE VIBRATIONS ARE PRESENT IN THE SPECTRUM. THE

NUMBERS AT THE ORBITS INDICATE THE CORRESPONDING TIME MOMENTS OF CONSEC-

UTIVE ROTATIONS. THE INTERNAL LOOPS AT OPPOSITE SIDES ON THE INBOARD AND

OUTBOARD ORBITS AT 9541 rpm INDICATE 180 OUT OF PHASE OF THE SECOND MODE

WHIP. BOTH MODE WHIPS ARE FORWARD.

The preload applied at both rotor ends moves further up the instability
onset (now A 1 and A2 must be lower than 0.22, Fig. 10). Further increase

of the preload force stabilizes the rotor in the considered range of rotative
speeds (Fig. 11).

Note that the preload conditions slightly modify the natural frequencies

of the rotor (the first and second balance resonance frequencies slightly
differ for the considered cases; see Table 1). The preload also results in

some changes in the rotor balance state. The synchronous (1■) vibration

response amplitudes differ from case to case, which is especially evident at
the balance resonance speeds.

FINAL REMARKS

A further application of the lightly loaded bearing fluid force models in
rotordynamics is presented in this paper. The modal approach in rotor

modeling provides easy interpretable results which are adequate to experi-
mental observations of rotor dynamic behavior. In particular, the model
predicts the existence of several mode instabilities, and an experimental

case exhibiting this phenomenon was documented in this paper. The

linear models predict quite well the instability thresholds. The first stabil-
ity onsets obtained here do not differ much from the onsets calculated by
using classical bearing coefficients. The nonlinear model discussed here
yields the after-stability onset self-excited vibration parameters, which
can be calculated, provided that the nonlinear functions were adequately
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FIG.9 SPECTRUM CASCADE AND SELECTED ORBITS OF THE INBOARD (a) AND OUT-
BOARD (b) VERTICAL RESPONSES OF THE ROTOR PRELOADED AT THE INBOARD SIDE

(CASE 3).

identified. In this presentation these functions are assumed in a very gen-
eral form, thus the considerations and results are applicable to any type of

fluid-lubricated bearings.
The stability of the self—excited vibrations was not discussed in this

paper. It can further be done, following the method discussed by
Muszynska 1988b. The experimental results presented here and in the
papers by Muszynska (1988, 1990) show that the first mode whip vibra-
tions can exist (means they are stable) in a wide rotative speed range.
They may also become unstable (means the rotor stabilizes) in certain

ranges. A slight decrease in whip vibration amplitudes in some rotative
speed regions was noticed during the present experiments (see in Fig. 7 a
decrease of the whip harmonic amplitudes around 7000 rpm). This indi-
cates that some changes in the system parameters did take place. The
model predicts that the real parts of the system eigenvalues decrease

around this range of the rotative speeds.

(a) ,;
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w
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x	q^
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0o
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RESONANCE

FIG. 10 SPECTRUM CASCADE AND SELECTED ORBITS OF THE INBOARD (a) AND OUT-
BOARD (b) VERTICAL RESPONSES OF THE ROTOR LIGHTLY PRELOADED AT BOTH IN-
BOARD AND OUTBOARD ENDS (CASE 4).

The full identification of the experimental system parameters was not
performed; only the two—mode modal identification of the rotor itself by

using the procedure described by Muszynska et al. (1989) yielded the basic

values MI, M2 and K1 to K5 (Fig. 3). Further identification of the fluid
film characteristics will provide better quantitative adequacy of the model.

In the qualitative sense, the model is, however, fully adequate to the ob-
servable phenomena, and serves better than the classical models of fluid

forces in lightly loaded fluid—lubricated bearings.
The ability of theoretical prediction and the experimental evidence of

the simultaneous existence of the first and second mode whip vibrations
confirm the adequacy and usefulness of the fluid force model, and provides

a significant tool to the rotating machinery designers and users. The
parametric sensitivity tests on the fluid force model reveal directly which
parameters are responsible for instability, thus which ones have to be con-
trolled. These parameters are the fluid film radial stiffness and the fluid
circumferential average velocity ratio. For better stability, the first one
should be the highest. The increase of this stiffness is possible by increas-
ing the shaft eccentricity inside the bearing and/or by an increase of fluid
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FIG. 11 SPECTRUM CASCADE OF THE INBOARD (e) AND OUTBOARD (b) VERTICAL RE-

SPONSES OF THE ROTOR MORE HEAVILY PRELOADED AT BOTH INBOARD AND OUT-

BOARD ENDS (CASE 5).

pressure (for 360' lubricated bearings). The fluid circumferential velocity
decreases at higher shaft eccentricity, and additionally can effectively be

reduced by anti-swirl injections (Bently, 1989).
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