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STABILITY AND INSTABILITY OF FLUID MODELS 
FOR REENTRANT LINES 

J. G DAI AND G. WEISS 

Reentrant lines can be used to model complex manufacturing systems such as wafer 
fabrication facilities. As the first step to the optimal or near-optimal scheduling of such lines, 
we investigate their stability. In light of a recent theorem of Dai (1995) which states that a 
scheduling policy is stable if the corresponding fluid model is stable, we study the stability 
and instability of fluid models. To do this we utilize piecewise linear Lyapunov functions. We 
establish stability of First-Buffer-First-Served (FBFS) and Last-Buffer-First-Served (LBFS) 
disciplines in all reentrant lines, and of all work-conserving disciplines in any three buffer 
reentrant lines. For the four buffer network of Lu and Kumar we characterize the stability 
region of the Lu and Kumar policy, and show that it is also the global stability region for this 
network. We also study stability and instability of Kelly-type networks. In particular, we show 
that not all work-conserving policies are stable for such networks; however, all work-conserv- 
ing policies are stable in a ring network. 

1. Introduction. Consider a multiclass queueing network with a single route for 
all customers. There are I stations (nodes) in the network. All the customers follow a 
fixed deterministic K stage route through the network. We shall number the stages so 
that each customer will enter the system in stage 1, and on completion of stage k will 
move to stage k + 1, k = 1,..., K - 1, and leave the system on completion of stage 
K. We designate those customers on the kth stage of the route (the kth visit along 
the route) as class k customers. We envision class k customers waiting in buffer k, 
which is assumed to have infinite capacity (when customers are served in FIFO rule, 
it is enough to have one buffer for each station). For each k let a(k) be the station 
number that class k customers visit (the station serving stage k). This model is called 
a reentrant line, see Kumar (1993). A distinctive feature of a reentrant line is that 
customers may visit a particular station more than once, so that each node serves 
several classes. 

Let { (n), n > 1} be a sequence of positive random variables. The nth random 
variable 6(n) is interpreted as the interarrival time between the (n - l)th customer 
arrival and the nth customer arrival from outside; the first customer arrives at time 
(1). The service times at different stages (visits) for the nth customer are 

T7r(n),..., r]K(n). We make the following three assumptions. First we assume that 

(1.1) {( (n), 7l(n),..., 7K7(n)), n > 1) is an iid sequence. 

Then we assume that all the random variables have finite first moments. That is, 

(1.2) E[ (1)] <oo and E[rk(1)] < oo fork = 1,...,K. 
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Finally, we assume that the interarrival times are unbounded and their distribution is 
spread out. That is, for any x > 0, 

(1.3) Proba( (1) > x} > 0, 

and for some integer n > 0 and some function p(x) > 0 on R+ with fJp(x) dx > O, 

(1.4) Proba a < E {(i) < b > p(x) dx, for any0 a < b. 

Note that in (1.1), we allow the service times at different stages of visits to have 
arbitrary dependency. This feature is useful for certain applications, notably in 
computer communications and manufacturing systems. There the length of a com- 
puter message or the size of a manufacturing lot may be random. However, the 
service times in general are proportional to the message length or lot size, and 
therefore are positively correlated. We also allow dependence of the service times on 
the previous interarrival time. 

Let Ci = {k: a(k) = i}. The set Ci is called the constituency of station i. Let C be 
the I x K incidence matrix, 

(1.5) C,k= 1 if cr(k) =i, ilk 
\0 otherwise. 

Without loss of generality, we assume that 

(1.6) E[ (1)] = 1. 

Let mk = E[rlk(l)] be the mean service time for class k customers. We assume that 
there is a single reliable server at each station. For each i = 1,..., I, let 

Pi= E mk. 
keCi 

We call pi the nominal workload for server i per unit of time (recall that the arrival 
rate is normalized to be one in (1.6)). Throughout this paper, we assume 

(1.7) pi<1 fori= ,...,I. 

Nothing has been said yet about a queueing discipline, which dictates the order in 
which customers are served at each station (we will use queueing discipline and 
scheduling policy interchangeably). Specific queueing disciplines will be discussed in 
later sections. We assume that all disciplines are work-conserving. That is, server i 
works at full speed whenever there is work to do at station i. 

In Dai (1995), the author introduced a stochastic process {X(t), t > 0} that 
describes the dynamics of the queueing network under a specific queueing discipline. 
For each t > O, X(t) = (X1(t),..., X1(t)), where Xi(t) is the state at station i at time 
t. The exact definition of state depends on the particular queueing discipline. For 
example, if first-in-first-out (FIFO) discipline is used at each station, then one needs 
to take 
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where n,(t) is the queue length (including the possible one being served) at station 
i, xi(t) is the class number of the jth customer at the station, u(t) is the residual time 
for the next external customer to arrive, vX.il((t) is the residual service time for the 
customer being serviced; if ni(t) = 0, uvXl((t) is taken to be zero. It was shown in Dai 
(1995) that under conditions (1.1) and (1.2), X = {X(t), t > 0} is a strong Markov 
process. Readers are referred to ?2.2 of Meyn and Tweedie (1993) or ?3 of Dai (1995) 
for the definition of positive Harris recurrence for a strong Markov process. 

DEFINITION 1.1. A queueing discipline is stable if the underlying Markov process 
X = {X(t), t > 0} describing the dynamics of the network is positive Harris recurrent. 

Positive recurrence for X implies the existence of a unique stationary distribution 4 
for X. It also implies the strong law of large numbers for the sample paths of X. In 
particular, 

lim - Qk(s) ds = fk(x)(dr) almostsurely 
t--o* T f 

for any initial configuration, where Qk(t) is the queue length of class k customers at 
time t, and fk(x) is the queue length of class k customers for a state x in the state 
space S. 

For a long time, researchers have believed that condition (1.7) is necessary and 
sufficient for a queueing discipline to be stable. This premise was based on the study 
of generalized Jackson networks and some special multiclass networks. In a general- 
ized Jackson network, also called a single class network, all the customers that visit a 
particular node or station of the network are essentially indistinguisable. When all 
interarrival time and service time distributions are exponential, Jackson (1957) found 
the stationary distribution for the network and consequently established the stability. 
When these distributions are general, various stability results were obtained; see 
Borovkov (1986), Sigman (1990), Meyn and Down (1994), Baccelli and Foss (1994) 
and Chang, Thomas and Kiang (1994). Reentrant lines belong to the wider class of so 
called multiclass or non-homogeneous customer networks, because although all 
customers follow a single route, stations may contain customers at different stages 
along their route. Under some special distributional assumptions on interarrival times 
and service times, some scheduling disciplines in multiclass networks like BCMP 
(1975) and Kelly (1979) have been shown to be stable again by explicitly finding the 
stationary distributions. 

The belief that (1.7) is sufficient for stability has been shattered by a series of 
brilliant examples considering multiclass networks. Notably, Bramson (1994) has 
recently presented an example of a two station reentrant line, with exponential 
interarrival and service distributions, for which (1.7) holds and yet FIFO is unstable. 
In an earlier paper, Lu and Kumar (1991) have shown that a particular buffer priority 
discipline is unstable for a two station reentrant line with deterministic arrivals and 
services. (We analyze this network in ?5 of this paper.) Analogous instability results 
were obtained in Rybko and Stolyar (1992) and Seidman (1994), for more general (not 
reentrant) networks with multi-type customer arrivals. Readers are referred to ?1 of 
Dai (1995) for a more detailed account of recent developments of the subject. In the 
following definition, ?L0 = 1, Pak = l/mk for k = 1,..., K and To(t) = t for t > 0. 
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DEFINITION 1.2. By a fluid model of a queueing discipline in a reentrant line we 
mean any solution (Q(), T()) to the following equations, where Q(t)= 
(Ql(t),..., QK(t))' and T(t) = (Tl(t), .. ., TK(t))'. 

(1.8) Qk(t) = Qk(O) + Lk-lTk-(t) - LkTk(t) for k = 1,..., K, 

(1.9) Qk(t) >0 fork= 1,...,K, 

(1.10) Tk(O) = 0 and Tk(.) is nondecreasing for k = 1,..., K, 

(1.11) Bi(t) = E Tk(t) for i = 1,...,I, 
kECi 

(1.12) Ui(t) = t - Bi(t) is nondecreasing for i = 1,..., I, 

(1.13) xUi(.) increases only at times t when E Qk(t) = 0 for i = 1,..., I, 
kECi 

(1.14) some additional conditions on (Q( ), T(.)) that are specific to the queueing 
discipline. 

In the queueing network context, Qk(t) is the queue length for class k at time t with 
initial class k queue length Qk(0), Tk(t) is the cumulative amount of time the server 
o(k) spends on class k customers in [0, t], Bi(t) is the cumulative amount of time that 
server i is busy in [0, t], Ui(t) is the cumulative amount of time that server i is idle in 
[0,t]. Condition (1.13) is the work-conserving assumption we made earlier. It is 
equivalent to 

ft E Qk(t) dU(t) =0 fori=l ,..., I. 
keCi 

Note that in (1.8) the arrival process is replaced by the deterministic continuous 
fluid flow %oT0(t) = t, and the cumulative service completions at buffer k are 
replaced by the deterministic continuous ,kTk(t). 

For future reference, by a work-conserving fluid model we mean any solution 
satisfying (1.8)-(1.13). It was shown in ?4 of Dai (1995) that any fluid limit of a 
queueing network under a work-conserving queueing discipline is a fluid model 
satisfying (1.8)-(1.13) in Definition 1.2. 

For a particular queueing discipline, the corresponding fluid model may have 
additional complementary conditions (1.14). These additional conditions must be justi- 
fied by taking "fluid limit"from corresponding conditions of the queueing network. This 
will be done in this paper, for some buffer priority policies, see (4.4) in ?4; more 
details and further examples are contained in Dai (1995). Even under these addi- 
tional constraints, in general (1.8)-(1.14) may not uniquely determine (Q(.), T(O)). In 
the nonunique case, the queueing network is sensitive to the initial configuration. 
That is, a slight change of initial network configuration (negligible under fluid scaling) 
will completely change the dynamics of the network. Readers are referred to ?5 
below, and to the examples of Whitt (1993) for more insight. For q = (q, ..., q)' E 
R+, let Iql - EkK=qk. 
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DEFINITION 1.3. The fluid model corresponding to a queueing discipline is stable 
if there exists a time 8 > 0 such that for any solution Q(.) satisfying (1.8)-(1.14) and 
Q(0)1 = 1, 

Qk(t)-0, t > 8, k = ,..., K. 

REMARK. Recently, Stolyar (1994) proved that this definition of stability is equiva- 
lent to an apparently weaker condition that for each initial condition, there exists a t 
such that IIQ(t)ll < IIQ(0)11, where IQ(t)11 is some norm, e.g. total queue length, of 
Q(t). 

The following theorem was proved in Theorem 4.3 of Dai (1995). The refinement 
to the current form is due to Theorem 5.2 of Chen (1995). 

THEOREM 1.1. A queueing discipline is stable if the corresponding fluid model is 
stable. 

REMARK. The theorem was proved by Rybko and Stolyar (1992) for a two station 
network with exponential interarrival and service distributions. Related work can also 
be found in Stolyar (1994). 

The primary purpose of this paper is to use Theorem 1.1 to investigate the stability 
and instability of various queueing disciplines under (1.7). We show that for three 
buffer reentrant lines any work-conserving policy is stable. For buffer priority disci- 
plines, we study the flow in different segments of a network. As a consequence, we 
prove that in any reentrant line, First-Buffer-First-Served (FBFS) and Last-Buffer- 
First-Served (LBFS) disciplines are stable. This result is analogous to the one by 
Kumar (1993), who considered discrete deterministic systems. The most interesting 
result of this paper is perhaps the characterization of the stability region of the 
Lu-Kumar network (1991). We also study the stability of Kelly-type networks. In 
particular, we show that instability can occur in a fluid model even if mean service 
times at different visits to a station are the same. Both the fluid version and queueing 
network version of this result were recently proved by Gu (1995). However, when a 
Kelly-type network has ring topology, we show that all work-conserving policies are 
stable. 

Obviously, stability is a first issue one needs to address if one wishes to study 
optimal or near-optimal scheduling of a reentrant line. However, to determine the 
stability region for any given discipline in a multiclass network seems very difficult at 
the moment. It is still an open question whether the stability regions of a queueing 
network and the corresponding fluid network are the same. We hope that examples 
treated in this paper demonstrate that working with fluid models is a viable method 
to solve stability questions of queueing networks. 

2. Preliminaries. In this section, we collect some intermediate results and intro- 
duce some more notation. It is clear from (1.10)-(1.12) that Tk(.), Bi(') and U(.) are 
Lipschitz continuous. Hence we have the following proposition. 

PROPOSITION 2.1. The paths Qk('), Tk(-), B,(') and Ui(.) are absolutely continuous. 
Therefore they have derivatives almost everywhere with respect to the Lebesgue measure on 
[0, oo). 

A path x(.) is regular at t if it is differentiable at t. We use x(t) to denote the 
derivative of x(.) at a regular point t. 

REMARK. In later sections, whenever a derivative of a path at time t is considered, 
it is always assumed that t is a regular point for Q, T and B. 
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The following elementary lemma is useful. 

LEMMA 2.2. Let g be an absolutely continuous nonnegative function, and let g denote 
its derivative, whenever it exists. 

(i) If g(t) = 0 and g(t) exists, then g(t) = 0. 
(ii) Assume the condition that for some e > 0 and almost everywhere at regular points 

t > 0, whenever g(t) > 0 then g(t) < - c. Then g(t) = 0 for all t > 8, where 8 = 
g(O)/e. Furthermore, g(.) is nonincreasing, and hence once it reaches zero it stays there 
forever. 

For future references, we define some processes related to the queue length 
process. First, let 

(2.1) W(t) = CMQ(t), 

where M = diag(ml,..., mK). The ith component of W(t) is 

Wi(t) = E mkQk(t). 
keCi 

In the queueing network context, Wi(t) is interpreted as the expected immediate 
workload at station i given that the queue length at time t is Q(t). In our model, we 
shall call Wi(t) immediate volume or simply volume at station i at time t. If no more 
fluids arrive at any of the buffers k, k E Ci, after time t, server i will be busy W/(t) 
units of time to clear out all the fluids currently at station i. For future reference, we 
define 

k 

(2.2) Qk(t) = EQ(t), fork= 1,...,K. 
l=1 

3. A three buffer reentrant line. Consider a three buffer two station reentrant 
line pictured in Figure 1. Using the notation set up in ?1, we have I = 2 and K = 3. 
The condition (1.7) now reads 

(3.1) Pi = m1 + m3 < 1 and P2 = m2 < 1. 

For this network, Kumar (1993) conjectured that FIFO queueing discipline is stable 
under (3.1) when all distributions are exponential. Wang (1993) proved that the 
corresponding fluid network is stable under FIFO discipline, which, by Theorem 1.1, 
confirms the conjecture. In this section we prove stability under any work-conserving 
queueing discipline. 

THEOREM 3.1. For the three buffer two station reentrant line, if (3.1) holds then the 
fluid model is stable for every work conserving policy. 

FIGURE 1. A three buffer two station reentrant line. 
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PROOF. This theorem can be proved directly by considering the two cases (a) 
ml + m2 m3 < 1 and (b) ml + m2m3 > 1 separately; one can easily find a sharp 
upper bound on the emptying time for each case. The proof that we present here is 
shorter, and has wider applications. The key idea is to construct an appropriate 
Lyapunov function that is piecewise linear in terms of the K-dimensional queue 
length processes. This form of Lyapunov function was first advanced by Botvitch and 
Zamyatin (1992) and has the potential to be further generalized. In later sections, we 
make further use of this type of Lyapunov function. 

Recall that Qk(t) = ElQlj(t). Let 0 = ml/(ml + m3). Because p, < 1, we have 
ml < 0 < 1. Define 

Gl(t) = OQ1*(t) + (1- )Q3 +(t) 

G2(t) = Q2 (t). 

On W,(t) = , Gl(t) = (1 - O)Q2(t) < G(t). Similarly, on W2(t) = 0, G2(t) = 
Q1 (t) < Ql (t) + (1 + O)Q3(t) = Gl(t). Note that, from (1.8), 

G,(t) = G1(0) + t - OeLT1(t) - (1 - 0) (3T3(t) 

= G1(0) + t - B,(t)/p,. 

Because Bl(t) = 1 when W(t) > 0, we have Gl(t) = -(1/p1 - 1) < 0 whenever 
W(t) > 0. Similarly, G2(t) = -(l/p2 - 1) < 0 whenever W2(t) > 0. Let 

G(t) = max{Gl(t),G2(t)) 

and t be a regular point of G(O), G1(.) and G2('). Assume that G(t) > 0. It follows 
from Lemma 3.2 below that G(t) < - , where 

E= minl/p1 - 1, l/p2 - 1} > 0. 

Therefore, by Lemma 2.2, G(t) 0 for t > G(O)/e. We assume initial total queue 
length IQ(0) = 1. This implies that G(0) < 1, and hence G(t) 0 for t > 
max{ pl/(l - p1), P2/(1 - P2)}. But G(t) _ 0 implies Q(t) 0. o 

REMARK. The line 1 -e 2 -o 1 is the most complex three buffer reentrant line. 
Because any other three buffer reentrant line is a feedforward network in a sense 
defined in ?6 of Dai (1995), it follows from ??5 and 6 of Dai (1995) that any other 
three buffer reentrant line will also be stable under every work conserving policy. 

LEMMA 3.2. Let Gi(t) be a nonnegative linear function of (Ql(t),..., QK(t)), 
i = 1,..., I. Assume the following two properties: 

(a) For each i = 1,..., I, there exists ei > 0 such that W(t) > 0 implies Gi(t) < - i. 
(b) For each i = 1,..., I, if Wi(t) = 0 then G,(t) < minj i Gj(t). 

Let G(t) = max{Gl(t),..., GI(t)}. Then G(O) is an absolutely continuous nonnegative 
function. Furthermore, if t is a regular point of G(-), G1(),..., G() such that G(t) > 0, 
then G(t) < - , where e = min{E1,..., Ed}. 

PROOF. Because each G,(.) is Lipschitz continuous, so is G(O. Hence G() is an 
absolutely continuous nonnegative function. Let t be a regular point of 
G(O), G1(),..., G( ) such that G(t) > 0. Assume that 

Gil(t) = . = Gi,(t) 
= G(t) and Gi(t) < G(t) for i 0 {il,...,ik}. 
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By the regularity of G(O), Gil(),..., Gi(.) at t, we have 

(3.2) G(t) = Gil(t) = = Gi(t). 

To see (3.2), (which is a well-known property of the maximum function) consider ij, 
1 < j < k and choose two sequences {t,,} and {sn} such that sn < t, tn > t, and s,, - 
t, t, - t. Then 

G(s,,) - G(t) G s Gijt) 
G(t) = im G(s) G(t) - G ) n--+ oo sit - t s n - oc sit = t 

n--ooo i? t n - oo I 
G(t) = lim G(tn) - G(t) 

Because G(t) > 0, there must be some j for which Wj f 0, and by property (b), if 

k < I, then Wi = 0 implies i 
' 

{il,..., ik}. Hence there must be 1 < j < k such that 
Wj(t) > 0. But this implies that one of the inequalities Gi(t) < - ei, j = 1,..., k, is 
true. Thus ((t) < - e. o 

4. Buffer priority disciplines. In this section we introduce buffer priority poli- 
cies. Class k has higher priority than class I if 7r(k) < ,r(l), where the priorities ir 
are a permutation of 1,..., K. To be more precise, under the Xr priority policy, 
customers within a class are served following FIFO discipline. If a higher priority 
class customer arrives at a node while a lower priority class customer is in service, the 
lower priority class customer is instantly preempted. When service on all higher 
priority class customers at the node is completed, the server resumes service on the 
lower priority class customer. Such an implementation of the priority policy is called a 
preemptive resume discipline. 

We describe the dynamics of the reentrant line for some fixed preemptive resume 
priorities ir. Let: 

Hk = {: 1 E C(k), 7r(1) < t( k)}. 

Let 

(4.1) T (t) = E Tl(t), 
IEHk 

(4.2) Uk (t) = t - Tk (t). 

T (t) is the cumulative amount of service in [0, t] dedicated to customers whose 
classes are in Hk, and U,k(t) is the total unused capacity of server o-(k) in [0, t] which 
is available to serve lower priority customers whose classes are not in Hk. Note that 
Ui(t) is a station level quantity representing the total capacity unused by server i in 
[0,t], and this quantity has a real meaning in that the server is actually idle for that 
amount of time; in contrast, Uk,(t) is a class level quantity. 

The priority policy requires that for every k all the service capacity of station ar(k) 
is dedicated to classes in Hk, as long as the workload present in those buffers is 
positive. Let 

(4.3) Wk(t) = E mQ1(t) 
IeHk 
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denote the total local immediate workload at station ro(k) in buffers k E Hk. Again 
W,k(t) is a class level quantity as opposed to station i immediate volume Wi(t). In the 
queueing network context, Wk+(t) corresponds to the local workload at station ro(k) 
at time t embodied by customers whose classes are in Hk. We assume preemptive 
resume policy; therefore Uk(.) increases only at times t such that Wk+(t) = 0, or 
equivalently, 

dUk( = 0. 

Proceeding in exactly the same way as in Dai (1995), the complementary condition 
carries over to the fluid limit model. Therefore, we have 

PROPOSITION 4.1. A fluid model corresponding to a preemptive resume priority policy 
7r must satisfy (4.4) in addition to (1.8)-(1.12). 

Notice that for a preemptive resume priority discipline, the extra condition (1.14) 
takes the form in (4.4). It is easy to see that condition (4.4) supersedes condition 
(1.13). For k = 1,..., K, at all regular points t put 

(4.5) ak(t) = Ik_lTk-l(t), dk(t) = kTk(t). 

We call ak(t) the in-flow rate into buffer k at time t and dk(t) the out-flow rate from 
buffer k at time t; recall the convention that LuO = 1 and T(t) = t. 

PROPOSITION 4.2. For the fluid model (1.8)-(1.12), (4.4), the following properties 
hold: (a) ak(t) = dk_(t) for k = 1,..., K, where do(t) = 1. (b) If Qk(t) = O, then the 
in-flow rate and out-flow rate for buffer k are equal, i.e., ak(t) = dk(t). (c) At each node 
at most one non-empty buffer, the highest priority non-empty buffer, can have positive 
out-flow rate. If ko is the highest non-empty class at station ar(ko), then 

(4.6) E mkdk = 1. 
k Hko 

The out-flow rate from every buffer at the node with lower priority than the highest 
non-empty buffer is 0. That is, if 7r(1) > 7r(ko) and classes I and ko are served at the 
same station, then dl(t) = 0. 

PROOF. Assertion (a) follows directly from (4.5). If Qk(t)= 0, it follows from 
Lemma 2.2 that Qk(t) = 0, and hence, by (1.8), (b) is true. To prove (c), let ko be the 
highest priority nonempty class at station i. Since, Qko(t) > 0, it follows from (4.4) 
that T~,(t) = 1. It then follows from Tk(t) = El H ml( I,T(t)) that (4.6) holds. If 
7r(l) > 7r(ko) and classes 1 and ko are both served in the same station i, it again 
follows from (4.4) that T+ (t) = 1. Hence 

T(t) < T+(t) - T 0k(t) = 0, 

and therefore dl(t) = . o 

DEFINITION 4.1. If rr(k) = k, the corresponding buffer priority discipline is called 
First-Buffer-First-Served (FBFS). If rr(k) = K + 1 - k, then the corresponding buffer 
priority discipline is called Last-Buffer-First-Served (LBFS). 

In the following two theorems, we prove that the fluid models corresponding to FBFS 
and LBFS disciplines are stable. Kumar (1993) proved analogous theorems for 
discrete deterministic systems. 
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THEOREM 4.3. The fluid model corresponding to the FBFS discipline is stable. 

PROOF. In the proof we make the following inductive hypothesis on k: Assume 
that at time tk_ all the buffers 1,..., k - 1 are empty and that they shall stay empty 
for t > tk-_. With the convention that to = 0, and Qo(t) = 0, the assumption for 
k = 1 is trivially true. Let the content of buffer k at time tk_ be Qk(tk_ ) > 0. This 
is bounded above by IQ(0)I + tk_1. Then, since for t > tk_1 we assume buffers 
1, ... , k - 1 remain empty, it follows that if Qk(t) > 0 for t > tk_ then it is the first 
nonempty buffer, and so, by Proposition 4.2, ak(t) = 1 and 

_ 1 - Fle Hk \{k}M 1 
dk(t) = 

1 >1. 

Therefore, Qk(t) = -Uk(1 - E Hkml) < 0, and hence, by Lemma 2.2, buffer k will 
be empty at time tk, where tk - tk_ = Qk(tkl)mk/(l - E,eHkm) and will 
stay empty at all times after tk; this completes the inductive step. To clinch the 
proof we perform the explicit calculations. We start with IQ(0)l = 1. We have t, = 
Q1(O)/( 1 - 1) < 1/( il - 1). Assume that 

k- 1 - jeHt\{I}m mk 
Q(tk.)I H? 6 H 1- M IQ(tk )1 l< 0 1 - - 1 EHi and t - tk E m i 

Then 

IQ(tk)1 < Q(tk-)l + (tk 
- 

tk_) < Ok-( + 1 - E k ) k 

and 

tk+1 - tk < Qk+l(tk)mk+/ 1- m ) - 
Ej I 

Hnk+m 
l,Hk+l 

Therefore the fluid model will reach Q(t) = 0 and remain zero thereafter no later 
than at 

K n (lk-1 E, m K 
I' H-1(1 - EJ H\{(I}mj) 

k=1 i m H =1(1 - Ej HlIj) 

THEOREM 4.4. The fluid model corresponding to the LBFS discipline is stable. 

PROOF. Let G(t)= IQ(t)l. We will analyze G(t) at all regular points. First, 
because IQ(t)l = IQ(0)I + t - j7KTK(t), we have G(t) = 1 - dK(t). Assume that G(t) 
= IQ(t)l > 0. Let ko be the last (highest index) nonempty buffer in the system. By 
Proposition 4.2, dko(t) = do+l(t) = * = dK(t). Since buffer ko is nonempty at time 
t, we have Tko(t) = 1. On the other hand, we have 

To(t) = E mkdk(t)=dK(t) E mk. 
kEHko kEHko 
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4 

FIGURE 2. A reentrant line considered by Lu and Kumar. 

FIGUJRE 2. A reentrant line considered by Lu and Kumar. 

Therefore by Proposition 4.2 we have dko(t) = * = dK(t) = A where 

1 = 
Ek E Hk0mk 

Let 

A 1 
A= 

maxi i... {E ec C(i)ml)' 

Then by (1.7), A > A > 1, and so we have shown that for all regular time points at 
which G(t) = IQ(t)l > 0, G(t) < 1 - A < 0. By Lemma 2.2, the system will empty at 
the latest by time 8 = IQ(0)l/(A - 1) and stay empty thereafter. o 

REMARK. This theorem was also proved recently by Kumar and Kumar (1994). 

5. Lu-Kumar example. Consider the reentrant line pictured in Figure 2. The 
condition (1.7) now reads 

(5.1) pi = ml + m4 < 1 and P2 = m2 + m3 < 1. 

Lu and Kumar (1991) studied this network, and showed that for deterministic arrivals 
and services and a particular choice of the parameters, the priority policy that gives 
higher priority to classes 2 and 4 is unstable even though (5.1) holds. The following 
theorem characterizes the stability region for the priority policy used by Lu and 
Kumar. 

THEOREM 5.1. Assume that (5.1) is satisfied. There exists an unstable work-conserv- 
ing policy for the fluid network if and only if 

(5.2) m2 + m4 > 1. 

REMARK 1. As we shall see in the proof, this theorem exactly characterizes the 
region of the parameters for which the Lu and Kumar priority policy will possess a 
stable fluid model. Furthermore, the theorem also states that in the region in which 
the Lu and Kumar priority policy has a stable fluid model, every work conserving 
policy will have a stable fluid model. We call such a region a global stability region. In 
particular, we see from this theorem that the stability region of the Lu and Kumar 
policy is the smallest among all work conserving policies. 

REMARK 2. It is an open problem to determine the stability region for FIFO 
discipline. 

PROOF OF THEOREM 5.1. The proof consists of two unrelated parts. In the first 
part we demonstrate that the fluid model of the Lu and Kumar policy is unstable if 
(5.2) holds. In the second part we show that all work conserving fluid models are 
stable, if m2 + m4 < 1 holds. 
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/ i-m > 1 
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cycle , 

cycle 1-2+ 
- cycle 

t 

FIGURE 3. The dynamics of a divergent Lu-Kumar fluid network. The four different shadings in a cycle 
represent fluids in four buffers. The fluid level in a buffer is the distance between the upper boundary and 
the lower boundary of the shaded region. 

PART I. Assume that (5.2) holds. We consider the Lu and Kumar priority policy 
that gives classes 2 and 4 higher priorities. Assume that the fluid model starts with 
Q(0) = (1, 0, 0, ). One can construct a solution Q = {Q(t), t > 0} to the fluid model 

satisfying (1.8)-(1.12) and (4.4), and write (Q(), T(O)) explicitly. Figure 3 is a graphical 

representation of the dynamics of such a solution. It shows the diverging cycles 
described in this proof. Here we list the changes of state at certain times. At 
t= 1/(t~l- 1), 

Q(tl) = (0, (/A - A2),tl,/x2tl,0). 

At t2 = 
1/(2- 1), 

Q(t2) = 
(0, 0,1/(1 -m2),0). 

At t3, where t3 -t2 = 
m3/( 

- 
m2), 

Q(t3) = (t3 
- t2, 0, 0, ( - )(t3 

-- t2)). 

At t4, where t4 - = m4/(1 - m2), 

Q(t4) = 
(m4/(1 

- 
m2), ,0, 0). 
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Note that t4 = (m2 + m4)/(1 - m2). By a scaling argument, we have 

Q(s,,) = ((m4/(1 - m2)) ,0,0,00), where 

s, = -s,,i + (m4/(1 - m2))'" (m2 + m4)/(1 - m2). 

It is obvious that if m2 + m4 > 1, as n -o oo 

Sn 
- O0 IQ(s,,)l 

-- oo 

If m2 + m4 = 1, one obtains a periodic behavior, 

Q(n/(l - m2)) = (1,0,0,0). 

In either case, this solution is unstable and so the fluid model for this priority policy 
is unstable. At the time points s,,, IQ(s,,)l exhibits linear growth: 

IQ(s,)l - IQ(s,_)l m2 + m4 - 1 
Sn 

- 
Sn-1 m2 + m4 

As seen in Figure 3, the time points s,, are local minima of IQ(t); at the local maxima 
(such as the point t2), the linear growth rate is (m2 + m4 - 1)/m4. 

REMARK 3. Consider again Figure 3. Note that by backwards extrapolation we can 
find a point T* which is singular: While the fluid network is empty at T*, we found a 
solution Q(-) that is nonempty and divergent for t > T*. Notice that Q(t) 0O, 
t > T* is obviously also a solution. The non-uniqueness of solutions to the fluid 
equations suggests that a small change of initial configuration may cause the original 
network to follow drastically different sample paths. Such phenomena have been 
observed by Whitt (1993) for the FIFO Lu-Kumar network. 

PART II. Now we assume that (5.2) does not hold, that is m2 + m4 < 1. Let 

(5.3) Gl(t) = 1Q (t) + (1 - 01)Q(t), 

(5.4) G(t) = 02Q2(t) + (1 - 0)Q3(t) 

We are going to show that for an appropriate choice of 0 < 0i < 1, i = 1, 2, G1(t) and 
G2(t) satisfy the conditions (a) and (b) in Lemma 3.2 and therefore 

G(t) = max{Gl(t),G2(t)} 

satisfies the condition in Lemma 2.2. 
We start with conditions (b). If W2(t) = 0 then, 

G2(t) = Ql(t) < Ql(t) + (1 - 02)Q4(t) = GI(t). 

If W(t) = 0 then, 

Gi(t) = (1 - 01)(Q2(t) + Q3(t), 

G2(t) = Q2(t) + (1 - 2)3(t) 

and we can assure G1(t) < G(t) by taking 1 - 06 < 1- 02. Hence condition (b) 
holds if 02 < 01. 
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Consider now condition (a). It follows from (1.8) that 

Gl(t) = G1(O) + t - 61 p1xT1(t) - (1 - 61) jx4T4(t), 

G2(A)= G2(O) + t - 62 p2T2(t)2T (1 - 62)A3TAO, 

and taking derivatives, at all regular points (that is almost surely) 

G1(t) = I - 01p11(t) - (1- - 0,04MO 

G2(t) = - 02pA2T2(t) - (1 - 02)pA3T3(t). 

If W1(t)> 0, then by work conservation, T@t) + T4(t) = 1. Hence if we choose 
ml < 61 < 1 - m4 then 6, pl > 1, and (1 - O,)d4> 1, and we get 

Gl(t) ? -min{61pal - 1,(1 - 01) A4 - 1) < 0. 

Similarly, if W2(t)> 0, a choice m2 < 02 < I - m3 implies 

G2(t) ? -min{62pA2 - 1,(1 - 62) A3 - 1) < 0. 

Let 

51 = (1 - Ml - M4)/2, 

82 = (1 - M2 - MO/2, 

83 = (1 - M2 - m4)/3. 

By our assumptions, al, 82, 83 are all positive, and the choice 

ol = I - M4- min{ 81, 83), 

62 = m2 + min{ 82, 83) 

will satisfy all the conditions. o 

REMARK 4. Given the set of parameters ik, k = 1,...,4, we can set up a linear 
program for the values 61, 62: 

max E 

subject to e ?01 AL1 - 1, 
E ? (1 - 03)04 - 1, 

(5.5) E?2P2 1 f < 02 A2 Z ' 19 

E ? (1 - 02)pA3 - 1, 

62 ? 60. 

Under the stability conditions, the solution of this linear program will give us 
appropriate 61, 62 and an E > 0, so that the system starting from IQ(0)l = 1 will be 
guaranteed to empty by time t = 1/E, for all initial configurations, and all work 
conserving policies. The value 1/E is a sharp bound. 
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4 3 

1 2 2 

FIGURE 4. A network with two types of jobs. 

REMARK 5. Traditionally, test functions like G(t) constructed in the proof are 
called Lyapunov functions. The function G(t) is of the form G(Q1(t), Q2(t), Q3(t), 
Q4(t)), where G(q) is some piecewise linear function of q E R+4. Therefore G(t) is 
also called a piecewise linear Lyapunov function in Down and Meyn (1994b). The 
Lyapunov function constructed here is similar to the one used in Botvitch and 
Zamyatin (1992) for a queueing network with exponential distributions. 

REMARK 6. For the network pictured in Figure 4, we can also obtain the global 
stability region. Assume that 

P= ml + m4 < 1, 

P2 m2 + m3 < 1. 

There exists an unstable policy for the fluid model if and only if 

(5.6) m2 + m4 > 1. 

In fact, when (5.6) does not hold, one can find 0 < Gi < 1, i = 1, 2, such that 

G,(t) = G1(O) + ,01Q(t) + (1 - o,)(Q3(t) + Q4(t), 

G2(t) = G2(0) + 02Q3(t) + (1 - 02)(Ql(t) + Q2(t)) 

satisfies all the conditions in Lemma 3.2. Hence all work-conserving policies are 
stable when m2 + m4 < 1 (while this paper was being written up, Dumas (1993) 
proved the same result by using a more complicated method). On the other hand, if 
m2 + m4 2 1 and Q(0) = (1, 0, 0, 0), one can show that, using a priority policy giving 
classes 2 and 4 higher priorities, 

Q(m/((l - m4)(1 - m2)))= ( -m4 1 - m2 '0 ) 

Therefore the corresponding fluid model is unstable. 

REMARK 7. For the network pictured in Figure 4, Rybko and Stolyar (1992) 
established the stability region for FIFO discipline to be p, < 1, i = 1, 2. Kumar and 
Seidman (1990) considered a discrete deterministic version of this system, where they 
first introduced the priority discipline used above. 

6. Kelly-Type networks. In this section, we consider a special class of reentrant 
lines, where mean service times at different visits to a station are the same. Let 3i denote 
the mean service time at station i, i = 1,..., I. If all distributions are exponential and 
FIFO discipline is used at each station, Kelly (1979) proved that such networks are 
stable under the usual traffic condition (1.7). In fact, he was able to explicitly find the 
product form stationary distribution in this case. We use Kelly-type network here to 
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denote a network in which each visit of a customer to station i has mean service time 
3i, regardless of the class designations. 

THEOREM 6.1. Consider a two station Kelly-type reentrant network. Assume that 
routing does not have immediate feedback. Then any work-conserving policy is stable. 

PROOF. First let us consider the case when K = 2n. Let f3, i = 1, 2, be the mean 
service time at station i. Then the traffic condition (1.7) is reduced to 

(6.1) n3 < 1, i= 1,2. 

Let 

n 

G(t) = E Q2i((t) = G1(0) + nt - (1/11)Bl(t), 

n 

G2(t) = E Q I(t) 
= G2(t) + nt- (1/32)B2(t). 

1=1 

When W1(t) 0, we have 

n n 

Gl(t) = E Q- 2(t) E Q2(t) = G2(t) 
1=2 1=1 

On the other hand, when W2(t) = 0, 

n 

G2(t) E Q2-1(t) = Gl(t). 

One can check that all conditions in Lemma 3.2 on Gl(t) and G2(t) are satisfied. 
Hence G(t) = max{G(t),G2(t)} is a Lyapunov function satisfying conditions in 
Lemma 2.2. Therefore G(t) 0 and thus Q(t) 0 for t > 8 for some 8 > 0. The 
case when K = 2n + 1 can be proved similarly. o 

REMARK 1. Using the exact same proof, all work-conserving policies in the 
Kelly-type reentrant two station example of Dai and Wang (1993) are stable. 

REMARK 2. For a more general Kelly-type fluid network, not all work-conserving 
policies are stable. In fact, consider a two station reentrant line whose visitation 
sequence is 1, 2,2,2, 1, 1 and exit. Let all the mean service times be 0.3, and therefore 
the nominal workload at each station is 0.90. We consider a static priority discipline 
as defined in the following table. 

Station 1 Priorities Station 2 Priorities 

Highest class 6 class 3 
2nd class 5 class 2 
3rd class 1 class 4 

It is clear that by the priorities assiged, the network is equivalent to a Lu-Kumar 
network with four customer classes, where classes 2 and 4 have higher priorities, and 
the mean service times in the new network are ml = 0.3, m2 = 0.6, m3 = 0.3 and 
m4 = 0.6. It follows from Theorem 5.1 that such fluid network is unstable. 

This shows that the assumption of no direct feedback in Theorem 6.1 cannot be 
relaxed. Both the fluid model version and the queueing network version of this 
remark and the next one were recently proved by Gu (1995). 
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FIGURE 5. An unstable Kelly-type network. 

REMARK 3. Theorem 6.1 cannot be generalized to Kelly-type networks with more 
than two stations. In fact, if we add an additional station in the preceding network, 
we can construct a Kelly-type network without immediate feedback that is unstable. 
More specifically, consider a three station network whose visitation sequence is 
1, 2, 3,2,3,2,1, 3, 1 and exit, see Figure 5. Let 3i = 0.3, i = 1,2. Consider again a 
priority policy, where the priorities at stations 1 and 2 are kept the same as before 
and the priorities at station 3 are arbitrarily assigned. Then for sufficiently small /3, 
the scheduling policy is unstable. See Gu (1995) for a proof. 

Now we present a generalization of Theorem 6.1 for networks with a special 
topology. Consider a unidirectional ring network with J types of customers. Type j 
customers enter the network at some station i, and then follow a deterministic route 
with visitation sequence: i, i + 1,..., i + nj for some nj > 1. We use the convention 
that whenever i + k > I, station i + k is understood as station i + k - I. An exam- 
ple of a symmetric four station network is pictured in Figure 6. When J > 1, strictly 
speaking, this ring network is not a reentrant line as introduced in ?1. We assume 
that the mean service times at station i are all the same, equal to /3, i = 1,..., I. 

2 

2 
_ _ - 

3 1 

3 

4 
-4 

4 

FIGURE 6. A four station symmetric network. 

i l 
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Hence the network is of Kelly-type. We use o-(j, k) to denote the station number that 
type j customers visit at stage k of their route. We assume that the sequence of 
interarrival times and service times for type j customers satisfies conditions (1.2)-(1.4), 
j = ,...,J and furthermore these J sequences are independent. Let aj be the 
arrival rate of type j customers and let Ai be the nominal total arrival rate to station 
i, which is defined to be the summation of lij a over all types j that visit station i for 
lij times, i = 1,..., I. Assume that 

(6.2) p, Ai , l, < 1, 1...,I. 

THEOREM 6.2. Fluid models of the unidirectional ring network, under any work-con- 
serving policy, are stable, if (6.2) holds. 

REMARK. Tassiulas and Georgiadis (1993) proved an analogous theorem when 
interarrival times and service times are deterministically constrained as in Cruz 
(1991). Using Theorem 4.3 of Dai (1995), Theorem 6.2 implies that under (6.2) any 
work-conserving policy is positive Harris recurrent. 

PROOF OF THEOREM 6.2. Let Qjk(t) be the queue length of type j customers at 
stage k, 

k 

Qjk(t)= EQ (t), k= l, .. ,nj and j 1,...,J. 
1l1 

For station i, i = 1,..., I, define 

Gi(t) = E Qk(t) 
= Gi(O) + Ait - 1/piBi(t), 

(j, k); cr(-j, k)=i 

Wi(t) = i E Qjk(t). 
(j, k): o(j, k)=i 

Then W(t) > 0 implies Gi(t) = -(1/ i- Ai) < 0. Let 

G(t) = max{Gl(t),..., G(t)}. 

Assume that G(t) > 0 and t is a regular point for G(O) and Gi,()'s. Let i\,..., il be 
stations such that 

Gil(t) = Gi2(t) = = G,i(t) = G(t) 

and Gi(t) < G(t) for i q {i,,...., i}. Then 

G(t) = 
Gil(t) = = Gi,(t). 

If {ii, ... , il = {1, ..., I}, then there exists at least one station i such that Wi(t) > 0, 
and hence G(t) < - E, where 

= min (1/Pi - Ai). 
l1?i?I 

Otherwise, there exists an i (il, ..., il}. Choose i such that i e {il,..., i}, but 
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i + 1 E {il,..., il}. We claim that W+1(t) > 0. In fact, if W+1(t) = 0, we have 

Gi+l(t)= E Qjk(t) = E Qk-)(t) 
(, k): o-(j,k)-i+l (j,k): o'(j,k)=i+l 

< E Qjk(t) < G(t) 
(j, k): or(j, k)=i 

which is a contradiction to {il,..., i1}. But WI+1(t) = 0 implies 

G(t) = Gi+1(t) < -E. 

It follows from Lemma 2.2 that the fluid model is stable. o 

7. Concluding remarks. It is yet to be established that a queueing discipline is 
positive Harris recurrent if and only if the corresponding fluid model is stable. It is 
evident that fluid model is more tractable than the stochastic system itself in studying 
stability and instability of a queueing network. Admittedly to determine the stability 
region for any given discipline in a fluid model seems a formidable task, but it 
appears that the piecewise linear Lyapunov functions advanced by Botvitch and 
Zamyatin (1992) offer a promising approach. In constructing a quadratic Lyapunov 
function for queueing networks, Kumar and Meyn (1995a, 1995b) used a linear 
program approach to find the coefficients of the quadratic function. Their work was 
adapted to fluid networks by Chen (1995). For the three buffer reentrant lines, their 
quadratic Lyapunov function cannot determine the exact stability region, where our 
piecewise linear Lyapunov functions yield a sharp stability region. It would be 
interesting to compare in general the quadratic function approach to Kumar and 
Meyn (1995a, 1995b) and Chen (1995) with some generalization of the Botvitch- 
Zamyatin's approach. For preliminary work in this direction, readers are referred to 
recent work by Down and Meyn (1994a, 1994b) and Dai and Vande Vate (1995a, 
1995b). 

Acknowledgement. The research of the first author supported by NSF grants 
DMS-9203524 and DDM-9215233, and two grants from the Texas Instruments 
Corporation. The research of the second author supported by NSF grants DDM- 
8914863 and DDM-9215233, and the fund for the promotion of research at the 
Technion. We are grateful to Bruce Hajek and Leandros Tassiulas for helpful 
discussions on Theorem 6.2. We thank Vincent Dumas for sending us a paper by 
Botvich and Zamyatin. We also thank an anonymous referee for many helpful 
remarks. 

References 
Baccelli, F. and S. Foss (1994). Stability of Jackson-type queueing networks, I. Queueing Systems: Theory 

and Applications 17 5-72. 
Baskett, F., K. M. Chandy, R. R. Muntz and F. G. Palacios (1975). Open, closed and mixed networks of 

queues with different classes of customers. J. ACM 22 248-260. 
Borovkov, A. A. (1986). Limit theorems for queueing networks. Theory of Probability and its Applications 31 

413-427. 
Botvich, D. D. and A. A. Zamyatin (1992). Ergodicity of conservative communication networks. Rapport de 

recherche 1772, INRIA. 
Bramson, M. (1994). Instability of FIFO queueing networks. Annals of Applied Probability 4 414-431. 
Chang, C. S., J. A. Thomas and S.-H. Kiang (1994). On the stability of open networks: a unified approach 

by stochastic dominance. Queueing Systems: Theory and Applications 15 239-260. 
Chen, H. (1995). Fluid approximations and stability of multiclass queueing networks I: Work-conserving 

disciplines. Annals of Applied Probability (to appear). 

133 



J. G. DAI AND G. WEISS 

Cruz, R. L. (1991). A calculus for network delay, part II: network analysis. IEEE Transactions of 
Information Theory 37 132-141. 

Dai, J. G. (1995). On positive Harris recurrence of multiclass queueing networks: A unified approach via 
fluid models. Annals of Applied Probability 5 49-77. 

and J. Vande Vate (1995a). The stability of two-station queueing networks. Preprint. 
and (1995b). The stability of two-station fluid networks. Preprint. 
and Y. Wang (1993). Nonexistence of Brownian models of certain multiclass queueing networks. 
Queueing Systems: Theory and Applications 13 41-46. 

Down, D. and S. Meyn (1994a). Piecewise linear test functions for stability of queueing networks. 
Proceedings of the 33rd Conference on Decision and Control 2069-2074. 

__ and (1994b). A survey of Markovian methods for stability of networks (preprint). 
Dumas, V. (1993). Harris ergodicity of a multiclass queueing network via its associated fluid model 

(preprint). 
Gu, J. M. (1995). Convergence and Performance for Some Kelly-like Queueing Networks, Ph.D. thesis, 

University of Wisconsin, Madison. 
Jackson, J. R. (1957). Networks of waiting lines. Oper. Res. 5 518-521. 
Kelly, F. P. (1979). Reversibility and Stochastic Networks, Wiley, New York. 
Kumar, P. R. (1993). Reentrant lines. Queueing Systems: Theory and Applications 13 87-110. 

and S. Meyn (1995a). Duality and linear programs for stability and performance analysis of queueing 
networks and scheduling policies. IEEE Transactions on Automatic Control (to appear). 

and __ (1995b). Stability of queueing networks and scheduling policies. IEEE Transactions on 
Automatic Control 40 251-260. 

and T. I. Seidman (1990). Dynamic instabilities and stabilization methods in distributed read-time 
scheduling of manufacturing systems. IEEE Transactions on Automatic Control AC-35 289-298. 

Kumar, S. and P. R. Kumar (1994). Fluctuation smoothing policies are stable for stochastic reentrant lines. 
J. Discrete Event Dynamic Systems: Theory and Appl. (to appear). 

Lu, S. H. and P. R. Kumar (1991). Distributed scheduling based on due dates and buffer priorities. IEEE 
Transactions on Automatic Control 36 1406-1416. 

Meyn, S. P. and D. Down (1994). Stability of generalized Jackson networks. Annals of Applied Probability 4 
124-148. 

_ and R. L. Tweedie (1993). Stability of Markovian processes II: Continuous time processes and sample 
chains. Adv. Appl Probab. 25 487-517. 

Rybko, A. N. and A. L. Stolyar (1992). Ergodicity of stochastic processes describing the operation of open 
queueing networks. Problems of Information Transmission 28 199-220. 

Seidman, T. I. (1994). 'First come, first served' can be unstable! IEEE Transactions on Automatic Control 39 
2166-2171. 

Sigman, K. (1990). The stability of open queueing networks. Stoch. Proc. Applns. 35 11-25. 
Stolyar, A. (1994). On the stability of multiclass queueing networks. Proceeding of the Second Conference 

on Telecommunication Systems-Modeling and Analysis, Nashville, March 22-27. 
Tassiulas, L. and L. Georgiadis (1993). Any work-conserving policy stabilizes the ring with spatial reuse 

(preprint). 
Wang, Y. (1993). Private communications. 
Whitt, W. (1993). Large fluctuations in a deterministic multiclass network of queues. Management Sci. 39 

1020-1028. 

J. G. Dai: School of Industrial and Systems Engineering and School of Mathematics, Georgia Institute of 
Technology, Atlanta, Georgia 30332-0205; e-mail: dai@isye.gatech.edu 

G. Weiss: Department of Statistics, The University of Haifa, Haifa, Israel; e-mail: gweiss@stat.haifa.ac.il 

134 


	p. 115
	p. 116
	p. 117
	p. 118
	p. 119
	p. 120
	p. 121
	p. 122
	p. 123
	p. 124
	p. 125
	p. 126
	p. 127
	p. 128
	p. 129
	p. 130
	p. 131
	p. 132
	p. 133
	p. 134

