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1. Introduction

The purpose of this paper is to investigate the stability, linear independence and

orthogonality of the integer translates of a refinable function. These concepts play an

essential role in the study of wavelet decompositions.

A locally integrable function φ is said to be refinable if it satisfies a refinement equation

φ =
∑
j∈ZZ

b(j)φ(2 · −j), (1)

where b : ZZ → C is a sequence and is called the mask for the refinement equation (1).

Throughout this paper we assume that φ is compactly supported and b is supported on a

finite set, i.e., b(j) = 0 except for finitely many j ∈ ZZ. The Fourier-Laplace transform of

φ is defined to be

φ̂(ζ) :=
∫

IR

φ(x)e−ixζ dx (ζ ∈ C).

Here and throughout this paper i denotes the imaginary unit
√
−1. Restricted to IR, φ̂

becomes the Fourier transform of φ.

As usual, for 1 ≤ p ≤ ∞, we denote by Lp(IR) the Banach space of all complex-valued

functions f for which

‖f‖p :=
(∫

IR

|f(x)|p dx
)1/p

<∞.

We denote by Lp
c(IR) the subspace consisting of all compactly supported functions in

Lp(IR). Analogously, let `p(ZZ) (1 ≤ p ≤ ∞) be the Banach space of all complex-valued

sequences a =
(
a(j)

)
j∈ZZ

for which

‖a‖p :=
(∑
j∈ZZ

|a(j)|p
)1/p

<∞.

We observe that L2(IR) is a Hilbert space with the inner product given by

〈f, g〉 :=
∫

IR

f(x)g(x) dx.

Let now φ be a function in L2
c(IR) satisfying the refinement equation (1). If φ has

orthonormal integer translates, i.e.,

〈φ(· −m), φ(· − n)〉 = δmn,
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where δmn is the Kronecker symbol, then with

ψ :=
∑
j∈ZZ

(−1)jb(1− j)φ(2 · −j),

the collection
{√

2jψ(2j ·−k) : j, k ∈ ZZ
}

forms an orthonormal basis of wavelets for L2(IR)

(see [13]).

It is well known that a function φ ∈ L2
c(IR) has orthonormal integer translates if and

only if ∑
k∈ZZ

|φ̂(ξ + 2πk)|2 = 1 for all ξ ∈ IR.

If φ further satisfies the refinement equation (1), then it is desirable to characterize the

orthogonality of the integer translates of φ in terms of the mask b. To this end, we take

Fourier-Laplace transforms of both sides of (1) and obtain

φ̂(ζ) = φ̂(ζ/2)b̃(e−iζ/2)/2 for all ζ ∈ C, (2)

where b̃(z) is the symbol of b:

b̃(z) :=
∑
j∈ZZ

b(j)zj , z ∈ C\{0}. (3)

Let

H(ζ) :=
∑
j∈ZZ

b(j)e−ijζ/2 = b̃(e−iζ)/2, ζ ∈ C. (4)

Then H is a 2π-periodic function. It was shown in [13], [7] and [12] that the following

conditions are necessary for φ to have orthogonal integer translates:

H(0) = 1, (5)

|H(ω)|2 + |H(ω + π)|2 = 1 for all ω ∈ IR. (6)

However, these conditions are not sufficient. A counterexample was provided in [7] and [12].

Let φ be the characteristic function of the interval [0, 3). Then φ satisfies the refinement

equation (1) with H(ω) = (1 + e−i3ω)/2 (ω ∈ IR), which meets the conditions (5) and (6).

But φ is not orthogonal to φ(· − 1).

A question naturally arises: Under what condition onH in addition to (5) and (6) does

φ have orthonormal integer translates? This problem has been investigated by Daubechies
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[7][8], Mallat [12] and Cohen [3][4]. In particular, Cohen[3] gave a condition on H which

is both necessary and sufficient for φ to have orthogonal integer translates. His result is

related to the concept of stability. Given a function φ ∈ L2
c(IR), we say that the integer

translates φ(· − j) (j ∈ ZZ) are stable, if there exist two positive constants A and B such

that for any sequence a ∈ `2(ZZ),

A‖a‖2 ≤ ‖
∑
j∈ZZ

a(j)φ(· − j)‖2 ≤ B‖a‖2. (7)

In other words, the integer translates of φ are stable if the collection {φ(· − j) : j ∈ ZZ} is

an unconditional basis for the subspace of L2(IR) generated by them. Cohen’s result can

be interpreted as follows: A refinable function φ with φ̂(0) = 1 has orthonormal integer

translates if and only if φ has stable integer translates and the corresponding function H

satisfies the condition (6). Thus the problem reduces to characterizing the stability of the

integer translates of a refinable function in terms of its mask.

Stability itself plays an important role in multiresolution analysis as introduced by

Mallat [12]. Given a refinable function φ ∈ L2
c(IR), let

Vj :=
{∑

k∈ZZ

a(k)φ(2j · −k) : a ∈ `2(ZZ)
}
, j ∈ ZZ.

Then the sequence (Vj)j∈ZZ forms a multiresolution approximation of L2(IR) if and only if

φ has stable integer translates. This result has been extended by Jia and Micchelli [10] to

functions in several variables.

Linear independence is a concept closely related to stability. This concept is useful

in constructing wavelet decompositions by some algebraic tools (see [14] and [10]). In

the next section we shall demonstrate that orthogonality implies linear independence, and

linear independence implies stability.

The main results of this paper are the characterizations of the stability, linear inde-

pendence and orthogonality of the integer translates of a refinable function in terms of

the zero distribution of the symbol of the mask. We shall also give several examples to

illustrate these results.

2. Stability and Linear Independence

In this section, we study the stability and linear independence of a compactly sup-

ported distribution in terms of its Fourier-Laplace transform.
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We may generalize the concept of stability as follows. Let φ ∈ Lp
c(IR) (1 ≤ p ≤ ∞).

We say that the integer translates φ(· − j) (j ∈ ZZ) are `p-stable, if there exist positive

constants Ap and Bp such that for any sequence a ∈ `p(ZZ),

Ap‖a‖p ≤ ‖
∑
j∈ZZ

a(j)φ(· − j)‖p ≤ Bp‖a‖p. (8)

In other words, the integer translates of φ are `p-stable if the collection {φ(· − j) : j ∈ ZZ}
is an unconditional basis for the subspace of Lp(IR) generated by them. Note that the

second inequality in (8) automatically holds for φ ∈ Lp
c(IR); hence only the first inequality

in (8) is significant. It is well known that φ ∈ L2
c(IR) satisfies (7) if and only if(

φ̂(ξ + 2πk)
)
k∈ZZ

6= 0 for any ξ ∈ IR, (9)

where 0 means the zero sequence on ZZ. It is less known that (9) is also equivalent to the

`p-stability of the integer translates of φ ∈ Lp
c(IR) for any p, 1 ≤ p ≤ ∞. For this, see [9]

and [10].

We observe that the condition (9) does not depend on p. Moreover, (9) does not

require that φ ∈ Lp
c(IR). Indeed, if φ is a compactly supported distribution, then its

Fourier-Laplace transform φ̂ is an entire function on C. Thus we may say that a compactly

supported distribution φ has stable integer translates if its Fourier transform φ̂ satisfies

the condition (9).

To introduce the concept of linear independence, we denote by `(ZZ) the linear space

of all complex-valued sequences on ZZ, and consider the subspace N(φ) of `(ZZ) given by

N(φ) := {a ∈ `(ZZ) :
∑
j∈ZZ

a(j)φ(· − j) = 0}.

If N(φ) is trivial, i.e., N(φ) = {0}, then we say that the integer translates of φ are linearly

independent. Let

K(φ) := {z ∈ C\{0} : (zj)j∈ZZ ∈ N(φ)}. (10)

When φ is a compactly supported continuous function, Dahmen and Micchelli [5] showed

that N(φ) is trivial if and only if K(φ) is empty. Ron [15] extended their result to the case

in which φ could be a compactly supported distribution and observed that eiζ ∈ K(φ) if

and only if
(
φ̂(ζ + 2πk)

)
k∈ZZ

= 0. Thus their result can be stated as follows: The integer

translates of φ are linearly independent if and only if(
φ̂(ζ + 2πk)

)
k∈ZZ

6= 0 for any ζ ∈ C. (11)
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Note that (11) is equivalent to K(φ) = ∅, while (9) is equivalent to K(φ) ∩ T = ∅, where

T is the unit circle {z ∈ C : |z| = 1}. Since φ is a distribution on IR, we deduce from

[15, Proposition 2.1] that there is a Laurent polynomial p on C such that

K(φ) = {z ∈ C\{0} : p(z) = 0}.

The Laurent polynomial p is nonzero as long as φ is not identically zero. This shows that

K(φ) is a finite set unless φ is identically zero.

Comparing (11) with (9), we see that linear independence implies stability. Moreover,

if φ ∈ L2
c(IR) has orthonormal integer translates, then these integer translates are linearly

independent. To see this, let a be a sequence on ZZ such that f :=
∑

j∈ZZ a(j)φ(· − j) = 0.

Then by the orthonormality, we have

a(j) = 〈f, φ(· − j)〉 = 0 for all j ∈ ZZ.

The function φ given below is an example of a refinable function whose integer translates

are linearly independent but not orthogonal:

φ(x) =

{ 1 + x, if −1 ≤ x ≤ 0;
1− x, if 0 < x ≤ 1;
0, elsewhere.

Admittedly, the inequality (8) does not make any sense when φ is not a function

in Lp(IR). However, it is convenient and useful to consider distribution solutions to the

refinement equation (1). For example, as was pointed out by Strang [16], the Dirac measure

δ satisfies the refinement equation (1) with the mask b given by b(j) = 2δ0j . In general,

Daubechies [8] proved that if
∑

j∈ZZ b(j) = 2, i.e., H(0) = 1, then the infinite product

∞∏
k=1

H(ζ/2k)

converges uniformly on compact sets to an entire function f(ζ) on C for which there exist

positive constants A, C and an integer N ≥ 0 such that

|f(ζ)| ≤ C(1 + |ζ|)NeA|Imζ| for all ζ ∈ C.

Then by the Paley-Wiener-Schwartz theorem, f is the Fourier-Laplace transform of some

compactly supported distribution φ1. From the construction of φ1, we see that φ̂1(0) = 1

and

φ̂1(ζ) = H(ζ/2)φ̂1(ζ/2) (ζ ∈ C).

5



Therefore φ1 satisfies the refinement equation (1). Moreover, any solution φ of (1) satisfies

φ̂(ζ) = φ̂(0)φ̂1(ζ) = φ̂(0)
∞∏

k=1

H(ζ/2k) (ζ ∈ C).

In particular, φ̂(0) 6= 0 unless φ̂ is identically zero.

3. Main Results

In this section we state our main results and give several examples to illustrate them,

leaving the proof to the next section.

To state our results we need to recall Euler’s theorem from number theory ( e.g., see

[11, Theorem 3.10]). Euler’s theorem says that if q and m are relatively prime integers,

m > 1, then

qϕ(m) ≡ 1 (mod m),

where ϕ is the Euler function, i.e., ϕ(m) is the number of positive integers ≤ m which are

relatively prime to m. Let h be the smallest positive integer such that

qh ≡ 1 (mod m).

Then h is called the order of q (mod m), and is denoted by ordmq. It is well known that

ordmq divides ϕ(m).

The following three theorems establish criteria for a refinable distribution to have

stable, linearly independent, or orthogonal integer translates. In these theorems we assume

that b is a finitely supported sequence on ZZ with
∑

j∈ZZ b(j) = 2, b̃(z) is the symbol of

b as given in (3), and φ is the distribution solution to the refinement equation (1) with

φ̂(0) = 1.

Theorem 1. The integer translates of φ are stable if and only if the symbol b̃(z) satisfies

the following two conditions:

(1◦) b̃(z) does not have any symmetric zeros on the unit circle T ;

(2◦) For any odd integer m > 1 and a primitive mth root ω of unity, there exists an

integer d, 0 ≤ d < ordm2, such that b̃(−ω2d

) 6= 0.

Remark 1. With h := ordm2 we have 2h ≡ 1 (mod m), and so ω2h

= ω. Thus the condi-

tion (2◦) can be restated as follows: There exists an integer d ≥ 0 such that b̃(−ω2d

) 6= 0.
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Remark 2. The conditions (1◦) and (2◦) are easy to check if one knows the zero distri-

bution of the symbol b̃(z). Usually, the zeros of b̃(z) are preassigned.

Theorem 2. The integer translates of φ are linearly independent if and only if the symbol

b̃(z) satisfies the condition (2◦) of Theorem 1 and the following condition: b̃(z) does not

have any symmetric zeros in C\{0}.

Theorem 3. The distribution φ is in L2
c(IR) and has orthogonal integer translates if and

only if the symbol b̃(z) satisfies the condition (2◦) of Theorem 1 and the following condition:

|b̃(z)|2 + |b̃(−z)|2 = 4 for all z ∈ T. (12)

Remark 3. The condition (12) is equivalent to (6).

Before proving these theorems, we give several examples to illustrate them.

Example 1. Let φn := χ[0,n)/n, where n is a positive integer and χ[0,n) is the characteristic

function of the interval [0, n). Then φn satisfies the refinement equation (1) with b̃(z) =

1+zn. If n is an even integer, then b̃ has symmetric zeros on the unit circle. If n is an odd

integer bigger than 1, then with ω = ei2π/n, b̃(−ωm) = 0 for all integers m. This shows

that the integer translates of φn are not stable except for the case n = 1. Note that when

n is odd, the symbol b̃(z) satisfies the condition (12).

Example 2. (This example also appeared in [4, Chap. 2, Corollary 2.1], where a different

argument was used.) Let H be defined as in (4). It was proved by Mallat [12 , Theorem 2]

that φ has orthogonal integer translates provided that H satisfies (5),(6) and the following

condition:

H(ξ) 6= 0 for ξ ∈ [−π/2, π/2].

Under the restriction that b is finitely supported, we can strengthen Mallat’s result as

follows: If H satisfies (5) and (6), and if

H(ξ) 6= 0 for ξ ∈ [−π/3, π/3],

then φ has orthogonal integer translates. To see this, we let ω = e−iξ be a primitive mth

root of unity for some odd integer m > 1. If 2π/3 ≤ |ξ| ≤ 4π/3, then either ξ − π or ξ + π

lies in the interval [−π/3, π/3], hence

b̃(−ω) = 2H(ξ − π) = 2H(ξ + π) 6= 0
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by the assumption. If |ξ| ≤ 2π/3, then 2π/3 ≤ 2d|ξ| ≤ 4π/3 for some integer d > 0; hence

b̃(−ω2d

) 6= 0. Therefore, by Theorem 3, φ has orthogonal integer translates.

Example 3. Let b be the sequence given by its symbol

b̃(z) = 2(
1 + z

2
)3

1 + 2z2

3
.

Let φ be the unique solution to (1) with the mask b as given above satisfying φ̂(0) = 1.

Then φ actually is a continuous function. To see this, we observe that for ξ ∈ IR,

|φ̂(ξ)| =
∣∣ ∞∏
k=1

[
b̃(e−iξ/2k

)/2
]∣∣ ≤ | sin(ξ/2)/(ξ/2)|3.

Thus the function given by ξ 7→ ξφ̂(ξ) (ξ ∈ IR) is in L1(IR), hence the derivative φ′ is in

L∞(IR). This shows that φ is continuous. Moreover, by Theorem 1, φ has stable integer

translates. But, by Theorem 2, the integer translates of φ are linearly dependent, since

b̃(z) has symmetric zeros ±i/
√

2.

4. Proof of the Main Results

To prove Theorem 1 we need a lemma. Its proof employs [1, Lemma 6.6].

Lemma 1. Let φ be a nonzero compactly supported distribution satisfying the refinement

equation (1) with
∑

j∈ZZ b(j) = 2, and let K(φ) be as given in (10). Suppose that b̃(z)

does not have any symmetric zeros in C\{0} (resp. on the unit circle T ). Then z ∈ K(φ)

(resp. z ∈ K(φ)∩T ) only if z is a primitive mth root of unity for some odd integer m > 1.

Proof: Pick z0 = eiζ0 ∈ K(φ). Then

φ̂(ζ0 + 2kπ) = 0 for all k ∈ ZZ.

In particular, z0 6= 1, because φ̂(0) 6= 0. By (2) we have that for all k ∈ ZZ,

0 = φ̂(ζ0 + 4kπ) = φ̂(ζ0/2 + 2kπ)b̃(e−iζ0/2)/2 (13)

and

0 = φ̂(ζ0 + 2π + 4kπ) = φ̂(ζ0/2 + π + 2kπ)b̃(−e−iζ0/2)/2. (14)

By the hypothesis, b̃(z) does not have any symmetric zeros in C\{0}; hence at least one

of b̃(e−iζ0/2) and b̃(−e−iζ0/2) is nonzero. If z0 = eiζ0 ∈ T , then ζ0 ∈ IR, so the above
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argument is valid under the weaker condition that b̃(z) does not have any symmetric zeros

on the unit circle T . This observation together with (13) and (14) tells us that either(
φ̂(ζ0/2 + 2kπ)

)
k∈ZZ

= 0

or (
φ̂(ζ0/2 + π + 2kπ)

)
k∈ZZ

= 0.

In other words, either eiζ0/2 or ei(ζ0/2+π) is inK(φ). This shows that there exists z1 ∈ K(φ)

such that z2
1 = z0. Repeating this process, we can find a sequence (zn)n=0,1,... in K(φ)

such that z2
n = zn−1 (n = 1, 2, . . .). But K(φ) is a finite set. Hence there must be integers

r, s, 0 ≤ r < s such that zr = zs. Write ω = zs. Then

ω2s−r

= zr = zs = ω.

Note that ω 6= 1, for otherwise z0 = ω2s

would equal 1. From the above equation on ω we

conclude that ω is a primitive mth root of unity for some odd integer m > 1, and therefore

so is z0 = ω2s

.

On the basis of Lemma 1, Theorem 2 can be easily derived from Theorem 1. To

see this, let φ satisfy the conditions of Theorem 2. Then the symbol b̃(z) does not have

any symmetric zeros in C\{0}, hence K(φ) is a subset of the unit circle T by Lemma 1.

But Theorem 1 tells us that K(φ) ∩ T is empty, therefore K(φ) is empty; that is, φ has

linearly independent integer translates. Moreover, Theorem 3 also follows immediately

from Theorem 1. Indeed, if φ satisfies the conditions of Theorem 3, then it satisfies those

of Theorem 1, because (12) implies the condition (1◦) of Theorem 1. Thus φ has stable

integer translates, and because of (12) and the fact that φ̂(0) = 1 it has orthonormal

integer translates. We are now in a position to prove Theorem 1.

Proof of Theorem 1: First, it was proved in [2, Theorem 2.1] that the condition (1◦)

is necessary. For reader’s convenience, we include the proof here. Suppose that b̃(z) has

symmetric zeros on the unit circle, say

b̃(e−iω) = b̃(−e−iω) = 0

for some ω ∈ IR. Then for any integer k we have

φ̂(2ω + 4kπ) = φ̂(ω + 2kπ)b̃(e−iω)/2 = 0
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and

φ̂(2ω + (4k + 2)π) = φ̂(ω + (2k + 1)π)b̃(−e−iω)/2 = 0.

This shows that the integer translates of φ are not stable.

Second, we show that the condition (2◦) is also necessary for φ to have stable integer

translates. Suppose to the contrary that for some odd integerm > 1 there exists a primitive

mth root ω such that

b̃(−ω2d

) = 0 for all integers d ≥ 0.

Then ω has the form e−i2nπ/m, where n is an integer relatively prime to m. We claim that

for all integers k

φ̂(2nπ/m+ 2kπ) = 0. (15)

To prove (15), we pick an integer k and write n + km in the form 2pq, where p is a

nonnegative integer and q is an odd integer. We observe from (2) that

φ̂(2nπ/m+ 2kπ) = φ̂(2p+1qπ/m) = φ̂(qπ/m)
p∏

j=0

[
b̃(e−i2jqπ/m)/2

]
.

Hence in order to prove (15) it suffices to show that b̃(e−iqπ/m) = 0. For this purpose, we

invoke Euler’s theorem to find an integer r > p such that 2r ≡ 1 (mod m). It follows that

q ≡ 2rq ≡ 2r−p(2pq) ≡ 2r−pn (mod m).

In other words, q − 2r−pn = m` for some integer `. The integer ` must be odd, for q is

odd, while 2r−pn is even. From this we see that

b̃(e−iqπ/m) = b̃(−e−i2r−pnπ/m) = b̃(−ω2d

) = 0,

where d = r − p− 1. This completes the proof of the necessity part.

Third, we prove that the conditions (1◦) and (2◦) are sufficient for φ to have stable

integer translates. We claim that if b̃(z) does not have any symmetric zeros on the unit

circle T , and if m and n are two relatively prime integers with m > 1 being odd, then

ei4πn/m ∈ K(φ) =⇒ ei2πn/m ∈ K(φ) and b̃(−e−i2πn/m) = 0. (16)

To this end, we observe that ei(2πn/m+π) is not an odd root of unity, hence by Lemma 1 it

does not belong to K(φ). This shows that there exists an integer k such that

φ̂(2πn/m+ π + 2kπ) 6= 0. (17)
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Since ei4πn/m ∈ K(φ), we have

φ̂(4πn/m+ 2jπ) = 0 for all j ∈ ZZ. (18)

By (2) we have

φ̂(4πn/m+ (4k + 2)π) = φ̂(2πn/m+ π + 2kπ)b̃(−e−i2πn/m)/2.

This together with (17) and (18) yields

b̃(−e−i2πn/m) = 0.

But b̃(z) does not have any symmetric zeros on the unit circle, hence it follows that

b̃(e−i2πn/m) 6= 0.

Invoking (2) again, we see that for all j ∈ ZZ,

0 = φ̂(4πn/m+ 4jπ) = φ̂(2πn/m+ 2jπ)b̃(e−i2πn/m)/2.

It follows that for all integers j,

φ̂(2πn/m+ 2jπ) = 0,

which shows that ei2πn/m ∈ K(φ). Thus the claim (16) has been proved.

Let us now finish the proof of the sufficiency part. It suffices to prove that K(φ)∩T is

the empty set. If K(φ)∩T were nonempty, then by Lemma 1, it would contain a primitive

odd root of unity, say ei2pnπ/m, where m and n are two relatively prime odd integers with

m > 1 and p is a positive integer. Let ω := e−i2nπ/m. Then ω is a primitive mth root of

unity. With h := ordm2, we have 2h ≡ 1(mod m). Hence

ei2p+hnπ/m = ei2pnπ/m ∈ K(φ).

Applying (16) to ei2p+hnπ/m repeatedly, we see that for 0 ≤ d < h,

b̃(−ω2d

) = b̃(−e−i2d+1nπ/m) = 0,

which contradicts the condition (2◦). This shows that K(φ) ∩ T is empty, as desired.

Final Remark. After this paper was submitted, we became aware that A. Cohen had

established a criterion for a refinable function to have orthonormal integer translates in

his thesis [4, Chap. 2, Theorem 2.2]. His result is very similar to Theorem 3 of this paper.

In this paper, however, we also characterized the stability and linear independence of the

integer translates of a refinable function, and clarified the relationship among stability,

linear independence and orthogonality.
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