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SYNOPSIS. For a standing animal to be statically stable, a vertical line through its centre of mass must
pass through the polygon of support defined by its feet. Statically stable gaits are possible for quadrupeds
but do not seem to be used. Physical and mathematical models have shown that bipedal gaits can be dy-
namically stable. Accelerations and decelerations of animals may be limited by muscle strength, by the
coefficient of friction with the ground or by considerations of stability. Cornering ability similarly may be
limited by strength or by the coefficient of friction. It may be faster to use a longer route involving corners
of larger radius than a shorter one with sharper corners.

STATIC STABILITY

A body is in equilibrium if the forces acting on it
are balanced, in which case it will be stationary or
move with constant velocity and angular velocity. The
equilibrium is stable if it returns to its initial condition
after a small displacement. For example, if I tilt and
release a table it falls back to its initial position on the
floor. A condition for stability of a structure resting on
the ground is that a vertical line through its centre of
mass must fall within the polygon formed by the
points of support on the ground. In the case of a table,
this is the rectangle (or triangle, in the case of a three-
legged table) of which the corners are the table’s feet.
Three is the minimum number of point supports re-
quired for stability, but a biped can be stable standing
on two or even on one foot because each foot contacts
the ground over a finite area, equivalent to a distri-
bution of points of support.

If a table is placed on too steep a slope, the vertical
line through its centre of mass will be moved outside
the polygon of support, and it will topple over. A wide
table can be tilted through a larger angle than a narrow
one of the same height, before this happens. Thus the
angle of displacement that can be tolerated depends on
the ratio of the dimensions of the triangle of support,
to the height of the centre of mass from the ground.
A mammal such as a horse, that stands with its left
and right feet close together, has to control transverse
movements of its centre of mass much more precisely
than a reptile such as a tortoise, that stands with its
feet far apart. Bipeds with small feet also need to keep
displacements within narrow limits. The slight move-
ments made by standing people, due to involuntary
sway of the body, have been monitored by experiments
in which subjects stood on force plates. Harris et al.
(1982) found that the point of intersection with the
ground, of the vertical line through the centre of mass
of a standing human adult, usually remains within a
circle of diameter about 25 mm (or a little more for
elderly subjects). Thus we have no difficulty in keep-
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ing it within the polygon of support, between the feet.
Alexander (1971) argued that very small animals are
more susceptible than large ones, to displacement by
gusts of wind, so that animals of the size range of
insects may need to stand with their feet well apart
(though the problem could be overcome by adhesive
feet). Also, submerged walkers such as crabs may need
to place their feet well apart because of the danger of
being overturned by water movements (Martinez,
2001).

Nashner and Woollacott (1979) investigated the re-
sponse of human subjects to unexpected displacements
by standing them on a pair of force plates, one foot
on each plate, and moving one plate suddenly up or
down. Two possible effective responses would have
been to flex the knee on the side of the higher foot, or
to have adducted one leg and abducted the other. The
results of the experiment showed that the former re-
sponse was generally used. Papantoniou et al. (1999)
point out that for animals that stand with their left and
right feet close together, with their knees not too
straight, this is the option that requires less angular
movement of the joints. However, humans stand with
their knees straighter than any animal.

A quadruped can be stable with only three feet on
the ground. By moving its feet one at a time, it can
maintain static stability throughout the gait cycle.
However, the order of movement of the feet must be
chosen in such a way as to ensure that the vertical line
through the centre of mass is always kept within the
triangle of support. The options depend on the duty
factor, the fraction of the duration of the stride for
which each foot is on the ground. The condition that
there must always be at least three feet on the ground
implies that a statically stable walk requires a duty
factor of at least 0.75. McGhee and Frank (1968)
showed that for duty factors in the range 0.75 to 0.83
only one sequence of leg movements is consistent with
static stability. They called the statically stable gait that
uses this sequence a regular crawl. The sequence is
left fore, right hind, right fore, left hind etc. This is
the sequence generally used by walking mammals
(Hildebrand, 1976). Duty factors above 0.83 allow two
other sequences, but even at these high duty factors
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FIG. 1. Graphs of the vertical components of the forces on the feet of a quadruped, against time, for three gaits. (a) maintains equilibrium
throughout the stride, (b) minimizes unwanted displacements for an animal with very slow muscles, and (c) minimizes unwanted displacements
for an animal with slightly faster muscles. From Alexander (1982).

the regular crawl gives a larger margin of stability (that
is to say, it allows the centre of mass to be kept further
from the edges of the triangle of support).

Despite this theoretical advantage, animals use the
regular crawl rarely, if at all. Duty factors of 0.75 or
more have been recorded for toads, turtles and (at very
low speeds) hippopotamus, but are not generally used
by other animals (Barclay, 1946; Walker, 1971; Hil-
debrand, 1976). Both toads and turtles have more than
one foot off the ground, at some stage in the stride.

Alexander (1981) considered an animal walking
with stride frequency f, so that the duration of each
stride was 1/f. If the animal fell freely for this time,
starting from rest, it would fall a distance g/2f2. If its
legs had length h, the distance it could fall before hit-
ting the ground would be a little less than h. Thus the
dimensionless parameter g/2f2h can be used as a mea-
sure of the need for an animal to maintain equilibrium
as it walks. This parameter is high for animals with
short legs, moving slowly. It is 1 or less for a dog
galloping, about 5 for a dog walking very slowly, and
about 200 for turtles such as Geoemyda walking at
their normal (very slow) speed. This implies that dogs
and other mammals can tolerate much larger depar-
tures from equilibrium than turtles can.

Jayes and Alexander (1980) asked why, despite their
apparent need to keep departures from equilibrium
small, turtles and tortoises use gaits in which there are,
at times, only two feet on the ground. They pointed
out that an animal using the regular crawl, preserving
equilibrium throughout the stride, would have to exert
forces on the ground as shown in Figure 1a. Notice
that large, instantaneous changes of force would be
required whenever a foot was lifted or set down. These

animals have very slow muscles, incapable of chang-
ing force abruptly, which (apparently as a concomitant
of their slowness) work very efficiently (Woledge,
1968). Alexander and Jayes (1980) presented a math-
ematical model of turtle walking in which the slowness
of the muscles was represented by requiring the feet
to exert forces that rose and fell like a half cycle of a
cosine curve. They varied the times at which feet were
set down and calculated the amplitudes of unwanted
displacements (pitch, roll and vertical movements).
They found that unwanted displacements were mini-
mized by using the gait represented in Figure 1b, in
which diagonally opposite feet move together and
there are, at times, only two feet on the ground. They
then allowed for slightly faster muscles by adding a
sine term to the cosine one, allowing force patterns to
be skewed. Unwanted displacements were then mini-
mized by the gait shown in Figure 1c, in which di-
agonally opposite feet move slightly out of phase with
each other and there are again times when only two
feet are on the ground. Figure 1c is very like records
of turtles walking, both in the relative phases of the
feet and in the skewed shapes of the graphs of force
against time.

DYNAMIC STABILITY

In statically stable gaits, the forces on the walker
are in equilibrium at all stages of the stride. A gait of
which this is not true may nevertheless be dynamically
stable, in the sense that the walker returns automati-
cally to its normal pattern of movement, following a
disturbance. Dynamic stability can be conferred by
feedback control, that is by a control system that de-
tects unwanted movements and takes action to correct
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FIG. 2. Diagrams showing the forces on a vehicle (a) accelerating and (b) turning towards the left of the diagram.

them. For example, Raibert’s one-legged hopping ro-
bot was stabilized by feedback control. Raibert (1986)
reproduced records of this robot being disturbed by a
sharp push, while hopping in place. It returned to its
desired position within a few seconds.

McGeer (1990a, 1993) examined the interesting
possibility that a passive walking system may be dy-
namically stable. He started by considering a tradi-
tional wooden toy that walks passively down slopes,
rocking from side to side as it goes. He designed and
built a planar, non-rocking version of this toy. He per-
formed experiments with it and analyzed its motion
mathematically, and showed that its motion was stable
throughout its speed range. Kuo (1999) extended the
analysis to the three-dimensional case in which roll is
possible. He showed that the model was unstable in
roll, but could be stabilized by several alternative feed-
back control systems. He argued that control of lateral
foot placement (step width) would be a particularly
favourable mechanism. Bauby and Kuo (2000) con-
firmed by experiment that walking humans control roll
in this way.

McGeer (1990b) presented a mathematical model of
running by a biped with telescoping legs containing
springs. The model would run passively downhill and
could be stabilized by making the stride frequency suf-
ficiently high, but McGeer argued that active stabili-
zation was desirable.

ACCELERATION AND DECELERATION

Acceleration and deceleration are important com-
ponents of manoeuvrability, but very few data are
available for walking or running. Human sprinters
leave the starting blocks with accelerations of about
10 m/sec2 (Ballreich and Kuhlow, 1986). Elliott et al.
(1977) filmed lions hunting in East Africa, and cal-
culated equations describing the movements both of

the lions and of their prey. These equations imply, as
would be expected, that acceleration fell in the course
of a run, as speed increased. It can be calculated from
them that the initial accelerations of the animals, start-
ing from rest, were 9.5 m/sec2 for the lions, but only
5.0, 5.6 and 4.5 m/sec2, respectively, for zebra, wil-
debeest and Thomson’s gazelle.

High accelerations and decelerations require large
forces, so may be limited by the strengths of muscles.
Alternatively, they may be limited by friction with the
ground, or by a problem of stability. The vertical force
exerted on the ground by an animal of mass m, aver-
aged over a complete stride, must average mg, where
g is the gravitational acceleration. If the animal is ac-
celerating with acceleration a, the horizontal compo-
nent of the force on the ground must average ma.
Thus, for the acceleration to be possible, the effective
coefficient of friction of the feet with the ground must
be at least a/g. I use the adjective ‘‘effective’’ to in-
dicate the possibility that the foot’s purchase on the
ground may be augmented by means that are not strict-
ly frictional such as spiked running shoes, claws or
irregularities in the ground. Nigg (1986) reports mea-
surements of the coefficients of friction of sport shoes
with artificial surfaces. The coefficients ranged from
around 0.3 for a surface covered with loose granules
to around 1.5 for artificial grass. Cartmill (1979) mea-
sured the coefficients of friction of prosimian primates’
feet with a board by tilting the board and observing
the angle at which they started to slide. Most of the
coefficients lay between 1 and 2. When bare footed
humans were tested in the same way, most of the co-
efficients lay between 0.5 and 1.0.

The problem of stability that may limit acceleration
and deceleration is illustrated by Figure 2a. The ve-
hicle has mass m and acceleration a, so its weight is
mg (g is the gravitational acceleration) and the hori-
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zontal component of the force exerted by the wheels
on the ground is ma. The wheelbase length is L and
the centre of mass is a distance s in front of the points
of contact of the rear wheels with the ground, at a
height h from the ground. The vertical components of
the forces on the wheels are F for the front wheels and
(mg 2 F) for the rear wheels. By taking moments
about the points of contact of the rear wheels with the
ground

FL 1 mah 2 mgs 5 0 (1)

Thus F must fall as a increases. The condition for F
to be positive is

a , gs/h (2)

The force F cannot be negative, because the tires do
not adhere to the road. If an acceleration greater than
the limit set by condition 2 is attempted, the front
wheels will leave the road and the vehicle will perform
a back somersault. A similar condition applies to de-
celeration. If the absolute value of the deceleration is
greater than g(L 2 s)/h, the rear wheels will leave the
road. It is well known that a cyclist who brakes too
hard will be thrown over the handlebars. Automobiles
are designed with the centre of mass sufficiently low
to avoid this danger.

The same principle applies to legged animals. Lee
et al. (1999) showed that the fraction of body weight
supported by the fore feet of trotting dogs increases
when they decelerate and falls when they accelerate.
However, the conditions for stable acceleration and de-
celeration are more complicated for a quadruped than
for a wheeled vehicle. If we ignore the small move-
ments allowed by a vehicle’s suspension, the point of
contact of a wheel with the ground is in a fixed po-
sition, relative to the centre of mass. In contrast, an
animal’s feet move posteriorly, relative to the centre
of mass, while they are on the ground. Thus s and (L
2 s) change in the course of a step. A quadruped might
increase the effective value of s for acceleration by
delaying the exertion of peak force until late in the
step, when the hind foot is well behind the hip joint.
It might increase the effective value of (L 2 s) during
deceleration by exerting peak force early in the step,
when the fore foot is in front of the shoulder. In the
experiments on dogs, such adjustments were found to
be less important than the redistribution of weight be-
tween the fore and hind feet.

Humans and other bipeds must lean forward while
accelerating and backward while decelerating.

CORNERING

An animal running along a curved path has an ac-
celeration towards the centre of curvature, at right an-
gles to its path. More specifically, an animal running
with speed v along a path of radius r has a transverse
acceleration v2/r. If its mass is m, a transverse force
mv2/r is required to give it this acceleration. Figure 2b
represents a vehicle seen in front view, turning towards
the left of the diagram. The centre of mass is midway

between the left and right wheels, which are a distance
w apart. Vertical components of force F9 and (mg 2
F9) act on the wheels on the inside and outside of the
bend, respectively. By taking moments about the point
of contact of the outer feet with the ground

2F9w 1 mv h/r 2 mgw/2 5 0 (3)

and for F9 to be positive
2v /r , gw/2h (4)

If a turn involving a greater transverse acceleration v2/
r than this is attempted, the vehicle will roll over. Au-
tomobiles are designed with low centres of mass to
ensure that this does not happen.

Animals can eliminate the danger of rolling over in
a curve, by leaning into the curve. Animals that have
a low ratio of trackway width to centre of mass height
(the equivalent of the ratio w/h) must lean even on
quite gentle curves. This is the case for most large
mammals. For example, footprints of horses show that
the trackway width is only 10–20% of the estimated
height of the centre of mass. In an extreme case, if the
trackway width were zero (the left and right feet were
set down along a single line), the animal would have
to lean in at an angle arctan(v2/rg) to the vertical. Turn-
ing cyclists must also lean at this angle.

Alexander (1982) suggested that the cornering abil-
ity of running animals might be limited by the danger
of skidding. An animal running at speed v round a
curve of radius r will be able to exert the necessary
transverse force only if the coefficient of friction m of
its feet with the ground is at least v2/rg.

2m $ v /rg (5)

Greene (1985), who investigated the ability of human
runners to run in circles, made the alternative sugges-
tion that cornering might be limited by the ability of
the musculoskeletal system to generate the required
forces. Consider an athlete of mass m running as fast
as possible (at speed v) round a curve of radius r. Let
the duration of a half stride be T (this is the time from
setting down one foot to setting down the other). Let
the step length be l (this is the distance travelled while
a foot is on the ground). Make the plausible but un-
certain assumptions that T and l are both constant. Let
the mean vertical and horizontal components of force
while a foot is on the ground be Fv, Fh respectively.
The mean values of these components of force over a
complete half stride are mg, mv2/r. The foot is on the
ground for time l/v out of the half stride duration T.
Hence

F 5 mgTv/l (6)v

3F 5 mv T/rl (7)h

The athlete’s maximum speed when running in a
straight line is v0, and at this speed the force on his or
her feet is mgTv0/l. The resultant force on the ground
in cornering cannot exceed this, according to Greene’s
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FIG. 3. The maximum speeds at which adult humans can run on curves of different radii. The broken line shows predictions from equation
5, taking m 5 0.6; the continuous line shows predictions from equation 9 for a subject for whom v0 5 8 m/sec; and the points show observed
speeds, from McMahon (1984), for the same subject.

FIG. 4. A circuit around two obstacles (filled circles). A model
presented in the text predicts the radius for the circular segments,
that minimizes the running time.

hypothesis, so when the athlete runs as fast as possible
in a curve of radius r

2 2 2F 1 F 5 (mgTv /l)v h 0 (8)

By substituting 6 and 7 in 8 and rearranging so that
both sides of the equation are dimensionless

2 3 2 0.5rg/v 5 (v/v ) /[1 2 (v/v ) ] (9)0 0 0

Figure 3 shows graphs of maximum speed against ra-
dius calculated both from equation 9 (taking v0 5 8
m/sec) and from equation 5 (taking m 5 0.6). It also
shows empirical points for a man running in spiked
shoes on grass. Equation 9 fits the data for large radii
well, but when the radius is small equation 5 gives the
better fit. The same is true for runners on concrete

(Fig. 2b of Greene, 1985). One possible hypothesis is
that speed on curves may be limited by ability to exert
the required forces, if the radius is large; and by fric-
tion if the radius is small. Experiments on surfaces
giving different coefficients of friction would be need-
ed to test this hypothesis.

Barrel racing is a sport that tests the cornering abil-
ity of horses. Competitors are required to ride as fast
as possible round a course that loops around oil barrels
placed about 30 m apart. Photographs show horses
leaning at about 458 to the vertical as they round the
barrels, suggesting that their transverse accelerations
must be approximately equal to the gravitational ac-
celeration, and that the coefficient of friction with the
ground must be at least 1.0.

A simple model suggested by barrel racing will help
to clarify the principles of fast manoeuvring. Suppose
that it is required to ride repeatedly, as fast as possible,
around a circuit marked by two barrels a distance 2s
apart (Fig. 4). We will assume that the path chosen
consists of two semicircles of radius ps joined by two
straight segments of length 2s(1 2 p). Speed on the
curves is constant and as high as possible for a curve
of that radius. On the straights, the contestant accel-
erates with acceleration a for the first half of the dis-
tance, and decelerates with acceleration 2a for the sec-
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ond half. The assumption of constant acceleration im-
plies that the course is too short for the contestant to
approach the maximum speed that would be attainable
in a longer straight sprint. What radius should be used
on the curves, to minimize the time required for a
circuit of the course?

We will assume that the transverse acceleration has
the same value in fast cornering on any radius. As we
have seen, this would be consistent with cornering be-
ing limited by the coefficient of friction with the
ground. Further, we will make what appears to be a
reasonably realistic assumption, that this transverse ac-
celeration is equal to the maximum forward accelera-
tion a. An animal running with speed v on a curve of
radius r has transverse acceleration v2/r, so the speed
on the curves is (aps)1/2. The total length of the two
semicircles is 2pps, so the total time spent on the two
curves is

1/2t 5 2p(ps/a)curves (10)

The animal enters each straight at speed (aps)1/2, and
accelerates with acceleration a over the first half of the
straight, a distance s(1 2 p). The time required to cov-
er this distance, taccel, can be calculated from the stan-
dard equation for constant acceleration

1/2 2s(1 2 p) 5 (aps) t 1 (1/2)at .accel accel

The solution of this quadratic equation is
1/2 1/2t 5 (1/a){2(aps) 6 [aps 1 2as(1 2 p)] } (11)accel

The ambiguous sign must be made positive, to make
the time positive. An equal time is needed for the sec-
ond half of each straight, when the animal is deceler-
ating.

The total time T required for one circuit of the
course is given by

T 5 t 1 4tcurves accel

1/25 2p(ps/a)
1/2 1/21 (4/a){2(aps) 1 [aps 1 2as(1 2 p)] }

1/2 1/2 1/25 2(s/a) [(p 2 2)p 1 2(2 2 p) ] (12)

We wish to find the value of p that minimizes T.

1/2 21/2 21/2dT/dp 5 2(s/a) {0.5(p 2 2)p 2 (2 2 p) } (13)

This is zero when p 5 0.49; the optimum radius for
the turns is expected to be almost one quarter of the
distance between the posts. It must be stressed that one
of the assumptions, on which this conclusion depends,
is that the distance between the posts is short.

A transverse force applied at the centre of mass is
sufficient to make a moving vehicle or animal travel
along a curve, but a moment about the centre of mass
is needed when turning is initiated, to give it the angular
velocity needed to keep it facing in the direction of
travel. In automobiles, this is done by steering the front
wheels so that they are no longer aligned with the initial
direction of travel; the resulting transverse force on the
front wheels provides the required moment.

Stability of cornering is an important issue in vehicle
design (see for example Ellis, 1994). The crucial con-
cepts are oversteer and understeer. As speed is increased
on a turn of constant radius, the steering angle must be
reduced on an oversteering vehicle, and increased on
an understeering vehicle. These steering adjustments are
needed because a lateral force on a wheel makes it slip
sideways over the ground as it rolls forward. Under-
steering vehicles are stable in cornering at all speeds;
that is to say, the vehicle tends to return to its original
radius of turn after disturbance by (for example) a gust
of wind or an irregularity in the road surface. Over-
steering vehicles, however, become unstable above a
critical speed. We do not seem to know enough about
animal turning to establish whether any analogous phe-
nomenon can make the steering of animals unstable.
However, it may be worth noting that a vehicle steered
by its front wheels is less likely to oversteer if its centre
of mass is well forward, so that most of the weight of
the body is carried by the front wheels. The front legs
of quadrupedal mammals typically support about 60%
of body weight (Alexander and Jayes, 1983).

Our understanding of the stability and manoeuvra-
bility of land vertebrates is disappointing, compared to
our knowledge of other aspects of their locomotion.
There is a particular need for more research on dy-
namic stability in walking and running. Some superb
work has been done in this field, but it has focused on
bipedal robots that move (more or less) like people,
and has paid little attention to quadrupedal gaits.
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