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Abstract: In this paper, we revisit a delay differential equation. By using the semidiscretization
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1. Introduction

Delay differential equations are primarily used to describe dynamical systems that
depend on current and past historical states and have important applications in physics,
chemistry, engineering, economics, biology and other fields. Due to the extensive use
of delay differential equations in real life, the study of their stability theory has received
much attention [1–4].

Recently, Li et al. [5] studied the chaotic behavior of the following delay difference equation:

x(n + 1) = αx(n) + βx(n − k)(1 − x2(n − k)), (1)

where α and β are nonzero real parameters and k is a positive integer.
Equation (1) can be viewed as a discrete analogue of the following one-dimensional

(or 1D) delay differential equation using the forward Euler scheme [6,7]

dw
dt

= −aw(t) + bw(t − τ)(1 − w2(t − τ)), (2)

where a > 0, b is a real parameter and τ > 0 is a delay. Equation (4) is a special case of the
following Mackey–Glass equation

dw
dt

= −aw(t) + f (w(t − τ)), (3)

where a > 0, τ > 0 is the delay and f is a 1D nonlinear function. Many applications
of Equation (5) have been found in physics [8], population dynamics [9], physiology [1],
medicine [2], neural control [3] and economics [4].

For the discrete equations of Equation (4), there should be many different forms.
Correspondingly, there are also many problems to be considered. Although some good
results about the chaotic behavior of discrete Equation (1) have been presented in [5], some
other problems of the discrete version of Equation (4), such as bifurcation problems, have
not been considered yet. In this paper, we will mainly study the bifurcation problems of its
discrete version.
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For a complicated ordinary differential equation, generally speaking, it is impossible to
solve it accurately. Therefore, one often considers using a computer to derive its numerical
solutions, which leads one to consider its corresponding discrete model. There are many
different discrete methods and ways for an ordinary differential equation. We will utilize
the method of semidiscretization to Equation (4) instead of the forward Euler scheme used
in [5–7]. For related results for the method of discretization, refer to [8,9].

First, without loss of generality, we can assume τ = 1 in Equation (1). In fact, by

taking s = t
τ , and letting w(t) = w(sτ)

△
= η(s), Equation (1) is transformed into

dη

ds
= −aτη(s) + bτη(s − 1)(1 − η2(s − 1)). (4)

By resetting a and b by a
τ and b

τ respectively, Equation (4) can be rewritten as

dη

ds
= −aη(s) + bη(s − 1)(1 − η2(s − 1)). (5)

This is just (1) in the case of τ = 1.
Suppose that [s] denotes the greatest integer not exceeding s. Consider the following

change rate of (5) at the integer point

dη

ds
= −aη([s]) + bη([s − 1])(1 − η2([s − 1])). (6)

Obviously, the system (6) has piecewise constant arguments. For s ∈ [0,+∞), a
solution η(s) of (6) possesses the following features:

(1) η(s) is continuous on [0,+∞);

(2) dη(s)
ds exists everywhere when s ∈ [0, ∞) except for the points s ∈ {0, 1, 2, 3, · · · }.

For any s ∈ [n, n + 1) with n = 0, 1, 2, · · · , integrating (6) from n to t, one obtains the
following equation:

η(s)− η(n) =
(
− aη(n) + bη(n − 1)(1 − η2(n − 1))

)
(s − n). (7)

Letting s → (n + 1)− in (7) leads to

η(n + 1) = (1 − a)η(n) + bη(n − 1)(1 − η2(n − 1)), (8)

which can be viewed as a discrete form of (5), a delay difference equation.
We are now in a position to change the delay difference Equation (8) into a discrete

system. Using the transformation {
xn = η(n − 1),

yn = η(n),
(9)

one has {
xn+1 = yn,

yn+1 = (1 − a)yn + bxn(1 − x2
n),

(10)

which is a discrete version of system (1), and where the parameters

(a, b) ∈ Ω = {(a, b) ∈ R2|a > 0, b ∈ (−∞, ∞)}.

In this paper, our main aim is to consider the dynamics of the discrete system (10),
namely, for its bifurcation problems except its stability. There have been some studies that
consider Neimark–Sacker bifurcation in discrete mathematical models [8,9], whereas less is
known about Neimark–Sacker bifurcation occurring in delay difference equations. In order
to study the stability and local bifurcation of fixed points, we need a definition [8] and a
key lemma [6]. For readers’ convenience, we list them in the Appendix A.
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The rest of this paper is organized as follows. In Section 2, we analyze the existence
and stability of fixed points of system (10). In Section 3, we discuss its Neimark–Sacker
bifurcation. In Section 4, we present some numerical simulations to illustrate the cor-
responding theoretical analysis results. Finally, we discuss and draw some conclusions
in Section 5.

2. Existence and Stability of Fixed Points

In this section, we study the existence and stability of fixed points of system (10).
For the existence of fixed points of system (10), one can easily derive the following results.

Theorem 1. For the existence of fixed points of system (10), the following statements are valid.

1. If b < 0, then system (10) has three fixed points E0 = (0, 0), E− = (−
√

1 − a
b ,−

√
1 − a

b )

and E+ = (
√

1 − a
b ,
√

1 − a
b );

2. If 0 ≤ b ≤ a, then system (10) has a unique fixed point E0 = (0, 0);

3. If b > a, then system (10) has three fixed points E0 = (0, 0), E− = (−
√

1 − a
b ,−

√
1 − a

b )

and E+ = (
√

1 − a
b ,
√

1 − a
b ).

The Jacobian matrix of system (10) at a fixed point E(x, y) is

J(E) =

(
0 1

b(1 − 3x2) 1 − a

)
.

The characteristic polynomial of the Jacobian matrix J(E) reads as

F(λ) = λ2 − pλ + q with p = 1 − a, q = b(3x2 − 1). (11)

Because of the symmetry of E+ and E−, it follows from the characteristic polyno-
mial (11) that their characteristic polynomials are the same. Thus, in the sequel, it suffices
for one to only consider the properties of E0 and E+. Now, we formulate some results for
the stability of the fixed points E0 and E+ in the following theorems.

Theorem 2. The following statements about the fixed point E0 = (0, 0) of system (10) are true.

1. If a > b, then,

(a) for a < 2 − b,

i. when b < −1, E0 is a sink;
ii. when b = −1, E0 is non-hyperbolic;
iii. when b > −1, E0 is a a source;

(b) for a = 2 − b, E0 is non-hyperbolic;
(c) for a > 2 − b, E0 is a saddle;

2. If a = b, then E0 is non-hyperbolic;
3. If a < b, then,

(a) for a < 2 − b, E0 is a saddle;
(b) for a = 2 − b, E0 is non-hyperbolic;
(c) for a > 2 − b, E0 is a source.

Proof. The Jacobian matrix of system (10) at E0 = (0, 0) is

J(E0) =

(
0 1
b 1 − a

)
.
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The characteristic polynomial of the Jacobian matrix J(E0) can be written as

F(λ) = λ2 − pλ + q with p = Tr(J(E0)) = 1 − a, q = Det(J(E0)) = −b.

Note that F(1) = a − b and F(−1) = 2 − a − b.
When a > b, F(1) > 0. When a < 2 − b, F(−1) > 0. Therefore, for b < −1, q > 1.

It follows from Lemma A1 (i.1) that |λ1| < 1 and |λ2| < 1, so E0 is a sink. For b = −1,
q = 1. Lemma A1 (i.5) reads |λ1| = |λ2| = 1; therefore, E0 is non-hyperbolic. For b > −1,
q < 1, which reads |λ1| > 1 and |λ2| > 1 by Lemma A1 (i.4), so E0 is a source. When
a = 2 − b, F(−1) = 0, meaning −1 is one root of the characteristic polynomial; therefore,
E0 is non-hyperbolic. For a > 2 − b, F(−1) < 0, Lemma A1 (i.3) tells us that |λ1| < 1 and
|λ2| > 1, so E0 is a saddle.

When a = b, then F(1) = 0, meaning 1 is a root of the characteristic equation; therefore,
E0 is non-hyperbolic.

When a < b, F(1) < 0. If a < 2 − b, then F(−1) > 0, meaning |λ1| > 1 and |λ2| < 1 by
Lemma A1 (iii.2), so E0 is a saddle; if a = 2− b, then F(−1) = 0, meaning −1 is a root of the
characteristic equation; hence, E0 is non-hyperbolic. If a > 2 − b, then F(−1) < 0. In view
of Lemma A1 (iii.1), |λ1| > 1 and |λ2| > 1, so E0 is a source. The proof is complete.

Theorem 3. For b ∈ (−∞, 0)
⋃
(a,+∞), the positive fixed point E+ = (

√
1 − a

b ,
√

1 − a
b ) of

system (10) occurs. Moreover, the following statements are valid about the positive fixed point E+.

1. If b < 0, then,

(a) for a < b+1
2 , E+ is a saddle;

(b) for a = b+1
2 , E+ is non-hyperbolic;

(c) for a > b+1
2 , E+ is a source.

2. If b > a, then,

(a) for a < b+1
2 ,

i. when a < 2b−1
3 , E+ is a sink;

ii. when a = 2b−1
3 , E+ is non-hyperbolic;

iii. when a > 2b−1
3 , E+ is a source;

(b) for a = b+1
2 , E1 is non-hyperbolic;

(c) for a > b+1
2 , E1 is a saddle.

Proof. The Jacobian matrix of system (10) at E+ is given by

J(E1) =

(
0 1

3a − 2b 1 − a

)
.

We can express the characteristic equation of J(E1) as

F(λ) = λ2 − pλ + q where p = 1 − a, q = −3a + 2b.

Obviously, F(1) = 2(b − a) and F(−1) = 2(b − 2a + 1) = 4( b+1
2 − a).

When b < 0, F(1) < 0. If a < b+1
2 , then F(−1) > 0, meaning |λ1| > 1 and |λ2| < 1 by

Lemma A1 (iii.2), so E+ is a saddle; if a = b+1
2 , then F(−1) = 0, meaning −1 is a root of the

characteristic equation; hence, E+ is non-hyperbolic. If a > b+1
2 , then F(−1) < 0. In view

of Lemma A1 (iii.1), |λ1| > 1 and |λ2| > 1, so E+ is a source.
When b > a, F(1) > 0. For a < b+1

2 , F(−1) > 0. Thus, for a < 2b−1
3 , q > 1. It follows

from Lemma A1 (i.1) that |λ1| < 1 and |λ2| < 1, so E+ is a sink. For a = 2b−1
3 , q = 1.

Lemma A1 (i.5) reads |λ1| = |λ2| = 1; therefore, E+ is non-hyperbolic. For a > 2b−1
3 , q < 1,

which reads |λ1| > 1 and |λ2| > 1 by Lemma A1 (i.4), so E+ is a source.
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For a = b+1
2 , F(−1) = 0, meaning −1 is a root of the characteristic polynomial;

therefore, E+ is non-hyperbolic.
For a > b+1

2 , F(−1) < 0, Lemma A1 (i.3) tells us that |λ1| < 1 and |λ2| > 1, so E+ is
a saddle.

The proof is over.

3. Bifurcation Analysis

In this section, we focus on the bifurcation problem of system (10), namely, for its
Neimark–Sacker bifurcation by using the center manifold theorem and bifurcation theory
in [1–4]. For the discrete bifurcation results, also refer to [10–14] and the references cited
therein. It suffices for us to study system (10) at the positive fixed point E+. The conclusion
for system (10) at the negative fixed point E− is the same.

Suppose the parameters

(a, b) ∈ Ω+ = {(a, b) ∈ Ω|b ∈ (−∞, 0)
⋃
(a, ∞)},

ensuring the existence of the positive fixed point E+. Now let us consider (a, b) ∈ Ω+ and
a ∈ (0, b). Let a0 = 2b−1

3 .
When the parameter a goes through the critical value a0, it follows from Theorem 3

1(b) that the dimensions of the unstable manifold and stable manifold of system (10) at
fixed point E+ change. Therefore, system (10) may undergo a bifurcation at the fixed point
E+. Furthermore, at this time, system (10) has a pair of conjugate complex roots λ1 and λ2
satisfying |λ1| = |λ2| = 1. Thus, a phenomenon of Neimark–Sacker bifurcation may occur.
Now we analyze the process.

Take ln = xn −
√

1 − a
b and mn = yn −

√
1 − a

b . Then, system (10) reads as ln+1 = mn,

mn+1 = (3a − 2b)ln + (1 − a)mn − 3b
√

1 − a
b l2

n − bl3
n.

(12)

Choose the parameter a as bifurcation parameter. Give a small perturbation a∗ of
the parameter a around a0, i.e., a∗ = a − a0, with 0 < |a∗| ≪ 1. Then system (12) is
perturbed into(

ln+1
mn+1

)
=

(
0 1

−1 + 3a∗ 4−2b
3 − a∗

)(
ln

mn

)
+

(
0

−
√

3b(b + 1 − 3a∗)l2
n − bl3

n

)
. (13)

Denote the characteristic polynomial of the Jacobian matrix of the linearized equation
associated with system (13) as F(λ) = λ2 − p(a∗)λ + q(a∗), where

p(a∗) =
4 − 2b

3
− a∗, q(a∗) = 1 − 3a∗.

Then the two roots of F(λ) = 0 are

λ1,2(a∗) =
p(a∗)±

√
p2(a∗)− 4q(a∗)

2
.

Noticing the parameter vector (a, b) ∈ Ω+, it is not hard to derive 4q(a∗)− p2(a∗) > 0
when a∗ = 0 and b < 5 ( a∗ = 0 means 0 < a = a0 = 2b−1

3 . So, b > 1
2 ). Therefore,

λ1,2(0) =
p(0)± i

√
4q(0)− p2(0)
2

=
2 − b ± i

√
(b + 1)(5 − b)
3

.
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It is easy to obtain, for 0 < |a∗| ≪ 1,

|λ1(a∗)| = |λ2(a∗)| =
√

q(a∗),

and hence, (d|λ1(a∗)|
da∗

)∣∣∣
a∗=0

=
(d|λ2(a∗)|

da∗
)∣∣∣

a∗=0
= −3

2
< 0.

Moreover, it is obvious that λm
1,2(0) ̸= 1 for all m = 1, 2, 3, 4 for b ̸= 2. Thus, all of the

conditions for Neimark–Sacker bifurcation to happen are satisfied.
Now we are in a position to look for the normal form of system (13) when a∗ = 0.

Then system (13) can be regarded as(
ln+1

mn+1

)
=

(
0 1
−1 4−2b

3

)(
ln

mn

)
+

(
0

G(ln, mn)

)
, (14)

where

G(ln, mn) =−
√

3b(b + 1)l2
n − bl3

n.

It is easy to derive the two eigenvalues of the matrix A =

(
0 1
−1 4−2b

3

)
to be λ1(0)

and λ2(0) with corresponding eigenvectors ξ1 =

(
1

2−b
3

)
and ξ2 =

(
0

− 1
3

√
(b + 1)(5 − b)

)
.

Let T = (ξ1, ξ2), i.e.,

T =

(
1 0

2−b
3 − 1

3

√
(b + 1)(5 − b)

)
, then T−1 =

 1 0
2−b√

(b+1)(5−b)
−3√

(b+1)(5−b)

.

The transformation
(

ln
mn

)
= T

(
un
vn

)
brings system (14) to

(
un+1

vn+1

)
=

( 2−b
3 − 1

3

√
(b + 1)(5 − b)

1
3

√
(b + 1)(5 − b) 2−b

3

)(
un

vn

)
+

(
f (un, vn)

g(un, vn)

)
, (15)

where

f (un, vn) =0,

g(un, vn) =
−3√

(b + 1)(5 − b)
G(un,

2 − b
3

un −
1
3

√
(b + 1)(5 − b)vn)

=
3b√

(b + 1)(5 − b)

(
3

√
b + 1

3b
u2

n − u3
n
)
.

Furthermore,

f uu = f uv = f vv = f uuu = f uuv = f uvv = f vvv = 0,

guv =gvv = guuv = guvv = gvvv = 0,

guu =
18b√

3b(5 − b)
, guuu =

18b√
(b + 1)(5 − b)

.

Next, compute the quantity L that is used to judge the stability and direction of a
Neimark–Sacker bifurcation (see [1–4]):
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L = −Re
( (1 − 2λ1)λ

2
2

1 − λ1
ξ20ξ11

)
− 1

2
|ξ11|2 − |ξ02|2 + Re(λ2ξ21),

where

ξ20 =
1
8
[ f uu − f vv + 2guv + i(guu − gvv − 2 f uv)],

ξ11 =
1
4
[ f uu + f vv + i(guu + gvv)],

ξ02 =
1
8
[ f uu − f vv − 2guv + i(guu − gvv + 2 f uv)],

ξ21 =
1

16
[ f uuu + f vvv + guuv + gvvv + i(guuu + guvv − f uuv − f vvv)].

Some calculations display

ξ20 =
9bi

4
√

3b(5 − b)
, ξ11 =

9bi
2
√

3b(5 − b)
,

ξ02 =
9bi

4
√
−3b(5 − b)

, ξ21 =
9bi

8
√
(b + 1)(5 − b)

,

L =
−3(b2 + 4b + 5)

8(b + 1)
< 0.

Summarizing the above analysis, we have the following consequence.

Theorem 4. Assume the parameters a, b ∈ Ω satisfy b ∈ ( 1
2 , 2)

⋃
(2, 5) and a ∈ (0, b). Denote

a0 = 2b−1
3 . Then system (10) undergoes a Neimark–Sacker bifurcation at the positive fixed point E+

and the negative fixed point E−, respectively, when the parameter a varies in a small neighborhood
of a0. Moreover, an attracting invariant closed curve bifurcates from the positive fixed point E+ and
the negative fixed point E−, respectively, for a > a0.

4. Numerical Simulations

In this section, to illustrate our theoretical results obtained and reveal some new dy-
namical behaviors in the system (10), we present the bifurcation diagrams, phase portraits
and Lyapunov exponents for specific parameter values using Matlab software (R2023a).
For similar numerical simulation work, we refer readers to [6,8–14].

For the fixed point E+, choose the parameters a ∈ (0.5, 0.7), b = 1.4 and the initial values
(x0, y0) = (0.05, 0.05), (0.75, 0.75). From Figure 1a we can find that when a = a0 = 0.6 the
system (10) undergoes a Neimark–Sacker bifurcation. In order to bear out it, we take a near
0.6 and obtain Figures 1–4a–d, which illustrate the existence of Neimark–Sacker bifurcation
at the fixed point E+(

√
4/7,

√
4/7) ≈ (0.756, 0.756). Figure 2a–d mean that the fixed point

E+ is a stable attractor when a → 0.6+. Moreover, Figures 2a,b and 3a show the occurrence
of Neimark–Sacker bifurcation when a → 0.6−. Figures 3 and 4a–d illustrate that increasing
the value of a leads to a change of stability of the fixed point E+ and the occurrence of an
invariant closed curve around E+, which fits the results in Theorem 4. The spectrum of the
maximum Lyapunov exponent with respect to the parameter a ∈ (0.5, 0.7) when b = 1.4 is
presented in Figure 1b.
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(a) a ∈ (0.5, 0.7) (b) a ∈ (0.5, 0.7)

Figure 1. Bifurcation of system (10) in (a, x) plane and maximal Lyapunov exponent for b = 1.4.

(a) a = 0.600 (b) a = 0.603

(c) a = 0.606 (d) a = 0.609

Figure 2. Phase portraits for system (10) with b = 1.4 and different a when the initial value (x0, y0) =

(0.05, 0.05).

Remark 1. Figure 3a–d show that the bifurcated closed orbit is stable outside whereas Figure 4a–d
show that the bifurcated closed orbit is stable inside. Thus, the closed orbit bifurcated from E+ is
stable. This is in accord with our Theorem 4.

(a) a = 0.590 (b) a = 0.593

Figure 3. Cont.
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(c) a = 0.596 (d) a = 0.599

Figure 3. Phase portraits for system (10) with b = 1.4 and different a when the initial value (x0, y0) =

(0.05, 0.05) is outside the closed orbit.

(a) a = 0.590 (b) a = 0.593

(c) a = 0.596 (d) a = 0.599

Figure 4. Phase portraits for system (10) with b = 1.4 and different a when the initial value (x0, y0) =

(0.75, 0.75) is inside the closed orbit.

5. Conclusions

In this paper, we apply the semidiscretization method to a delay differential equation
considered in [5] and derive a delay difference equation. By using the bifurcation theory,
we mainly obtain some results for the Neimark–Sacker bifurcation of the discrete model.

Neimark–Sacker bifurcation is an important mechanic for one system to produce
complicated dynamical behaviors. The occurrence of a Neimark–Sacker bifurcation often
causes the system to jump from a stable window to chaotic states through periodic and
quasi-periodic states and triggers a route to chaos. We find this mechanic in the delay
difference equation. Whether or not there are other similar bifurcation problems, such
as flip bifurcation, fold bifurcation, etc., in other delay difference equations, and how to
find such bifurcations, will be an interesting and important topic and a direction worth
future study.
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Appendix A

Definition A1. Let E(x, y) be a fixed piont of system (10) with multipliers λ1 and λ2.

(1) If |λ1| < 1 and |λ2| < 1, a fixed point E(x, y) is called a sink, so a sink is locally asymptoti-
cally stable.

(2) If |λ1| > 1 and |λ2| > 1, a fixed point E(x, y) is called a source, so a source is locally
asymptotically unstable.

(3) If |λ1| < 1 and |λ2| > 1 (or |λ1| > 1 and |λ2| < 1), a fixed point E(x, y) is called a saddle.
(4) If either |λ1| = 1 or |λ2| = 1, a fixed point E(x, y) is called non-hyperbolic.

Lemma A1. Let F(λ) = λ2 + Bλ + C, where B and C are two real constants. Suppose λ1 and λ2
are two roots of F(λ) = 0. Then the following statements hold.

(i) If F(1) > 0, then

(i.1) |λ1| < 1 and |λ2| < 1 if and only if F(−1) > 0 and C < 1;
(i.2) λ1 = −1 and λ2 ̸= −1 if and only if F(−1) = 0 and B ̸= 2;
(i.3) |λ1| < 1 and |λ2| > 1 if and only if F(−1) < 0;
(i.4) |λ1| > 1 and |λ2| > 1 if and only if F(−1) > 0 and C > 1;
(i.5) λ1 and λ2 are a pair of conjugate complex roots and |λ1| = |λ2| = 1 if and only if

−2 < B < 2 and C = 1;
(i.6) λ1 = λ2 = −1 if and only if F(−1) = 0 and B = 2.

(ii) If F(1) = 0, namely, 1 is one root of F(λ) = 0, then the other root λ satisfies |λ| = (<,>)1
if and only if |C| = (<,>)1.

(iii) If F(1) < 0, then F(λ) = 0 has one root lying in (1, ∞). Moreover,

(iii.1) the other root λ satisfies λ < (=)− 1 if and only if F(−1) < (=)0;
(iii.2) the other root −1 < λ < 1 if and only if F(−1) > 0.
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