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aBstrRacT  The purpose of this paper 1s to analyze and optimize the behavior of the broadcast channel for a
packet transmussion operating in the slotted mode Mathematical methods of Markov chain theory are used to
prove the mherent mstability of the system If no control is applied, the effective throughput of the system will
tend to zero if the population of user termunals s sufficiently large Two classes of control policies are
examiuned, the first acts on admussions to the channel from active termmnals, and the second modifies the
retransmisston rate of packets In each case sufficient conditions for channel stability are given. In the case of
retransmission controls 1t 1s shown that only policies which assure a rate of retransmussion from each blocked
terminal of the form of f = 1/n, where n 1s the total number of blocked termunals, will yreld a stable channel It
ts also proved that the optimal policy which maximizes the maximum achievable throughput with a stable
channel 1s of the form f = (1 — A\)/n Simulations illustrating channel instability and the effect of the optimal
control are provided
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1. Introduction

Computer networks using packet switching techniques have been implemented [1, 5, 7,
11, 18, 19] in order to allow a large community of communicating users to share and
transmit data and utilize efficiently the excess computing power which may be available
at remote locations In this paper we are concerned with packet switching networks using
radio channels similar to the ALOHA system [1].

We consider a large set of terminals communicating over a single radio channel in such
a way that a packet s successfully transmitted only if 1ts transmission does not overlap 1n
time with the transmission of another packet; otherwise all packets being simultancously
transmitted are lost A terminal whose transmission 1s unsuccessful is said to be blocked ;
it has to repeat the transmission until it succeeds Either a termmal which is not blocked
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15 active or 1t 1s transmitting a packet. The operation of the system 1s shown schematically
in Figure 1, where the different state transitions of a terminal are shown. Since the only
means of communication between terminals is the channel itself, it is not easy to schedule
transmissions so as to avoid collisions between packets. It 1s also obvious that a termunal
would in no case transmit more than one packet simultaneously.

Various methods for controlling the transmission of packets have been suggested. The
simplest is to allow terminals to transmit packets at any instant of nme. The second
method, known as the slotted ALOHA scheme, has been shown to mcrease channel
throughput over the first method [2]. Here, time 1s divided into “slots” of equal
duration, each slot can accommodate the transmission time of one packet, and packets
are all of the same length Packet transmission is synchronized so that 1t initiates at the
beginning of a slot for any terminal and it terminates at the end of the same slot Other
schemes have been suggested elsewhere [20, 21]

Kleinrock and Lam [13] have discussed the stability problem of the slotted ALOHA
channel Their results, based on simulations and fluid approximations, indicate that the
channel becomes saturated if the set of terminals 1s very large, independently of the
arrival rate of packets to the channel, saturation being the phenomenon whereby the
number of blocked terminals becomes arbitrarily large. They also compute the expected
time to attain a given level of saturation In {14] policies designed to optimize the
throughput of the channel, defined as the expected number of successful transmissions
per slot, are presented.

The purpose of this paper 1s to give a theoretical treatment of some control policies
which can be applied to the broadcast channel in order to stabihize 1t and to maximize its
performance We first review the proof of instability in [8], extending it to a finite source
model taken in the limit as the total number of terminals becomes very large, and
showing that the channel instability implies that the equilibrium value of the throughput
1s zero. Two simple control policies are then presented, and necessary and sufficient
conditions for stability of the controlled channel are derived. Bounds for the equilibrium
value of the channel throughput with these policies are obtained. Problems related to the
practical implementation of the policies we propose here are discussed in [3, 4], where
an approach using stochastic approximation oriented algorithms 1s used and shown to
converge 1 practice to the optimal controls

2. Mathematical Model

A precise definition of stability can be considered only in the context of a model of the
behavior of the broadcast channel. In this section we present a model identical to the one
we considered 1n an earlier paper [8], except that we take into account here both fmite
and infinite source systems.
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Assuming that the slot, and the time necessary to transmit a packet, are of unit length,
we define N(k) as the number of blocked terminals at the instant when the kth (k = 0, 1,
2, ...) slot begins Let X, be the number of packets transmitted from the set of active
terminals during the kth slot, and denote by X; the number of blocked terminals
transmitting during the kth slot. In the infinire source model, (X;) 1s the sequence of
independent and identically distributed random variables with the common distnibution
given by

PriXy=1=c¢, 1=0.

In the finite source model, we let M denote the number of terminals in the system, and we
assume that the event (X, = ¢|N(k) = j) is independent of values of X, for ¢ < k; its
probability 1s given by

g,(n) = Pr(X, = J|N(k) = n) = (b1 — byk=n=

for 0 =j = M — n, where b is the probability that any one active terminal transmits a
packet during a slot.

For both models, we denote by f the probability that any one blocked terminal
transmits a packet during a slot. We then define

gn) = Pr(Yy = 1|N(k) = n), (1
where we assume that the event (Y, |N(k)) 1s independent of Y, for ¢ < k. Therefore
&) = OFra -, vl
and more particularly
gon) = (L = f), gi(n) = nf(l = f)"". 3

Definiion 1 The infinite source broadcast channel s unstable 1if for k — « the
probability Pr(N(k) <) — 0 for all fimite values of j, otherwise 1t 1s stable For the finite
source model, the system 1s unstable if the above condition holds as we let M — o, b —
0, M-b — d, where d is a constant.

The definition given here simply states that mstability exists if (with probability one)
the number of blocked terminals becomes mfinite as time tends to infinity

THEOREM 1. The broadcast channel 1s unstable for both the finite and infinite source
models.

Proor Let us first consider the infinite source model. The proof given here is
identical to the one we presented in [8]. Let p,(k) denote the probability that N(k) = n.
The following balance equation may be written for the infimte source model*:

polk +1) = gzpnﬁ(k)c} + Pas1(k)gi(n + Do
+ pak)(1 — g;(ﬂ))co + Pn(k)go(”)cl + pai (kN1 — go(n = De,.

To illustrate the interpretation of the right-hand side of (4), we note that the first term
covers the cases where two or more packets have been transmtted by the active
terminals during the kth slot and the second term covers the case in which exactly one
blocked terminal has transmitted while no active terminal has done so. Notice that {N(k);
k = 0,1, ...}1s a Markov chain and that 1t 1s aperiodic and irreducible. It 1s ergodic if an
invariant probability measure {p,: n = 0, 1, ...} exists satisfying (4) such that p,, > 0 for
alln and p, = lim,_,,, p,(k). To show that lim,_,.. Pr(N(k) <j) = 0 for all finite values ofj,
it suffices to show that the Markov chain representing the number of blocked terminals is
not ergodic Taking the limit of (4) and using p,, = lim,_,, p,(k), we obtain

4)

Pn = 2 PusC + Puri8i(n + 1o + palgo(n)e; — g1(n)c) — pu-igoln — Dey. (5)
J=0

! Equation (4) 1s valid for all n = 0 1f we adopt the rule that P(k) = 0, 1 <0
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Letting
N
Sv= 2 Pw (6)
we then have, for any N = 0,
N
Sy =Py &N + ey + pagoNey + Zo Sv—nCn (7)

or

N
Syl —co) = Z; Sy-nCy + Pur1&i(N + Deo + pugoN)e,

or equivalently

pu( = co) = pyar&i(N + 1)co + prgoN)e, (8)
But then, from (3) and (8), we have

Prer/Pn = (1= co = (L= fYe;) /(N + Df(1 = f)ey

for any nonnegative integer N. This result implies that the ratio (py.,/py) — © as N — oo
so the sum S, can exist only if py = 0 for all finite values of N — otherwise S., is divergent,
which cannot be the case when the py, N = 0, define a probability distribution. Thus the
Markov chain representing the number of blocked termnals is not ergodic, and the
broadcast channel under the infinite source assumption is unstable

Now consider the finite source model. Using the rule that p,(k) = 0 for: < 0, we find
that the balance equation for0 =n < M 1s

pulk + 1) = gzpn_,acm,(n — 1) + pusnak)gun + Dgoln + 1)

+ pak)(1 — g1(n))go(n) + palk)ge(n)g(n) + pu (k)1 — gon — 1))goln — 1)

Defining, for 0 < N < M, the sum Sy as n (6) for the fimte source model, we take the
limit of (9) and obtain

9)

N n
Su = pnigsN + DgolN + 1) + prgaN)g,s(N) + 2 Zpusgln =) (10
Notice first that since the Markov chain is aperiodic, irreducible, and fimite, 1t 1s
ergodic for each M < . Thereforep, >0, 0 <1 =M, ¥, p,=1. WithN=M -1,
(10) yields
M-2 n
Su-s = 2 2 Py @il = 1) + b pui[1 = (1= Y11 = py f(1 = [,

n=0 ;=0

or, as can be easily verified,

(Pu/pu-0) = b [1 = (1 = fY1]/A = f*

Therefore as M — o« this ratio tends to infinity, which can only imply that p,,_, ~ 0. But
the argument is valid for any py/py_;, 0 < N < M. Therefore as M — « we have py —
0, 0 < N < M, and py, — 1. Thus result proves the theorem for the case of the finite
source O

In the context of this study another measure of interest is the throughput of the
broadcast channel. Indeed this throughput may well be the primary performance mea-
sure for the system under consideration

Definition 2 The condutional throughput D,(k) of the broadcast channel is the
conditional probability that one packet is successfully transmitted during the kth slot
given that N(k) = n.
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Clearly the conditional throughput cannot exceed 1. It can also be defined as the
expected value of the number of successful transmissions during the kth slot conditional
on there being n blocked terminals at the beginning of that slot

Definttion 3. The throughput of the broadcast channel 1s defined as

D =lm 2 D,(k)pu(k)

The conditional throughput 1s D, (k) = ceg,(n) + c,g.(n) for the infinite source model;
for the finite source model we replace ¢, and ¢, by g,(n) and g,(n), respectively. This
quantity is obviously independent of k; therefore in the following we simply write D,
instead of D, (k).

THEOREM 2. For f > 0, the throughput of the broadcast channel 1s 0 for the infinite
source model, and for the finite source model, as we let M — © b — 0, M-b — d.

The proof 1s straightforward and 1s not presented here.

3. Certain Channel Control Policies

In [14] various control policies for the broadcast channel have been classified, roughly
speaking, into three groups: policies that regulate access to the channel from the active
terminals; those that regulate access from the blocked terminals; and mixed policies In
this section we discuss two pohicies in some detail and give a definition of stability 1n each
case. We see that this definition will be a variant of, or 1dentical to, the definition given
above. The first control policy that we describe typifies the first group of policies,
although 1t may well be impossible to implement, the second policy is of the second
group and has a better chance of being realizable.

3.1 A THresHoLD CoNTROL Poricy  An aput control policy as defined by Lam [14]
is one that limits access to the channel from the active terminals depending on the
present state and past history of the channel Borrowing the termmology of Markov
decision theory (10], we say that a policy 1s stationary 1f 1t depends only on the present
state of the system.

The first policy we present is described 1n Figure 2 If the number of blocked terminals
exceeds 0, the threshold, an active terminal that wishes to initiate the transmission of a
packet, is not allowed to transmit and joins the impeded set; if the threshold is not
exceeded, the transmussion takes place as 1n the uncontrolled channel As soon as the
number of blocked terminals decreases below ¢ (this can only take place in steps of one),
an impeded termunal joins the blocked set, thus the number of blocked terminals can be
less than # only 1f there are no impeded terminals The retransmission rate of blocked
terminals is constant. We refer to this scheme as the threshold control policy.?

In this context stability must be defined in terms of the number of impeded or blocked
terminals

Definition 4 Let U(k) be the number of blocked or impeded terminals at the
beginning of the kth slot for the threshold control policy. The infinite source channel,
with this control scheme, is unstable if, in the hmit k — ~, Pr{U(k) < j} is zero for all
finite values of j; for the finite source model the same defimition 1s used with the
stipulation thatb — 0 and M-b — d.

The following equations, which must be satisfied by the equilibrium probabilities p,,
for the number of blocked or impeded terminals at the beginning of a slot, may be
derived

n=<g:
n

Pn = Ep"—]cj + puniAq( + Dey + palcigoln) — cogi(n)] — pu—igoln — ic,.

=0

n>0+1.

4 Lam’s [14] input control policy differs from ours 1 that he assumes that packets are lost
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] n
Pn = EOPJ Cp—y + ; pJ[Cn-J(l —A)+ cn—J-HA] + PatiCoA,
= 1=0+1

where A = A (n) = g,(0) if n > 0, and A,(n) = g,(n) 1f n =< 6.

=6+ 1:
01
Poct = Por[CiA + co(1 — A)] + pgr2coA + poci(1 — A) + E DiCoss—1-
1=0

We obtain the following result concerning the stability of the threshold control policy.
For simplicity let A = g,(6).

THEOREM 3. Ifthe expected arrval rate N = 32, ic, of active packets for the infinute
source model 1s less than A, then the broadcast channel with a stationary threshold control
policy 1s stable.

The proof 1s given in Appendix 1.

The threshold control policy may be quite difficult to implement in practice, even
though 1t 1s conceptually very simple It is effectively not easy to fill up the impeded set

3.2 A RerransmissioN ConTrRoL Poricy A retransmission control policy 1s one
that regulates access to the channel from the set of blocked terminals as a function of the
past and present states of the system. We consider a stationary policy that uses informa-
tion concerning only the present state to regulate the retransmission rate of the ensemble
of blocked terminals. The appropriate definition of stability for this case 1s then given in
Defintion 1. The equations for the controlled system are (4) for the infinite source model
and (3) for the fiite source model with the following modification The parameter f that
determines g,(n) (see (1) and (2)) and gives the probability that a blocked terminal
retransmits a packet during a slot will be a function of n.? Denoting this function by f(n),
we have

g = () = [fWI1 - fr)I~

The following result can then be established.

THEOREM 4. A stationary retransmission control policy yields a stable nfinue source
broadcast channel if \ = .., ic, < d and an unstable one 1f A > d, where d = Im,_,,
[cigoln) + cogiln)).

The proof of this result is given in Appendix 2. We do not have a proof of instability

3 Lam [14] considers retransmission control pohcies in which f(r) can take one of only two values



Stability and Opumal Control of the Packet Switchuing Broadcast Channel 381

for A = d except for a special case; the question 1s only of mathematical interest,
however.

Remark. In fact Theorem 1 is a corollary of Theorem 4 since if f 1s independent of n
we have d = 0, as in the case for the uncontrolled broadcast channel.

Another consequence of Theorem 4 concerns the form that the function f(n) must take
to ensure stabulity.

THEOREM 5. For the infinite source broadcast channel under stationay retransmission
control to be stable, it 1s necessary that

Im f(n) =0 and Iim nf(n) > 0.
n—x n—x

Proor  Clearly, if the first condition 1s not satisfied, we have d = 0, and the channel
1s unstable Now suppose that the second condition is not satisified, that is, lim,,_,., nf(n)
= 0, but that the first condition 1s satisfied Then d = ¢,;, and we cannot have A < d;
therefore by Theorem 4 the system 1s unstable, which completes the proof. O

We see by this last result that a stationary retransmission control policy (with expected
time between attempts of a blocked terminal to retransmut given by [f(n)]-*) may stabilize
the channel only if f(n) decreases with n but no faster than the function n~!.

3 3 AN OpmimaL RETRANSMISSION CoNTROL PoLicy. It is natural to seek retrans-
mission control policies that maximize the output rate of the channel; for a stabilizing
policy, the maximum value 1s d of Theorem 4 since the input rate 1s 1dentical to the
output rate Consider

Dy(f) = ci(1 = f)" + conf(1 = f)*.

By differentiating this expression with respect to f and settng the result equal to zero, we
see that D,(f) 1s maximized by setting f equal to f* = (co — ¢,)(ncy — ¢,)7 forn = 1, or f*
=1 - a)n — a)y'1f @ = ¢, /c,. where we are restricted to a < 1 (for instance, with a
Poisson arrival process ¢ = A) The maximum value of D,(f) is then D,(f*) = c[(n — 1)
(n — a)71**. In the limit as n — %, we obtain the throughputd = exp(logc, + o — 1) If
the arrival process 1s Poisson, we obtain d = e~!, as predicted by Abramson [1] and
Klenrock and Lam [12] for the maximum throughput of the channel.

In Figure 3 we present time series characterizing channel behavior obtained by Monte
Carlo simulation with a Poisson arrival process of packets from active terminals. In
Figure 3(a) we show the behavior of the uncontrolled broadcast channel; we see that 1f
the number of blocked terminals 1s sufficiently high, the channel 1s unable to recover (1 ¢
1t 1s unstable) and the total number of blocked terminals increases indefinitely while the
channel throughput tends to zero In Figure 3(b) we see the channel behavior under
identical conditions, except that the retransmission probability is chosen to be f*. The
channel 1s now able to recover from an initial state with a large number of blocked
terminals, and the throughput matches the input rate. The exact form of f chosen in the
simulation results of Figure 3(b)1sf* = (1 — M)n~!, where the denominator term of f* has
been simplified There 1s a simple intuitive (but nonrigorous) explanation for the choice
of f*: When there are n blocked terminals and n 1s very large, the set of blocked
terminals behaves as a Poisson source of parameter f*n = 1 ~ X; thus the total input rate
of packets to the channel is A + f*n = 1, which 1s the maximum rate it can accommodate

The optimal control policy f* can be approximately implemented by a statistical
esttmation of the number of blocked terminals or by an estimation of channel traffic:
These practical problems are discussed and evaluated n [4], where extensive simulation
results are given In fact this policy has been implemented 1n a prototype system [17] in
which a hardware simulator replaces the satellite channel. '

4 Conclusions

In this paper we have given a theoretical treatment of some basic problems related to the
packet switching broadcast channel Its inherent instability has motivated us to look mto
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stabilizing control policies. The first policy examined was one 1n which access to the
channel is controlled by placing into an impeded set those active terminals wishing to
transmit a packet. Necessary and sufficient conditions under which the number of
impeded or blocked terminals remains bounded were derived, and it was shown that with
this policy 1t is thearetically possible to achieve a throughput that is arbitrarily close to 1.

We then examined control schemes based only on choosing the transmission probabil-
ity of any blocked terminal as a function of the total number of blocked terminals
Sufficient conditions for stability and instability of the channel and necessary conditions
that must be satisfied by the retransmission probability were derived for this scheme. We
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then obtained the optimal control policy that maximizes the channel throughput. This
policy appears promising as a practical means of optimizing channel performance.

Appendix 1. Proof of Theorem 3

The proof of Theorem 3 1s easily obtained as a consequence of a theorem of Pakes (17]
which we restate here.

PAKES’S LEMMA  Let {X,},=, be an irreducible, aperiodic Markov chain whose state
space s the set of nonnegative wntegers. The following conduions are sufficient for the
Markov chain to be ergodic:

(a) ,E{X)Hl - Xn,Xn = l}|< ©,

(b) im,_» sup E{X,.1. — X,| X, =1} < 0.

We verify that these two conditions are satisfied when A = 3§ j¢, < g,(8) for the input
control policy

Consider the case 1 = 6. We then have

E{X, — XX, =1} = ; @+ el — g, (8) + gu +7 = De,gi) — 1
=h- 81(9)2

50 both conditions are clearly satisfied. Notice that for: < 6, 1t 1s only necessary to verify
condition (a). If X, = 1, we have

-1 with probability ¢,g,{),
x =41 with probability ¢o(1 — g; (1)),
e 1+ 1 with probability ¢,(1 — go()),
t +j, =2 with probability ¢,

Therefore E{Xn+l - anXn = l} =A - clg()(l) - Clg0(1)~ D

Appendix 2. Proof of Theorem 4
Let us first verify that the channel is unstable if A > d If the limit defining d exists, then
for each € > 0 there exists an integer n, such that, for all n = n,,

lgin) —al<e and |gyn) — b|=e,

where a, b are constants such that d = coa + ¢;b. Let P(z) = X 3on,Pnz", Qz) =
2 %o, Spz". Then, from (7) and the discussion above, we have

Sn - Z SII—JCJ = (a + €)Pn+1Co + (b + 6)17116'1

=0

and

Sn - 2 Sn—JCJ = (a - 6)[7:1+1Co + (b - €)Pn¢1 (11)

=0
for alt n = n,. Thus

=® n

0z) ~ 2 2 8,,¢,2" < [(a + €)co/2)[P(z) — 2p,, + (b + ¢, P()].

n=n, 1=0

Note that
E w -y ® "
E 2 SnﬁCJZ" = z 2 SanCJZ" + Z 2 S?l—Jc]Zn
n=ng, =0 n=n, =0 n=n, 3=n—ny+1

Therefore, If we wnite C(z) = 2}";0 c,z’,

Q)1 — C(2)) = [la + €)cy/z[P(z) — 2"p,, + (b + €)c, P(2)] + E 2 SuesCy 2"

n=ny j=n—1fy+1
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The following relationship may be verified:
Q)1 — 2) = "8, + P(z) — z"P,, = P(z) + 278, _,,

yielding, after substitution and combining of terms,

1-C(z) (a+ e
P@[ - “—w+mﬂ
1-z z
1 - C(z) < .
= -z (_1 )Su(,q = 2" Ya + €)copy, + > > Sy, 2™
-z =Ny J=N—ngtl

However,

oo n o n

E 2 Szt = Sn(rl 2 E ¢z,

=ity j=n—1fgti =y j=i—iy+1
and

o« n ] o
Y X =2 o= F@),
n=1 j=n

n=ng J=n—1ty+1

where lim,_,, F(z) = \. Therefore,

1-C) @+ ey
z

1=, —(b+€)01]

PG |

= Sup-1 [—2”0 l_l;C_(z_) + 22 c]z"] —2"t (g + €)copn,,

4 n=1 j=n
Now take the limit as z — 1 of both sides to obtain
PN —(a+ecy—(b+e)c]=—copyfa+e)

Therefore, 1f A > d, choosing n, sufficiently large that A — d > €{c, + ¢,), we have that
either p, = 0 and P(1) = 0 or p,, > 0 and P(1} < 0; both cases imply that the balance
equations sausfied by the equilibrium probability distribution {p,} do not possess a
positive solution. Thus the Markov cham representing the number of blocked terminals
at the beginning of each slot 1s not ergodic, and the channel 1s unstable when A > 4.

For A < d we start with (11) and proceed by arguments similar to the ones used above
to obtain

PN —(@—€co~ (b — e} = =S, —(@a—€eopn, + 2 2 Sec, (12)
n=ry  JFR—Hgt+L

The last term on the right-hand side of (12) cannot exceed AS,,_,; therefore, assuming
P, 1S pOsitive, we may write

PN~ (@ —€cy — (b — e)c;] = — alny),
where
0 < aln,y) = )\Snu—l + (a — €)CoPn“ - 2 Z SusChs
n=ny J=n—y+1
since by choosing n, sufficiently large we know that @ > € Therefore, if A < d,
P(1) = alng)/d — N — elco + c1))

if ngy 18 large enough thatd — A > e(c, + ¢,). From (5) we notice that we may write for any
n=0

Prn = k(”)p()a (13)
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where k(n) > 0; thus

no—1

P = (A S k() + (@ = eiklng) / (d =\ — elcy + c1)) (14)

=0

Note that p, 1s positive if and only if p, 1s positive We can now mvoke Foster’s theorem
[6], which implies that the Markov cham s ergodic if there exists a positive solution to
the equilibrium equation (5) such that P(1) < . With p, set to 1 (or any positive
constant), (13) represents a positive solution of (5); by (14) we have P(1) < o, and
therefore we have satisified Foster’s condition, thus completing the proof that the
channel 1s stable if A < d. We now have to consider the case A = d.
For n = n, we may wnte
81(’1) =a + uy, gn(’l) =b + Vs
so from (7) we obtain

0(z) [1 = C(@)] = (aco/z) [P(z) ~ zp,,] + bc, P(2)
+(co/2) [U@) = 2u,p] + V@) + 2 2 S0,
n=n, J=n-ny+l

where

@

UZ) = 2 uped”, V() = 2 vapuzh

n=n, n=n,
hence
P(z) =
1-C C SR
(-8 = - et wgp + S GV + S S 50
-z z

n=ng j=n—ry+1
(1 - Cz) aCy bﬁ)

1-z z

For A = d, the denomnator of P(1) vanishes. Instabihty for A = 4 will hold if we can
show that the numerator of P(1) does not vanish, or that as z — 1 the numerator of P(z)
tends to zero more slowly than the denominator If c,g,(1) + c,84(n) < d for alln = n,
(1 e.1f D, tends to d from below), then c,U(1) + ¢, V(1) < 0 and clearly the numerator of
P(1) 1s negative for p, > 0 and P(1) does not exist Under this condition, the channel is
unstable for A = d In general, however, even though we conjecture that the channel 1s
unstable when A = 4, we have no proof [
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