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ABSTRACT The purpose of this paper is to analyze and optimize the behavior of the broadcast channel for a 
packet transmission operating in the slotted mode Mathematical methods of Markov chain theory are used to 
prove the inherent lnstablhty of the system If no control is apphed, the effective throughput of the system will 
tend to zero tf the population of user terminals ~s sufficiently large Two classes of control pohcles are 
examined, the first acts on admissions to the channel from active terminals, and the second modifies the 
retransmlss~on rate of packets In each case sufflc~ent conditions for channel stability are given. In the case of 
retransm~sslon controls it is shown that only pohcles which assure a rate of retransmlsslon from each blocked 
terminal of the form of f  = 1/n, where n is the total number of blocked terminals, will yield a stable channel It 
ts also proved that the optimal pohcy which maximizes the maximum achievable throughput wtth a stable 
channel IS of the fo rmf  = (1 - k)/n Simulations illustrating channel lnstabdlty and the effect of the opnmal 
control are prowded 
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1. In t roduc t ion  

C o m p u t e r  n e t w o r k s  u s i n g  p a c k e t  s w i t c h i n g  t e c h n i q u e s  h a v e  b e e n  i m p l e m e n t e d  [1 ,  5 ,  7 ,  

11 ,  18 ,  19] in o r d e r  to  a l l o w  a l a r g e  c o m m u m t y  o f  c o m m u m c a t i n g  u s e r s  to  s h a r e  a n d  

t r a n s m i t  d a t a  a n d  u t i h z e  e f f i c i e n t l y  t h e  e x c e s s  c o m p u t i n g  p o w e r  w h i c h  m a y  b e  a v a d a b l e  

a t  r e m o t e  l o c a t i o n s  In  t h i s  p a p e r  we  a r e  c o n c e r n e d  w i th  p a c k e t  s w i t c h i n g  n e t w o r k s  u s i n g  

r a d i o  c h a n n e l s  s i m i l a r  to  t h e  A L O H A  s y s t e m  [1].  

W e  c o n s i d e r  a l a r g e  se t  o f  t e r m i n a l s  c o m m u n i c a t i n g  o v e r  a s i ng l e  r a d i o  c h a n n e l  in s u c h  

a w a y  t h a t  a p a c k e t  ~s s u c c e s s f u l l y  t r a n s m i t t e d  o n l y  ff i ts  t r a n s m i s s i o n  d o e s  n o t  o v e r l a p  m 

t~me w i t h  t h e  t r a n s m i s s i o n  o f  a n o t h e r  p a c k e t ;  o t h e r w i s e  all p a c k e t s  b e i n g  s i m u l t a n e o u s l y  

t r a n s m i t t e d  a r e  los t  A t e r m i n a l  w h o s e  t r a n s m i s s i o n  ~s u n s u c c e s s f u l  is s a id  to  b e  b locked ;  
~t h a s  to  r e p e a t  t h e  t r a n s m i s s i o n  u n t d  it s u c c e e d s  E i t h e r  a t e r m m a l  w h i c h  is  n o t  b l o c k e d  
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is active or it is transmitting a packet,  The operat ion of the system is shown schematically 
in Figure 1, where the different state transitions of a terminal are shown. Since the only 
means of communication between terminals is the channel itself, it is not easy to schedule 
transmissions so as to avoid collisions between packets.  It is also obvious that a terminal 
would in no case transmit more than one packet  simultaneously. 

Various methods for controlhng the transmission of packets have been suggested. The 
simplest is to allow terminals to transmit packets at any instant of time. The second 
method,  known as the slotted A L O H A  scheme, has been shown to increase channel 
throughput over the first method [2]. Here,  time is divided into "slots" of equal 
durat ion,  each slot can accommodate  the transmasslon time of one packet ,  and packets 
are all of the same length Packet transmission is synchronized so that at lmtiates at the 
beginning of a slot for any terminal and it terminates at the end of the same slot Other  
schemes have been suggested elsewhere [20, 21] 

Kleinrock and Lam [13] have discussed the stabdlty problem of the slotted A L O H A  
channel Their results, based on simulations and fluid approxlmataons, indicate that the 
channel becomes saturated ff the set of terminals as very large, independently of the 
arrwal rate of packets to the channel,  saturation being the phenomenon whereby the 
number of blocked terminals becomes arbitrari ly large. They also compute the expected 
time to attain a given level of saturation In [I4] pohcies designed to optlmaze the 
throughput of the channel,  defined as the expected number  of successful transmissions 
per slot, are presented.  

The purpose of thas paper  as to give a theoretical  t reatment  of some control policies 
which can be applied to the broadcast  channel in order  to stabahze at and to maxamaze its 
performance We first review the proof  of instability in [8], extending it to a fimte source 
model  taken in the limit as the total number  of terminals becomes very large, and 
showing that the channel instabdity amphes that the equilibrium value of the throughput  
as zero. Two sample control policies are then presented,  and necessary and sufficient 
conditions for stablhty of the controlled channel are derived. Bounds for the equilibrium 
value of the channel throughput  wath these pohoes  are obtained.  Problems related to the 
practical amplementation of the pohcaes we propose here are discussed in [3, 4], where 
an approach using stochastic approximation oriented algorithms is used and shown to 
converge m praetice to the optamai controls 

2. Mathemattcal Model 

A preose  definition of stabdlty can be considered only in the context of a model  of the 
behavior of the broadcast  channel.  In this section we present a model  identical to the one 
we considered in an earl ier  paper  [8], except that we take into account here both finite 
and infinite source systems. 

ACT l\rE 

TERMINALS 

Flo 1 

BLOCKED 

TEI~HINALS 
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Assuming  that the slot, and the t ime necessary to t ransmit  a packet ,  are of uni t  length,  
we def ine N(k)  as the n u m b e r  of blocked terminals  at the instant  when  the k th  (k = 0, 1, 
2 . . . .  ) slot begins Let Xk be the n u m b e r  of packets t ransmit ted  from the set of  active 
terminals  dur ing the kth  slot, and denote  by XA the n u m b e r  of b locked terminals  
t ransmit t ing during the kth  slot. In the infintte source model ,  (Sk) IS the sequence of 
i ndependen t  and identically dis tr ibuted r andom variables with the c o m m o n  dis t r ibut ion 
given by 

Pr(X~ = t) = c,, t --> O. 

In the fintte source model ,  we let M denote  the n u m b e r  of terminals  in the system, and we 
assume that the event  (Xk = t iN(k )  = 1) is i ndependen t  of values of Xt  for t < k;  its 
probabil i ty is given by 

q,(n) = Pr(Xh = ] IN(k) = n) = (Mb~")b)(1 -- b) M-"-j 

for 0 _< l _< M - n, where b is the probablhty  that any one actwe terminal  t ransmits  a 
packet dur ing a slot. 

For  both models,  we denote  by f the probabil i ty  that any one blocked te rminal  
t ransmits  a packet dur ing a slot. We then define 

g,(n) = Pr(Y~ = 1IN(k) = n) ,  (1) 

where we assume that the event  (Yh IN(k)) is i ndependen t  of Yt for t < k. Therefore  

g,(n) = (I')fl(1 - f)n-1, (2) 

and more  particularly 

go(n) = (1 - f )n,  g,(n) = nf(1 - f )n - , .  (3) 

Definttton 1 The infimte source broadcast  channel  ts unstable If for k ~ ~ the 
probabil i ty Pr(N(k) < j) ~ 0 for all fimte values o f j ,  otherwise It is stable For  the finite 
source model ,  the system is unstable  if the above c o n d m o n  holds as we let M ~ ~,  b 
O, M . b  ~ d, where d is a constant .  

The definit ion given here simply states that lnstablhty exists if (with probabi l i ty  one)  
the n u m b e r  of blocked terminals  becomes infinite as t ime tends to infinity 

THEOREM 1. The broadcast channel ts unstable for  both the finite and mfintte source 
models. 

PROOF Let us first consider  the mfimte source model .  The proof  given here is 
identical to the one we presented in [81. Let p,,(k) denote  the probabil i ty  that N(k)  = n. 
The following balance equat ion  may be writ ten for the infinite source modeP:  

p,,(k + 1) = ~ pn_~(k)c~ + p,~+~(k)g~(n + 1)c0 
~=2 (4) 

+ p,(k)(1 - g~(n))co + p,,(k)go(n)c~ + p,,_i(k)(1 - go(n - 1))ct. 

To illustrate the in te rpre ta tmn of the r ight-hand side of (4), we note  that the first term 
covers the cases where two or more  packets have been t ransmit ted  by the active 
terminals  during the kth  slot and the second term covers the case in which exactly one 
blocked terminal  has t ransmit ted  while no actwe terminal  has done so. Notice that {N(k); 
k = 0, 1, ...} IS a Markov chain and that it is aperiodic and irreducible.  It is ergodic if an 
mvar lant  probabdl ty  measure  {p,,: n = 0, 1, ...} exists satisfying (4) such tha tp~  > 0 for 
all n and p ,  = limk~® p,,(k). To show that llm~__,= Pr(N(k) < j) = 0 for all finite values o f j ,  
it suffices to show that the Markov chain represent ing  the n u m b e r  of blocked terminals  is 
not  ergodic Taking the limit of (4) and us ingp~ = llmk~= p , ( k ) ,  we obta in  

n 

p ,  = ~ p,,_jcj + p,+ag~(n + 1)c0 + pn(go(n)ca - g~(n)co) - p , - igo(n  - 1)c~. (5) 
J=0 

E q u a h o n  (4)  Js v a h d  for  all n ~ 0 ff we a d o p t  the  rule tha t  P , ( k )  = 0 ,  l < 0 
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Let t ing 

we then have,  for any N ~ 0, 

o r  

or equivalent ly  
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N 

SN = ~.  p . ,  (6) 
n = 0  

N 

SN = pN+lg,(N + 1)co + pNgo(N)c, + ~ SN-nC,, (7) 

N 

SN(1 -- Co) = ~ SN-nC,, + pN+igl(N + 1)c0 + pNgo(N)cl 
;,l=l 

PN( -- CO) --< pu+~gl(N + 1)c0 + pNgo(N)c~ (8) 

But then,  f rom (3) and (8),  we have 

PN+~/PN >-- (1 --CO -- (1 -- f )Nc~)/(N + 1)f(1 -- f)Nco 

for any nonnega t ive  in teger  N .  This  result  implies  that  the rat io (PN+I/PN) ---> W as N --> oo; 
so the sum S~o can exist only ifpN = 0 for all finite values  of  N - o t h e r w i s e  Soo is dwergen t ,  
which cannot  be  the case when  thepN,  N >- 0, def ine  a probabih ty  distr ibut ion.  Thus the 
Markov  chain represent ing  the n u m b e r  of  b locked  terminals  is not  ergodic ,  and the 
broadcast  channel  under  the infinite source  assumpt ion IS unstable  

Now consider  the finite source  model .  Using the rule that  p,(k) = 0 for t < 0, we find 
that  the balance equa t ion  for 0 -< n < M is 

pn(k + 1) = ~pn_~(k)q j (n  - I )  + p,~+l(k)gl(n + 1)q0(n + 1) 
,=2 (9) 

+ pn(k)(1 - g~(n))qo(n) + p,(k)go(n)q,(n) + pn_~(k)(1 - go(n - 1))qo(n - 1) 

Def in ing,  for 0 -< N < M, the sum SN as in (6) for the finite source  mode l ,  we take the 
limit of  (9) and obtain  

i" SN = pN+,g,(g + 1)qo(g + 1) + pNgo(N)q~(g) + ~ pn-,q,(n - j).  (10) 
n = 0  3 = 0  

Notice  first that since the M a r k o v  chain is aper iodic ,  I r reducible ,  and f imte ,  it is 
ergodic  for each M < ~.  T h e r e f o r e  p, > 0, 0 -< t -< M, ~ p, = 1. W l t h N  = M - 1, 
(10) yields 

M - - 2  n 

SM-2 - ~ ~ p , - ,  q,(n - 1) + b pM-,[1 -- (1 -- f)M--a] = pMf(1 -- f)M-, ,  
n = O  ~ = 0  

or,  as can be easily ver i f ied,  

(PM/PM-~) -> b [1 - (1 - f)M-~]/f(1 -- f i e -1 .  

T h e r e f o r e  as M ~ oo this rat io tends to infinity, which can only imply thatpM_~ ~ 0. But  
the a rgumen t  is valid for anyp~v/ps_j ,  0 < N -< M. There fo re  as M ----~ ~ we have  p~---> 
0, 0 < N < M, and PM ~ 1. This  result  p roves  the t heo rem for the case of  the finite 
source  [] 

In the context  of  this s tudy ano the r  measure  of  interest  is the th roughput  of  the 
broadcas t  channel .  Indeed  this th roughput  may well  be the pr imary  pe r fo rmance  mea- 
sure for  the system under  considera t ion  

Definition 2 The  conditional throughput Dn(k) of the broadcas t  channel  IS the 
condi t ional  probablhty  that  one  packet  is successfully t ransmi t ted  during the k th  slot 
given that N(k)  = n. 
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Clearly the condmonal throughput cannot exceed 1. It can also be defined as the 
expected value of the number  of successful transmissions during the kth slot conditional 
on there being n blocked terminals at the beginning of that slot 

Definition 3. The throughput of the broadcast channel is defined as 

0o 

D = hm ~ Dn(k)p,,(k) 
k --->~ n = 0  

The conditional throughput is Dn(k) = cog~(n) + c~go(n) for the infinite source model; 
for the finite source model we replace Co and Cl by qo(n) and q~(n), respectively. This 
quantity is obviously independent of k; therefore in the following we simply write Dn 
instead of D,,(k). 

THEOREM 2. For f > O, the throughput o f  the broadcast channel is 0 for the infinite 
source model, and for the fimte source model, as we let M ~ 0% b ~ 0, M . b  --) d. 

The proof is straightforward and is not presented here. 

3. Certain Channel Control Pohcles 

In [14] various control pOhcles for the broadcast channel have been classified, roughly 
speaking, into three groups: policies that regulate access to the channel from the active 
terminals; those that regulate access from the blocked terminals; and mixed policies In 
this section we discuss two pohcles m some detail and give a definition of stability in each 
case. We see that this definition will be a variant of, or identical to, the definition given 
above. The first control policy that we describe typifies the first group of policies, 
although it may well be Impossible to implement, the second policy is of the second 
group and has a better chance of being reahzable. 

3.1 A THRESHOLD CONTROL POLICY An Input control pohcy as defined by Lain [14] 
is one that limits access to the channel from the active terminals depending on the 
present state and past history of the channel Borrowing the terminology of Markov 
decision theory [10], we say that a policy is statlonary if it depends only on the present 
state of the system. 

The first policy we present is described in Figure 2 If the number of blocked terminals 
exceeds 0, the threshold, an active terminal that wishes to initiate the transmission of a 
packet, is not allowed to transmit and joins the impeded set; if the threshold Is not 
exceeded, the transmission takes place as in the uncontrolled channel As soon as the 
number of blocked terminals decreases below 0 (this can only take place in steps of one), 
an impeded termmal joins the blocked set, thus the number of blocked terminals can be 
less than 0 only if there are no impeded terminals The retransmission rate of blocked 
terminals is constant. We refer to this scheme as the threshold control pohcy, z 

In this context stability must be defined in terms of the number  of impeded or blocked 
terminals 

Definition 4 Let U(k) be the number of blocked or impeded terminals at the 
begmning of the kth slot for the threshold control policy. The infinite source channel, 
with this control scheme, is unstable if, in the hmlt k ~ ~, Pr{U(k) < / }  is zero for all 
finite values of 1; for the finite source model the same definition is used with the 
stipulation that b ~ 0 and M-b --> d. 

The following equations, which must be satisfied by the equilibrium probabihties p,, 
for the number of blocked or impeded terminals at the begmning of a slot, may be 
derived 

n<_O: 

p,, = ~ po-jc~ + p,,+lAl(n + 1)c0 + po[clgo(n) - c0g~(n)] -  pn-lgo(n - 1)cl. 
9 = 0  

n > 0 + l .  

2 Lam's [14] input control pohcy differs from ours m that he assumes that packets are lost 
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FiG 2 

0 i 
p~ = ~ p) cn-~ + p)[c,~_~(1 - A) + cn_)+,A] + p , + : o A ,  

J=O 3=0~1 

where A = A~(n) = gl(O) i fn  > 0, andAj (n )  = g~(n) l fn  -< 0. 

n = 0 + l :  

0--1 

Po+~ = po+~[clA + co(1 - A)] + po+2coA + pock(1 - A)  + ~ pjcs+~_~. 

We obtain the following result concerning the stabdity of the threshold control pohcy. 
For simphclty let A = g l ( 0 ) .  

THEOREM 3. I f  the expected arrtval rate h = ~=~ tc, o f  active packets for the mfintte 
source model ts less than A,  then the broadcast channel wtth a stationary threshold control 
policy ts stable. 

The proof ms given m Appendix 1. 
The threshold control policy may be qmte difficult to tmplement in practme, even 

though it is conceptually very simple It is effectwely not easy to fdl up the impeded set 
3.2 A RETRANSMISSION CONTROL POLICY A retransmission control policy is one 

that regulates access to the channel from the set of blocked terminals as a function of the 
past and present states of the system. We consider a staUonary policy that uses informa- 
tion concerning only the present state to regulate the retransmisslon rate of the ensemble 
of blocked terminals. The appropriate definition of stabihty for this case is then given in 
Defintlon 1. The equations for the controlled system are (4) for the infinite source model 
and (5) for the flmte source model with the following modification The parameter f  that 
determines g,(n) (see (1) and (2)) and gwes the probabihty that a blocked terminal 
retransmits a packet during a slot will be a function of n .3 Denoting this funcUon byf(n), 
we have 

g,(n) = (~) = [f(n)]~[1 - f ( n ) ]  .... 

The following result can then be estabhshed. 
THEOREM 4. A stattonary retransmtssion control pohcy ytelds a stable tnfintte source 

broadcast channel t f  X = ~=~ tc, < d and an unstable one t f  h > d, where d = l t m ~  
[clgo(n) + cog,(n)]. 

The proof of this result is gwen m Appendix 2. We do not have a proof of Instability 

3 L a m  [14] considers  re t ransmlssmn cont ro l  pollcms m whlch] (n )  can take one  of only two values 
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for ~. = d except  for a special case; the ques t ion is only of  mathemat ica l  interest ,  
however .  

Remark. In fact T h e o r e m  1 is a corol lary of  T h e o r e m  4 since i f f  is i ndependen t  o f n  
we have d = 0, as in the case for the uncontrol led  broadcast  channel .  

A n o t h e r  consequence  of  T h e o r e m  4 concerns  the form that  the funct ionf(n)  must  take 
to ensure  stability. 

THEOREM 5. For the mfimte source broadcast channel under stationay retransmtssion 
control to be stable, it ts necessary that 

hm f(n) = 0  and hm nf(n) > O, 

PROOF Clearly,  if the first condi t ion is not  satisfied, we have d = 0, and the channel  
is unstable Now suppose that the second condi t ion is not satlslfled, that  is, l i m n ~  nf(n) 
= 0, but that the first condi t ion is satisfied Then  d = cl ,  and we cannot  have h < d;  
therefore  by Theo rem 4 the system is unstable,  which comple tes  the proof.  [] 

We see by this last result  that  a stat ionary retransmission control  policy (with expec ted  
t ime be tween  a t tempts  of  a b locked terminal  to re t ransmlt  given by ~(n)] -1) may stabilize 
the channel  only i l l (n )  decreases  with n but no faster than the funct ion n -~. 

3 3 AN OPTIMAL RETRANSMISSION CONTROL POLICY. It is natural  to seek retrans-  
mission control  policies that maximize the output  rate of  the channel ;  for a stabilizing 
policy, the max imum value is d of  T h e o r e m  4 since the input  rate is identical  to the 
output  rate Consider  

D,,(f) = c,(1 - f)" + conf(1 - f)n_,.  

By differentiat ing this expression with respect  t o f  and setting the result  equal  to zero ,  we 
see that D,,(f) is maximized  by s e t t l n g f  equal  to f* = (co - cO(nco - cl) -1 f o r n  >- 1, or  f* 
= (1 - ~)(n - a) -~ if a = c~/co, where  we are restr icted to a < 1 (for instance,  with a 
Polsson arrival process c~ = ~.) The  maximum value of D,( f )  is then D,( f* )  c0[(n - 1) 
(n - c~)-a] "-~. In the hmit  a sn  ~ 0% we obtain  the throughput  d = exp( iogc0 + o~ - 1) If 
the arrival process is Polsson,  we obtain d = e -~, as predicted by A b r a m s o n  [1] and 
Klemrock  and Lain [12] for the maximum throughput  of  the channel .  

In Figure 3 we present  t ime series character izing channel  behavior  ob ta ined  by M o n t e  
Carlo simulation with a Poisson arrival process of  packets  f rom active terminals .  In 
Figure 3(a) we show the behav ior  of the uncontro l led  broadcast  channel ;  we see that if 
the number  of blocked terminals  is sufficiently high, the channel  is unable  to r ecover  (i e 
it is unstable)  and the total  number  of  b locked terminals  increases indefini tely while the 
channel  throughput  tends to zero In Figure  3(b) we see the channel  behav ior  under  
identical condit ions,  except  that the retransmission probabil i ty is chosen to be f* .  The  
channel  is now able to recover  from an initial state with a large number  of  b locked 
terminals ,  and the throughput  matches  the input rate.  The  exact  form o f f  chosen in the 
s imulat ion results of  Figure 3(b) lSf + = (1 - h)n -~, where  the denomina to r  te rm o f f *  has 
been  simplified There  is a simple intuitive (but nonr igorous)  explana t ion  for the choice  
of f+: When there  are n blocked terminals  and n is very large,  the set of  b locked 
terminals  behaves  as a Poisson source of  pa rame te r f÷n  = 1 - ~.; thus the total  input  rate  
of packets  to the channel  is ~, + f+n = 1, which is the max imum rate it can a c c o m m o d a t e  

The opt imal  control  pohcy f* can be approximate ly  imp lemen ted  by a statistical 
es t imat ion of the number  of  b locked terminals  or  by an es t imat ion of  channel  traffic: 
These  practical p roblems are discussed and eva lua ted  in [4], where  extensive s imulat ion 
results are given In fact this policy has been implemen ted  in a p ro to type  system [17] in 
which a hardware  s imulator  replaces the satelfite channel .  

4 Conclusions 

In this paper  we have given a theoret ical  t r ea tment  of  some basic p rob lems  re la ted to the 
packet  switching broadcast  channel  Its inherent  instability has mot iva ted  us to look into 
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stabilizing control policies. The first policy examined was one m which access to the 
channel is controlled by placing into an impeded set those active terminals wishing to 
transmit a packet.  Necessary and sufficient conditions under which the number  of 
impeded or blocked terminals remains bounded were derived, and it was shown that with 
this policy it is theoretically posmble to achieve a throughput that is arbitrarily close to 1. 

We then examined control schemes based only on choosing the transmission probabil-  
ity of any blocked terminal as a function of the total number  of blocked terminals 
Sufficient conditions for stability and instability of the channel and necessary conditions 
that must be saUsfled by the retransmlsmon probabil i ty were derived for this scheme. We 
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then  o b t a i n e d  the  op t i m a l  con t ro l  pohcy  tha t  maxlm~zes the  c h a n n e l  t h r o u g h p u t .  Th i s  
policy a p p e a r s  p romis ing  as a p rac tmal  m e a n s  of op t imiz ing  c h a n n e l  p e r f o r m a n c e .  

Appendtx  1. Proof  o f  Theorem 3 

The  p r o o f  of  T h e o r e m  3 ~s easily o b t a i n e d  as a c o n s e q u e n c e  of  a t h e o r e m  of  Pakes  [17] 
which we res ta te  here .  

PAKES'S LEMMA Let {)(,},>_1 be an irreducible, aperzodtc Markov  cham whose state 
space is the set o f  nonnegatzve integers. The fol lowing condmons  are sufficient for  the 
Markov cham to be ergodic: 

(a) IE{x, ,+, - x , , I x , ,  = 4 1 <  ~ ,  
(b) l l m , ~  sup E{X,+,  - X , ] X ,  = t} < O. 
We verify tha t  these  two cond i t ions  are  sat isf ied w h e n  i~ = ~ Ice < g~(O) for  the  input  

con t ro l  pohcy  
C o n s i d e r  the  case l --- 0. We  then  have  

o0 

E { x , , + ,  - x , , I x , ,  = ,} = ~ (~ + j)c3(1 - g ,  (0)) + ~ (~ + j - 1 )c ,g l (0 )  - l 
0 0 

= h - g~(0); 

so b o t h  c o n d l t m n s  are clear ly sat isf ied.  No t i ce  tha t  for  / < 0, it is only  necessa ry  to ver i fy  
cond i t ion  (a).  If X,, = t, we have  

t - 1 wi th  p robab i l i ty  cogl(l), 
X,,+~ = t w~th p r o b a b d l t y  c0(1 - g~ (i)), 

l + 1 with p robab i l i ty  c~(1 - go(z)), 
t + 1 ,  ] >- 2 wi th  p r o b a b l h t y c ~  

T h e r e f o r e  E{X,+, - X,,IX,, = l} = ~ - c,go(1) - c~go(t). [] 

Append ix  2. Proof  o f  Theorem 4 

Let  us first verify tha t  the  c h a n n e l  is uns t ab l e  if ~. > d If the  l imit de f lmng  d exmsts, t hen  
for  each  e > 0 the re  exists an in tege r  no such tha t ,  for  all n >- no, 

] g , ( n ) - a [ - < ~  and  [ g o ( n ) - b l - < e ,  

oo where  a ,  b are cons t an t s  such tha t  d = coa + cmb. Let  P(z) = ~, ,=,opnz , Q(z)  = 
,=,o S , z ' .  T h e n ,  f rom (7)  and  the  discussion a b o v e ,  we h a v e  

S,, - ~ S,,-~G <- (a + e)p,,+~co + (b + e)p,~cl 
3 = O  

and 

S,, - ~ S,,-jc3 >-- (a - e)p,,+lco + (b - e)p,,cl 
3 = 0  

for  all n -> no. Thus  

e ( z )  - ~ ~ S,,_3c~z '~ <- [(a + E)co/z][P(z) - z"°p,,, + (b + e)c,P(z)]. 
11=~1 o 3 = 0  

Note  tha t  

II~Dtl 3~(} It=It o 3=0 It=ll o 3=?t--Ilo+ l 

Z ~  C .3  T h e r e f o r e ,  ,f we wri te  C(z) = ~=o 3- , 

° i Q(z)(1 - C(z)) -< [(a + e)co/z][P(z) - z'op,,. + (b + ~)clP(z)] + ~ 

(11) 

Sn-~C~Z n. 
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The fol lowing re la t ionship may be verif ied:  

Q(z)(1 - z) = s'*oS,,o + P ( z )  - z"oP,,,, = P(z )  + z'*osno_,, 

yielding,  af ter  substi tut ion and combining  of  te rms,  

(a + E)c0 (b + ()c , ]  
/ Z 

< _ z . o ( 1 - C ( z ) ]  
\ ~ -  z l S,, _, - z',o-'(a + ()cop,,,, + 

tt=~t o 

H o w e v e r ,  

and 

E St,_)c)z n -~ 8%_ 1 c) zn, 
t l=l l  0 J=ll--?lo'+ I H ~?~() J=ll--Ilo~, - 1 

I I=n o 3~11--110+ 1 

where  l i m ~ ,  F(z) = it. The re fo r e ,  

¢ : " -  E ~:',= F(~), 
)l=l 3~?1 

LABETOULLE 

S n _ j C ) z  n • 

)=i t  /1o+1 

[1  - C(z) (a + ()Co (b + ()c~ ] P(z )  [ ! 
1 - - Z  Z 

1 - -  Z ~l=l j=t] 

Now take the hmlt  as z ~ 1 of  both sides to obtain  

P(1) [it - (a + ()Co - (b + () Cl] -< -Cop,,o(a + ~) 

The re fo r e ,  if it > d, choosing no suff ioent ly  large that it - d > ((Co + cO, we have that  
e i t h e r p , ,  o = 0 and P ( 1 )  --< 0 o r p , ,  o > 0 and P(1) < O; both cases imply that  the balance 
equa t ions  sausfied by the e q u l h b n u m  probabi l i ty  &s tnbu t ion  {p,} do not possess a 
pos inve  solution.  Thus the Markov  chain represen t ing  the n u m b e r  of  b locked terminals  
at the beginning of  each slot is not  e rgo&c,  and the channel  is unstable  when it > d. 

For  it < d we start with (11) and proceed  by a rguments  similar to the ones  used above  
to obtain  

P(1) [it - (a - ()co - (b - ()c,]  -> - k S  ...... - (a - ( )cop, , ,  + ~ S,,_~c). (12) 

The  last te rm on the r ight-hand side of  (12) cannot  exceed itS,,,,_~ ; there fore ,  assuming 
p.o ~s posi t ive,  we may write 

P(1) [it - (a - ()Co - (b - e)c,] ~- - a(no) ,  

where  

0 <  ,~(no)= xs,,,_, + (a - E ) c o p , , -  2., 2.. S,,_,c,, 

since by choosing no suf f ioent ly  large we know thai a > E There fore ,  if it < d. 

P(1) -< a ( n o ) / ( d  - it - E(Co + el ) )  

If no is large enough  that d - it > E(Co + cO. From (5) we nonce  that we may write for any 
n _ > 0  

p,, = k ( n ) p o ,  (13) 
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where k(n) > 0; thus 
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P(1) 5 (A ‘1:’ k(l) + (a - E)c,,k(rrJ)/@ - A - 4~ + ct)) (14) 

Note that p,,,, IS positive rf and only tf PO 1s postttve We can now Invoke Foster’s theorem 
[6], whtch tmphes that the Markov cham IS ergodic rf there exrsts a positive solutton to 
the equthbrmm equation (5) such that P(1) < m. Wtth p,, set to 1 (or any posrttve 
constant), (13) represents a posmve solutton of (5); by (14) we have P(1) < ~0, and 
therefore we have satrsdted Foster’s condmon, thus completmg the proof that the 
channel 1s stable tf X < d. We now have to constder the case A = d. 

For n 2 n,, we may write 

g,(n) = a + II,,, g,,(n) = b + v,,; 

so from (7) we obtain 

Q(Z) [l - C(z)1 = taco/z) [P(z) - z’@P,,,,~ + bclf’(z) 

f  (C”/.z) [WI - z’L”u,L,,P,LJ + c,V(z) + jj i &-,cJzn, 
0 J=fl-no+l 

where 

U(z) = 2 11 ,,p,$‘, V(z) = 5 v,Ip,Iz~L, 
n=n,, n = n (, 

hence 

P(z) = 

( 
1 - C(z) -zw,,<,-, I__ - QJ-’ 

1-z 
Cda + u,~JP~,z + : U(z) + C,V(z) + ng ,=n; +, s&zn) 

0 0 

( 
1 - C(z) ___- aC, _ bc 

l-z 2 1 ) 

For A = d, the denommator of P(1) vanishes. Instabthty for A = d will hold if we can 
show that the numerator of P(1) does not vanish, or that as z -+ 1 the numerator of P(z) 
tends to zero more slowly than the denominator If c,g,(rt) + crg&) < d for all z =‘ n, 
(1 e. tf D,, tends to d from below), then c,J/(l) + c,V(l) < 0 and clearly the numerator of 
P(1) 1s negative for pn,, > 0 and P(1) does not exist Under this condttron, the channel is 
unstable for h = d In general, however, even though we conjecture that the channel 1s 
unstable when A = d, we have no proof I3 
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