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Abstract In this paper, a novel two-stage epidemic
model with a dynamic control strategy is proposed
to describe the spread of Corona Virus Disease 2019
(COVID-19) in China. Combined with local epidemic
control policies, an epidemic model with a traceability
process is established. We aim to investigate the appro-
priate control strategies to minimize the control cost
and ensure the normal operation of society under the
premise of containing the epidemic. This work mainly
includes: (i) propose the concept about the first and
the second waves of COVID-19, as well as study the
case data and regularity of four cities; (ii) derive the
existence and stability of the equilibrium, the param-
eter sensitivity of the model, and the existence of the
optimal control strategy; (iii) carry out the numerical
simulation associated with the theoretical results and
construct a dynamic control strategy and verify its fea-
sibility.
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1 Introduction

The global spread of COVID-19 has brought huge dis-
asters to people all over the world. By the end of the
December of 2020, there are more than 80,815,542
confirmed cases worldwide, of which approximately
96,397 cases have been confirmed in China [1]. Among
them, 1,766,835 people have lost their lives because
of this disease. Regrettably, the current spread of the
epidemic has not been effectively controlled, and the
number of everyday new cases remains high around the
world (OnDecember 27, 2020, the number of newcases
reached 423,862) [1]. Studying the law of its emergent
spread and adopting effective control measures to con-
tain the spread of the epidemic as soon as possible is
the problem that people all over the world need to solve
urgently.

The study of the novel coronavirus COVID-19
is undoubtedly one of the hottest topics at present.
Recently, many scholars have established different
infectious disease models to analyze the spread of
the epidemic and predict its later development [2,3].
Wang et al. [4] developed a (susceptible, exposed,
infectious, recovered) SEIR model to estimate the epi-
demic trends in Wuhan. Hellewell et al. [5] estab-
lished a transmission model and found that efficient
contact tracing and case isolation are sufficient to con-
trol the new COVID-19 outbreak within 3 months in
most cases. Chakraborty et al. [6] have considered
a hybrid autoregressive integrated moving average-
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wavelet-based forecasting (ARIMA-WBF) model to
predict various COVID-19 infected countries through-
out the world. Some other models have also been estab-
lished to assess the spread of COVID-19 and empha-
size the need for isolation measures [7]. The spread
of COVID-19 in different countries can be described
by different models. Samui et al. [8] proposed a com-
partmental mathematical model to predict and control
the transmission dynamics of COVID-19 pandemic in
India. Zhao et al. [9] developed a SUQC (suscep-
tible, un-quarantined infected, quarantined infected,
confirmed infected) model to characterize the dynam-
ics of COVID-19 and explicitly parameterize the inter-
vention effects of control measures in China. Sjödin et
al. [10] introduced a compartmental epidemiological
model based on the SEIR formulation, and extended it
to account for additional variables including compart-
ments for health and intensive care unit (ICU) care. Al-
Qaness et al. [11] proposed a new short-term forecast-
ing model using an enhanced version of the adaptive
neuro-fuzzy inference system (ANFIS), which has a
significantly better chaotic marine predators algorithm
(CMPA) than other survey models. Odagaki et al. [12]
reformulated a SIQR (susceptible, quarantined, infec-
tious, recovered) model to be appropriate to COVID-
19, and the exact properties of the model were pre-
sented. Hui et al. [13] established a rumor propa-
gation model and studied the spread mechanism of
rumors on social network platform during the spread
of COVID-19. In recent years, fractional differential
equations have become the focus of research by many
scholars, and many meaningful research results have
been obtained in theoretical research [14,15]. Arqub
[16] used the reproducing kernel algorithm to solve the
time-fractional Schrödinger equations, which provided
a newnumericalmethod for solving fractional differen-
tial equation. At the same time, nonlinear differential
equations enjoying exact solution are of value in the
study of theoretical and application problems [17–24].
These theoretical results will promote the application
of fractional differential equations in different fields,
especially in infectious epidemic modeling. For exam-
ple, Zhang et al. [25] introduced a fractional-order
differential equations model to describe the pattern of
transmission of COVID-19 epidemic, and analyzed the
dynamics of the model.

In particular, some researchers have proposed var-
ious mathematical models to study the optimal con-
trol strategies for COVID-19, and have achieved some

excellent results. Lemecha et al. [26] proposed a novel
COVID-19 epidemic model to obtain the optimal con-
trol strategies under the premise of considering the con-
trol cost by using the optimal control theory. Khan et
al. [27] proposed a COVID-19 epidemic model with a
convex incidence rate, and conducted a comprehensive
analysis of the dynamic behavior of the model. After-
ward, the author established an optimal control prob-
lem with the population practicing social distancing
and treatment of infected individual as the control item,
and got the most effective control strategies by using
Pontryagin maximum principle. The total population
can be divided into six subpopulations: susceptible,
exposed, quarantined, infectious not hospitalized, hos-
pitalized/isolated infectious, and recovered [28]. The
author calculated the basic reproductive number of the
disease andmade a sensitivity analysis to determine the
key parameters that affect the spread of the disease. The
research work on COVID-19 must be closely related to
the measures taken in one country and one region.

The models mentioned above take into account the
phenomenon of confirmed patients infecting others.
However, patients diagnosed in many countries are
strictly isolated and are not transmissible. Under strict
isolation measures, patients who are truly communi-
cable during the incubation period. In addition, new
coronary pneumonia does not get life-long immunity
after the first illness. The model mentioned above does
not take into account the re-infection of discharged
patients. These will be addressed in this study. For dis-
eases that are infectious during the incubation period,
such asCOVID-19, it is very important to trace back the
people that a confirmed case has been in contact with
during the incubation period. This is also the main rea-
son why we frequently see news reports looking for
people in the car with patients. Some scholars have
started research on epidemic models of contact tracing
[29,30]. Orallo et al. [31] emphasized that the use of
a specialized application of smartphone to trace close
contacts is a new method of detecting and discover-
ing potentially COVID-19 infected individuals. Their
results show that smartphone contact tracing needs to
be combined with other control measures (for exam-
ple, wearing a mask, maintaining social distancing) to
be effective. Ferretti et al. [32] believed that the devel-
opment of a contact-tracing app that can detect and
notify the contacts of positive cases in time is an effec-
tivemeans to control the epidemic, without the need for
large-scale quarantine. Inspired by these results, in this
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paper, we included contact tracing from asymptomatic
individuals in our general epidemic model framework.

Due to the randomness of population movement and
the uncertainty of controlmeasures, themethods to pre-
vent and control the disease are still unclear. Since our
government has taken effective measures in a timely
manner, the domestic epidemic has been well con-
trolled. ByMay 2020, the average number of new local
infections in China does not exceed 3 cases, and the
spreadof the disease is basically under control [33]. The
second wave of the epidemic has started to rebound in
our county since June 2020 due to its complex etiology,
strong transmission, and strong environmental seasonal
correlation. In this paper, the first wave of the epidemic
refers to the period from the first confirmed case to
the clearing of COVID-19 patients in Wuhan on April
26, 2020. The re-emergence of newly increased con-
firmed cases in Beijing on June 11, 2020, indicates that
a second wave of the epidemic has started to rebound
in China. Subsequently, several domestic cities such
as Xinjiang, Liaoning, Qingdao, Tianjin, and Shanghai
have experienced small-scale outbreaks.

In this paper, we will mainly study the spread and
control laws of epidemics in the above four places in
China during the second wave of epidemics, and estab-
lish a scientific mathematical model based on the rele-
vant policies of epidemic control in China. The param-
eters of the model are determined based on the actual
data of the spread of the epidemic in the four groups.
The stability analysis, the sensitivity analysis, and the
optimal control strategies of the model are further stud-
ied. The main goal of this article is to establish a novel
epidemic model to describe the spread of COVID-19 in
China, and therefore to investigate the appropriate con-
trol strategies to minimize the control cost and ensure
the normal operation of society under the premise of
containing the epidemic. Themain contributions of this
paper are summarized as follows:

(1) For the first time, we will divide COVID-19 into
two stages, and propose the concepts of the first
wave and the second wave. This division helps
scholars and disease control departments to study
the spread of the epidemic more clearly. We are
currently in the second wave of the epidemic and
clearly recognizing that there are many objective
factors differentiating it from the first wave. This
article counts four sets of data from Beijing [34],
Liaoning [35], Xinjiang-1 (Urumqi area of Xin-

jiang) and Xinjiang-2 (Kashgar area of Xinjiang)
[36] during the second wave of epidemics, and
mines the common characteristics of the four sets
of data, which provide a basis for theoretical mod-
eling analysis and parameter selection of numeri-
cal simulation.

(2) We will establish a two-stage susceptible–
contacts–susceptible–contacts–infectious–re-
covered–susceptible (SC-SCIRS) epidemic
model. Compared with the traditional infectious
epidemic model, it contains two aspects of inno-
vations. One is to consider the traceability inves-
tigation at the initial stage of the outbreak, and
to check all suspicious people who have a close
basis with the case during the incubation period of
the virus. The second is to consider that the case
will be isolated once it is confirmed, so our model
does not consider the case of infected people. It
has the ability to spread only during the incuba-
tion period, and it provides clear guidance for our
later prevention and control, which is also in line
with our epidemic prevention and control policy.

(3) Combined with the current epidemic situation, we
will comprehensively consider the cost of dis-
ease treatment and control. Considering these two
aspects, we will prove the existence of optimal
control strategies. In the numerical simulation, we
will construct a three-stage dynamic control strat-
egy based on the laws of the data. This strategy is
operable and can provide effective suggestions to
the disease control department.

The article is organized as follows. In Sect. 2, the
data of four cities and their regularity are investigated.
In Sect. 3, a novel epidemic model is introduced. The
dynamic analysis of the model is completed in Sect. 4.
Numerical simulations and a brief summary will be
presented in Sects. 5 and 6, respectively.

2 Data mining

In order to accurately study the law of the incidence and
the spread of the second wave of epidemics, we firstly
obtain the epidemic case data in Beijing [34], Liaoning
[35], and Xinjiang [36] from the official website of the
Municipal Health Commission, as shown in Tables 1,
2, 3, and 4, respectively, and the trends of data as shown
in (a), (b), (c), and (d) of Fig. 1. Specifically, a total of
335 confirmed cases and a total of 335 discharged cases
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Table 1 Case data from June 11, 2020, to August 6, 2020, in Beijing

Date Newly increased Recovered Date Newly increased Recovered Date Newly increased Recovered

06-11 1 0 06-30 7 0 07-19 0 16

06-12 6 0 07-01 1 2 07-20 0 12

06-13 36 0 07-02 2 3 07-21 0 17

06-14 36 0 07-03 1 2 07-22 0 8

06-15 27 0 07-04 2 1 07-23 0 14

06-16 31 0 07-05 1 1 07-24 0 12

06-17 21 0 07-06 1 4 07-25 0 11

06-18 25 0 07-07 0 13 07-26 0 6

06-19 22 0 07-08 0 32 07-27 0 14

06-20 22 0 07-09 0 12 07-28 0 1

06-21 9 0 07-10 0 12 07-29 0 5

06-22 13 0 07-11 0 11 07-30 0 10

06-23 7 0 07-12 0 14 07-31 0 4

06-24 13 0 07-13 0 21 08-01 0 2

06-25 11 1 07-14 0 14 08-02 0 1

06-26 13 0 07-15 0 23 08-03 0 1

06-28 14 0 07-16 0 6 08-04 0 1

06-28 7 0 07-17 0 13 08-05 0 0

06-29 7 1 07-18 0 13 08-06 0 1

in Beijing, a total of 93 confirmed cases and a total of
93 discharged in Liaoning, a total of 826 confirmed
cases and a total of 826 discharged cases in Xinjiang-1
(Urumqi area ofXinjiang), a total of 78 confirmed cases
and a total of 78 discharged cases Xinjiang-2 (Kashgar
area of Xinjiang).

From these figures, we can find the following rules:

(1) The number of new cases reached a peak in about
a week, ranging from 14 days to as short as 2 days.
There is only one peak of new cases, and there will
be a slight rebound in the later period, but the overall
trend is declining.

(2) The largest scale is 826 cases, lasting 54 days, and
as few as 78 cases, with a minimum duration of 25
days. That is to say, the epidemic can be completely
controlled in less than 2 months.

(3) No deaths due to illness were reported in the four
places, and all confirmed hospitalized cases recov-
ered.

In brief, through the reasonable control of the coun-
try, these four epidemics were completely controlled
in a relatively short period of time, without large-scale
spread and no deaths. Themost important thing is that it

has not spread to other provinces or other cities, which
shows that the control strategy adopted by our country
is very efficient. Of course, the cost of control we pay is
also huge. The Beijing News reported on June 25, from
98 testing institutions with a daily testing capacity of
more than 40,000 copies to 128 institutions, 480 sam-
pling sites, 2422 sampling points, with a daily testing
capacity of more than 30,000 copies. In just over 10
days, Beijing has continued to improve its nucleic acid
testing capabilities and expand the scope of testing. As
of 0:00 on June 22, the city had sampled 2.948 mil-
lion people from core areas and groups, and the total
number of people detected was 2.342 million [37].

In fact, it shows that China’s control strategy for the
epidemic is correct and efficient. It is of practical guid-
ing significance to study epidemic control strategies
and the law of disease transmission. Based on the offi-
cial data and prevention and control policies during the
second wave of the epidemic in China, we will build
an epidemic model suitable for China’s strategy in the
next section, aims to study the optimal control strategy
that takes both cost and effect into consideration.
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Table 2 Case data from July 22, 2020, to August 29, 2020, in Liaoning

Date Newly increased Recovered Date Newly increased Recovered Date Newly increased Recovered

07-22 1 0 08-04 0 0 08-17 0 3

07-23 2 0 08-05 3 1 08-18 0 2

07-24 9 0 08-06 0 4 08-19 0 10

07-25 13 0 08-07 0 3 08-20 0 3

07-26 14 0 08-08 0 5 08-21 0 1

07-27 6 0 08-09 0 6 08-22 0 1

07-28 8 0 08-10 0 4 08-23 0 2

07-29 5 0 08-11 0 5 08-24 0 3

07-30 11 0 08-12 0 11 08-25 0 1

07-31 8 0 08-13 0 5 08-26 0 0

08-01 3 0 08-14 0 13 08-27 0 2

08-02 8 0 08-15 7 4 08-28 0 2

08-03 2 0 08-16 7 1 08-29 0 1

Table 3 Case data from July 17, 2020, to September 7, 2020, in Xinjiang-1 (Urumqi area of Xinjiang)

Date Newly increased Recovered Date Newly increased Recovered Date Newly increased Recovered

07-16 – – 08-03 28 12 08-21 0 47

07-17 16 0 08-04 22 10 08-22 0 29

07-18 13 0 08-05 27 8 08-23 0 15

07-19 17 0 08-06 26 20 08-24 0 23

07-20 8 0 08-07 25 28 08-25 0 36

07-21 9 0 08-08 15 30 08-26 0 17

07-22 18 0 08-09 14 47 08-27 0 14

07-23 13 0 08-10 13 38 08-28 0 19

07-24 20 0 08-11 9 41 08-29 0 12

07-25 22 0 08-12 8 38 08-30 0 13

07-26 41 0 08-13 8 49 08-31 0 15

07-27 57 0 08-14 7 33 09-01 0 12

07-28 89 2 08-15 4 41 09-02 0 2

07-29 96 4 08-16 0 23 09-03 0 4

07-30 112 3 08-17 0 24 09-04 0 2

07-31 31 7 08-18 0 23 09-05 0 4

08-01 30 7 08-19 0 29 09-06 0 7

08-02 28 7 08-20 0 28 09-07 0 3

3 Mathematical modeling

According to current epidemiological investigations,
the average incubation period of COVID-19 is about
7 days, with a minimum of 2–3 days and a maximum
of 24 days. General medical observations are based on
14 days. Under the current epidemic prevention and

control policies in China, imported overseas cases and
domestic cases must be isolated in a very safe way
and are not in a position to spread to others. How-
ever, confirmed cases are also transmissible during the
incubation period, which shows exactly the difficulty in
controlling the epidemic. When one or more cases are
detected in a city, thefirstmeasure that needs to be taken
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Table 4 Case data from October 27, 2020, to November 19, 2020, in Xinjiang-2 (Kashgar area of Xinjiang)

Date Newly increased Recovered Date Newly increased Recovered Date Newly increased Recovered

10-27 22 0 11-04 8 0 11-12 0 5

10-28 23 0 11-05 6 0 11-13 0 7

10-29 0 0 11-06 0 4 11-14 0 4

10-30 6 0 11-07 28 12 11-15 0 47

10-31 3 0 11-08 0 3 11-16 0 2

11-01 3 0 11-09 0 2 11-17 0 7

11-02 5 0 11-10 0 5 11-18 0 4

11-03 2 0 11-11 0 11 11-19 0 4

Table 5 The meaning of the parameters in the model (1)

β1 The average contact rate before the first case is confirmed 0 < β < 1

α The number of confirmed cases at τ1 α ∈ N+

ν The contact rate of α cases with other people in the previous 14 days 0 < ν < 1

β The average contact rate between contact and susceptible 0 < β < 1

η The probability of contacts being infected 0 < η < 1

μ Minority population with good protection knowledge and not participating in social activities 0 < μ < 1

γ The probability of patient who is recovered 0 < γ < 1

ε Mortality due to the disease 0 < ε < 1

ξ The probability of recovered becoming susceptible again 0 < ξ < 1

immediately is to trace the contacts closely related to
the case, including his colleagues, familymembers, and
the main group of people in the activity track within
14 days. The supermarkets, restaurants, and vehicles
he traveled in must be strictly checked. Based on the
current advanced information technology and the high
popularity of communication equipment, people who
have direct and indirect contact with confirmed cases
can be quickly identified.

Strictly isolating confirmed cases and focusing on
tracing peoplewhohave been in contactwith confirmed
cases are two important measures to control the spread
of the epidemic. To more effectively prevent the spread
of the outbreak, we have expanded the contact popula-
tion to include people who are close to the case in the
region. For example, a case was confirmed in the Bei-
jing Xinfadi market on June 11, 2020. The people we
need to closely control including not only those who
have direct or indirect contact with the case within 14
days but also all residents within a certain spatial dis-
tance centered on the Xinfadi market. This contain-
ment relationship and the evolution of the epidemic are

shown in Figs. 2 and 3, where τ1 and τ2 represent two
random times, with τ1 representing the time when the
first case of the epidemic was confirmed, and τ2 rep-
resenting the time when the last case of the epidemic
was discharged. The variables S1(t) and S(t) represent
the class of susceptible in two different periods, and
C1(t) represents the class of direct contact with con-
firmed cases in the previous 14 days. The variableC(t)
represents the class of direct or indirect contacts with
the case, andC(t)must include and have a wider range
than C1(t). In Fig. (2), the rectangular bar, C1(τ1), can
be used to indicate the people who have been in con-
tact with all the movement trajectories of the case, then
C(τ1) includes direct and indirect contacts and all res-
idents within a certain distance from the source of the
disease. The variable C(t) represents the class of con-
firmed case, and R(t) represents the class of recovered
in confirmed case.

Drawing on the modeling theory of epidemic, we
establish the following SC-SCIR model according to
the evolution relationship in Fig. 3
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Fig. 1 Case data in four cities

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

The first stage:

Ṡ1(t) = −β1S1(t)C1(t)

Ċ1(t) = β1S1(t)C1(t) + ανC1(t)

}

t ∈ [−14, τ1],

The second stage:

Ṡ(t) = 
 − [β − u(t)]SC − μS + ϕC + ξ R

Ċ(t) = [β − u(t)]SC − (η − ϕ)C

İ (t) = ηC − (γ + ε)I

Ṙ(t) = γ I − ξ R

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

t ∈ (τ1, τ2].

(1)

The six equations in model (1) describe two differ-
ent stages of the spread of the epidemic. The first stage
mainly describes the number of contacts with the case
from the first patient diagnosis to the previous 14 days
(the incubation period of the virus), aiming to unearth
all direct or indirect contact with the case. The second
stage mainly describes the outbreak of the epidemic

123



1498 X. Lü et al.

Fig. 2 Traceability process of contacts with cases

from the diagnosis of the first patient to the discharge of
the last case, aiming to study the spread of the epidemic,
and then adopt effective control strategies. The mod-
eling idea of the two-stage model is derived from the
spread of the incubation period of COVID-19, which
is also the innovation of the model in this article com-
pared with the traditional epidemic model. In addition,
considering China’s current strict isolation policy for
patients, another innovation of this model is that it does
not consider the transmission rate of confirmed cases.
In our model (1), the two equations in the first stage are
used to describe the traceability process. This process
is not an infectious process. The α individuals diag-
nosed at the moment of τ1 is used as the source to trace
back the populations ανC1(t) with whom they have
direct contact within 14 days, and the indirect basic
population β1S1(t)C1(t). It is worth emphasizing that
the parameters β1 and β in the model (1) are not the
infection rate, but the contact rate between people in

different periods, and the meaning of other parameters
in model (1) are shown in Table 5.

The evolution of the second stage is described by the
last four equations of the model. Since the confirmed
cases are isolated, our model does not consider the case
infection item βSI, which is also the biggest difference
between our model and the traditional epidemicmodel.
In our model, C(t) indicates people who have direct
or indirect contact with the case and are geographi-
cally close to the source of the disease. The contact
class C(t) may be an infected latent person, that is, the
class C(t) may become I (t). Of course, C(t) may not
be infected, and after the incubation period, its suspi-
ciousnesswill be ruled out and become a susceptible. In
addition, it is also necessary to consider that COVID-19
does not receive lifelong immunity after a cure. There-
fore, the class of recovered R(t) will become a sus-
ceptible again. However, after undergoing a treatment,
the class of recovered R(t) will become more aware of
self-protection compared to ordinary residents.

Based on the above analysis, an effectiveway to con-
trol the spread of the epidemic is to control the contact
between C(t) and S(t) in the area after the moment
of τ1. Given that the population of C(t) is huge, it is
costly to achieve complete isolation of C(t). At the
same time, this is unnecessary and will hinder the nor-
mal society from resuming work and production order
in the region. On the other hand, if the class C(t) is
not controlled, it will inevitably lead to serious epi-
demic spread. Therefore, it is very necessary to choose
an appropriate control strategy so that the epidemic can
be effectively controlled within a small area, while also
ensuring the normal operation of various social tasks.
In the next section, we will conduct a comprehensive
analysis of the dynamic behavior and optimal control
strategy of the model (1).

Fig. 3 Scheme of the
SC-SCIR model
transmission for COVID-19
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4 Main results

Note that the model (1) includes the SC model before
τ1 and the SCIRS after τ1. The SC model is a tracing
process. It is calculated and inferred according to the
contact rate between people in [τ1−14, τ1] all contacts
C(t), then which can provide initial value basis for the
SCIRS model. Therefore, we only need to analyze the
dynamic behavior of the SCIRS model as follows
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ(t) = 
 − [β − u(t)]SC − μS + ϕC + ξ R,

Ċ(t) = [β − u(t)]SC − (η + ϕ)C,

İ (t) = ηC − (γ + ε)I,

Ṙ(t) = γ I − ξ R,

S(τ1) = 0, C(τ1) = C1(τ1) + ρ(P),

I (τ1) = 0, R(τ1) = 0,

t ∈ [τ1, τ2],

(2)

where ρ(P) represents all residents within the range of
P from the source of disease ρ. The first goal of our
research is to establish a suitable control strategy u(t)
so that all cases are cured and all contacts are released
from medical observation τ2, that is

lim
t→τ2

C(t) = lim
t→τ2

I (t) = lim
t→τ2

R(t) = 0

and limt→τ2 S(t) = χ , where χ represents a relatively
constant population of the city.

4.1 Stability of disease-free equilibrium

The model (2) is a nonautonomous system, because
the contact rate β − u(t) depends on the time t . The
control function u(t) is very sensitive to time. In the
early stage of the epidemic, the intensity of control is
greatest. As the epidemic is gradually controlled, it is
necessary to reduce the degree of control and gradually
restore normal social production order. For the conve-
nience of studying the problem, we define an average
contact rate as follows

β̄ =
∫ τ2
τ1

[β − u(t)] dt
τ2 − τ1

. (3)

In view of the classic methods of infectious diseases
(see [41]), we define the basic reproduction number of
the model (2) as follows

R0 = 
β

μη + μϕ
. (4)

Of course, the meaning ofR0 in this paper is different
from the average infection rate in infectious diseases.
Here,R0 only refers to the average number of suscepti-
ble persons in contact with one contact. Through direct
calculation, the following lemma can be obtained.

Lemma 1 Themodel (2) admits a disease-free equilib-

rium E0

(


μ

, 0, 0, 0
)
if the basic reproduction number

R0 < 1; ifR0 > 1, then the model (2) admits another
nontrivial positive equilibrium as follows

E1 = (S∗,C∗, I ∗, R∗)

=
(

η + ϕ

β
,

(γ + ε)(
β − μη − μϕ)

βηε
,


β − μη − μϕ

βε
,

γ (
β − μη − μϕ)

βεξ

)

.

We have the following conclusions about the stability
of disease-free Theorem E0.

Theorem 1 The disease-free equilibrium E0(


μ

, 0, 0, 0
)
of model (1) is globally asymptotically

stable if β̃

μ

< η + ϕ.

Proof Letting the right sides of the four equations of
the model (2) equal to f1(S,C, I, R), f2(S,C, I, R),
f3(S,C, I, R) and f4(S,C, I, R), then we can calcu-
late the Jacobian matrix of the model (2)

J |(S,C,I,R) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂ f1
∂S

∂ f1
∂C

∂ f1
∂ I

∂ f1
∂R

∂ f2
∂S

∂ f2
∂C

∂ f2
∂ I

∂ f2
∂R

∂ f3
∂S

∂ f3
∂C

∂ f3
∂ I

∂ f3
∂R

∂ f4
∂S

∂ f4
∂C

∂ f4
∂ I

∂ f4
∂R

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

−[β − u(t)]C − μ −[β − u(t)]S + ϕ 0 ξ

[β − u(t)]C [β − u(t)]S − (η + ϕ) 0 0
0 η −(γ + ε) 0
0 0 γ −ξ

⎞

⎟
⎟
⎠ .

Further, we get

J |( 

μ

,0,0,0
) =

⎛

⎜
⎜
⎜
⎝

−μ − β̃

μ

+ ϕ 0 ξ

0 β̃

μ

− (η + ϕ) 0 0
0 η −(γ + ε) 0
0 0 γ −ξ

⎞

⎟
⎟
⎟
⎠

.
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We can get the characteristic equation of the Jacobian
matrix J |( 


μ
,0,0,0

)

f (λ) = |λE − J |( 

μ

,0,0,0
)

=

⎛

⎜
⎜
⎜
⎝

λ + μ − β̃

μ

− ϕ 0 −ξ

0 λ − β̃

μ

+ (η + ϕ) 0 0
0 −η λ + (γ + ε) 0
0 0 −γ λ + ξ

⎞

⎟
⎟
⎟
⎠

= (λ + γ + ε)(λ + μ)(λ + ξ)

(

λ + η + ϕ − β̃


μ

)

= 0.

It is easy to get the four eigenvalues of the characteristic
equation

λ1 = −(γ + ε), λ2 = −μ, λ3 = −ξ,

λ4 = β̃


μ
− (η + ϕ).

Obviously, the eigenvalues of the characteristic equa-

tion are all negative if β̃

μ

< η + ϕ. Therefore,
in view of Lyapunov stability theory (see [41]), we
can get the conclusion that disease-free equilibrium

E0

(


μ

, 0, 0, 0
)
of the model (1) is globally asymp-

totically stable. The proof is completed. ��
Remark 1 Stability is relative to the equilibrium,which
refers to the ability of the system to continue tomaintain
equilibrium after being disturbed. For the disease-free
equilibrium E0 of the model (2), its global asymptotic
stability means that the solution of the model (1) will
still converge to E0. Of course, to ensure the stability
of E0, the condition R0 < 1 must be satisfied. There-
fore, analysis of the sensitivity of each parameter inR0

combined with the operability of the parameters is very
necessary for more effective control of the epidemic.

The disease-free equilibrium E0

(


μ

, 0, 0, 0
)
is the

ultimate goal of epidemic control.Note that the stability
of disease-free equilibrium is related to the basic repro-
duction number R0. In order to ensure that the con-
ditions of the theorem are met, its effective measures
should reduce the contact rate β̄. According to current
official data, the probability that newcoronary pneumo-
nia forming an endemic disease is almost zero. Under
China’s epidemic policy, even if there is a wavelet epi-
demic, it still does not have the conditions to form an
endemic disease. Therefore, we will not discuss the
stability of the positive equilibrium E1 of the model
(2) when R0 > 1. In this paper, we mainly study the
appropriate control strategies to ensure R0 < 1.

4.2 Sensitivity indices of model (2)

According to the conclusions obtained in Sect. 4.1, the
basic reproduction number R0 is an important indicator
for epidemic control. Therefore, as long as the analy-
sis is clear about the sensitivity of each parameter to
R0 and the operability of epidemic control, it reflects
how each of the COVID-19 parameters influcence the
performance of the proposed approach. First, we ana-
lyze the sensitivity of basic reproduction number R0

to various parameters. According to the literature [40],
we give the following definition.

Definition 1 The normalized forward sensitivity index
of a variable R0 depends on a parameter p, and is
defined as:

γR0
p := ∂R0

∂p
× p

R0
.

It is easy to calculate that

γ
R0

 = β

μη + μϕ

μη + μϕ

β
= 1,

γ
R0
β = 


μη + μϕ

μη + μϕ



= 1,

γR0
μ = − 1

μ2


β

η + ϕ

μ2(η + ϕ)


β
= −1,

γR0
η = − 1

(η + ϕ)2


β

μ

ημ(η + ϕ)


β
= − η

η + ϕ
,

γR0
η = − 1

(η + ϕ)2


β

μ

ϕμ(η + ϕ)


β
= − ϕ

η + ϕ
.

According to the basic characteristics of the epi-
demic model, the smaller the basic reproduction num-
berR0 is, the more conducive it is to control the spread
of the disease. In the article,R0 describes the cumula-
tive scale of the contact population C(t) and the speed
at which it tends to zero. Because of the sensitivity
analysis of the parameters of R0, the input rate 
 and
the contact rate β are positively correlated with R0 .
That is, it is an effective way to control the epidemic by
effectively reducing the imported population and con-
trolling the direct contact of the population in the city.
The parameters μ, η, and ϕ are negatively related to
R0. In other words, increasing the values of these three
parameters is beneficial to controlling the epidemic.
At present, all walks of life are operating normally, and
residents participate in necessarywork and social activ-
ities, which means that μ is small and there must be an
upper bound. The parameter η is the infection rate of
the class contacts, which is determined by the inherent
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transmission nature of the disease. We do not want to
increase the infection rate to achieve the goal of con-
trolling the epidemic. The parameter ϕ means that the
contact ruled out the possibility of being infected this
time, which requires multiple nucleic acid tests and the
incubation period to reach a conclusion.

In short, the above analysis shows that the three
parameters negatively correlated with R0 are not con-
trollable, or not currently the most effective method.
Similarly, for the input entrance
 of a big city, the exis-
tence range does not have strong controllability. The
most effective way is to control the contact rate, appro-
priately reduce the necessary social activities, take pro-
tectivemeasures in public places, andmaintain the nec-
essary safety distances. However, control is costly and
will inevitably affect the normal production order of
society. The focus of this paper is to calculate the opti-
mal control strategy, which can not only control the
spread of the epidemic but also minimize the control
cost. In the next section, we will give relevant conclu-
sions.

4.3 Optimal control strategies

Let u(t) be the control variable used to control the con-
tact rate of contacts with other susceptible individu-
als. We define the set of allowed control functions as
U = {u(t), 0 < u(t) < β, t ∈ [τ1, τ2]}. The main
aim is to study the optimal control strategy, consider-
ing both the costs of treatment of infected individuals
and the costs of control. The objective is to

min J [u(t)] =
∫ τ2

τ1

[κ1 I 2(t) + κ2u
2(t)] dt, (5)

where κ1 and κ2 represent the weight of control popula-
tion contact cost and the treatment cost of the infected,
respectively. Since all variables in themodel are contin-
uous, the solution of the control system is bounded. In
addition, the objective function is convex with respect
to the control variable u(t). Therefore, in view of
Filippove–Cesari theorem (see [38]), we can get the
conclusion that the solution to the optimal control prob-
lem is existential.

Theorem 2 The control problems (2) and (5) with
initial conditions (S1(τ1),C(τ1), α, 0) exist a unique
optimal solution (S∗(·),C∗(·), I ∗(·), R∗(·)) associ-
atedwith an optimal control u∗(t) on [τ1, τ2], with fixed
final time t f , where

u∗(t) = min

{

β, max

(

0,
(λ2 − λ1)S(t)C(t)

2κ2

)}

.

Moreover, there exist adjoint functions λ∗
i (·), i =

1, 2, 3, 4, satisfying
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

λ̇∗
1(t) = (λ1 − λ2)[β − u(t)]C(t) + μλ1,

λ̇∗
2(t) = (λ2 − λ1)[β − u(t)]S(t)

+ λ2(η − ϕ) − (λ1 + λ3),

λ̇∗
3(t) = (γ + ε)λ3 − γ λ4,

λ̇∗
4(t) = (λ4 − λ1)ξ,

and the transversality conditions λ∗
i = 0, i =

1, 2, 3, 4.

Proof According to the Pontryagin maximum princi-
ple [39], the Hamiltonian function H of control prob-
lems (2) and (5) is defined by

H(S,C, I, R, λ, u(t))

= κ1 I
2(t) + κ2u

2(t)

+ λ1(t)(
 − [β − u(t)]SC − μS + ϕC + ξ R)

+ λ2(t)([β − u(t)]SC − (η − ϕ)C)

+ λ3(t)(ηC − (γ + ε)I ) + λ4(t)(γ I − ξ R),

where λ(t) = (λ1(t), λ2(t), λ3(t), λ4(t)) with a non-
trivial absolutely continuous mapping λ : [0, t f ] →
R, such that

Ṡ(t) = ∂H

∂λ1
, Ċ(t) = ∂H

∂λ2
,

İ (t) = ∂H

∂λ3
, Ṙ(t) = ∂H

∂λ4
,

and

λ1(t) = −∂H

∂S
= (λ1 − λ2)[β − u(t)]C(t) + μλ1,

λ2(t) = −∂H

∂C
= (λ2

− λ1)[β − u(t)]S(t) + λ2(η − ϕ) − (λ1 + λ3),

λ3(t) = −∂H

∂ I
= (γ + ε)λ3 − γ λ4,

λ4(t) = −∂H

∂R
= (λ4 − λ1)ξ,

and the minimization condition

H(S∗(t),C∗(t), I ∗(t), R∗(t), λ, u∗(t))
= min

0<u(t)≤β
H(S∗(t),C∗(t), I ∗(t), R∗(t), λ, u(t))

holds almost everywhere on [τ1, τ2]. Moreover, the
transversality conditions λi (t f ) = 0 hold. The opti-
mal control in the above formula u∗(t) can be obtained
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by the stationary point of the function, let

∂H

∂u

∣
∣
∣
∣
u(t)=u∗(t)

= 2κ2u
∗(t) + (λ1 − λ2)S(t)C(t) = 0,

then we get

u∗(t) = min

{

β, max

(

0,
(λ2 − λ1)S(t)C(t)

2κ2

)}

.

In summary, the control problem admits a unique
optimal solution (S∗(·),C∗(·), I ∗(·), R∗(·)) associated
with an optimal control u∗(t) such that the objective
function to the minimum. The proof is completed. ��
Remark 2 The objective function (5) includes two
parts: the number of infected people and the cost of con-
trol, which establishes the rules for the optimal control
strategy. In other words, we need to take into account
the epidemic situation and control costs at the same
time as the rules for establishing the optimal control
strategy.

The conclusion of Theorem (2) not only gives the
existence of optimal control but also gives the expres-
sion of optimal control u∗(t), which is very important.
This means that there is an appropriate scale to control
population contact, avoiding the harm caused by two
extreme strategies. If the control strategy is too strong, it
is true that the best control effect will be achieved, but
huge control costs need to be paid, which will affect
the normal production order of the society. In addi-
tion, based on the current world’s full understanding of
the epidemic and China’s abundant medical resources,
transitional restrictions on social communication are
unnecessary and a waste of resources. At this stage,
the complete restoration of normal order without con-
trol will inevitably lead to the spread of the epidemic.
Therefore, it is very necessary to study the reasonable
control intensity.

5 Numerical simulation and discussion

To illustrate and further expand our theoretical results,
we use the software MATLAB to perform numerical
simulation on themodel (2). Because ourmodelmainly
studiesChina’s transmission laws and control strategies
during the second wave of epidemics, regarding the
selection of parameters in the model (2), we mainly
use the data in Tables 1, 2, 3, and 4. For example, in
the four sets of data, there are no deaths and all patients

Table 6 Major parameters of model (2)


 β μ ϕ ξ η γ ε

0.01 0.2 0.01 0.99 1 0.01 1 0

recovered. Therefore, we select the death rate ε = 0
and the recovery rate γ = 1. Note that the number of
confirmed cases in a single day and the overall scale of
the epidemic are smaller, whichmeans that the contacts
will recover with a very high probability, so we set ϕ =
0.99 and η = 0.01. The selection of other parameters
is also based on actual data, as shown in Table 6.

Also, in order to highlight the role of contact rate
in the spread of the epidemic, first we assume that
u(t) = 0 and β = 0.2. In other words, without a con-
trol strategy, a fixed contact rate β is given to show the
long-term asymptotic dynamic behavior of the model
(2). Furthermore, we give four different sets ofβ values
to compare the regulation evolution of S(t),C(t), I (t),
R(t), respectively. We can calculate the basic regener-
ation numberR0 under four groups of different contact
rates as follows

R0|β=0.8 = 0.7339, R0|β=0.6 = 0.5505,

R0|β=0.4 = 0.3670, R0|β=0.2 = 0.1835.

In view of Theorem 1, the solution of the model (2)
will converge to the equilibrium disease-free equilib-
rium E0 if R0 < 1. According to the basic theory of
epidemic, the smaller the value of the basic reproduc-
tion number R0 is, the faster the model solution con-
verges to the disease-free equilibrium point is. In (a)

of Fig. (4), we can see that the solution of the model (2)
converges to the equilibrium point within 50 days to 60
when β = 0.2.With the increase in β (from 0.2 to 0.8),
the population of contactedC(t), the infected I (t), and
the recovered R(t) all increase, and its convergence to
0 will also slow down and will be delayed for about
100 days, which are shown in a, b, and c of Fig. (4).
Note thatR0 is positively correlated with β. Therefore,
controlling the contact rate β will be an effective way
to curb the spread of the epidemic.

Note that the expression (3), β̃ represents the aver-
age contact rate, which is a constant. In Fig. 4, we also
give four sets of fixed values of β, and set u(t) = 0,
which means that the average contact rate replaces
the contact rate over the entire time interval. In fact,
since the control strategy u(t) is a function of time
t at the beginning of the epidemic, we should adopt
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Fig. 4 Long-term asymptotic dynamic behavior of model (2)

strict controlmeasures to limit themovement and expo-
sure of the population. With a large number of inves-
tigations, including nucleic acid testing, isolation, and
observation, or other measures, the epidemic has been
controlled basically. At this time, it is also necessary
to properly resume production to ensure the opera-
tion of the city and the normal life of residents. For
this purpose, we construct a monotonically decreas-
ing piecewise function with respect to time t as fol-
lows

u(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0.5, τ1 = 0 ≤ t ≤ 6,

− 1

55
t + 67

110
, 6 < t ≤ 17,

− 1

130
t + 28

65
, 17 < t ≤ τ2 = 56.

(6)

The three-stage function in u(t) is based on the four
sets of data, which is shown in (a) of Fig. (5). Note that
the characteristics of the four sets of data are shown in
Table 7. The spread of an epidemic can also be divided
into three stages. The first stage represents the confir-
mation of the first case to the maximum increase in a
single day.According to the four groups of data,we take
the median as 6 days. At the end of the second stage,
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Fig. 5 Dynamic control strategy u(t) and dynamic contact rate β̃(t)

Table 7 Characteristic of data

Characteristic

Data Maximum Zero additions Cleared to zeros

Beijing 4 days 26 days 56 days

Liaoning 6 days 17 days 41 days

Xinjiang-1 14 days 31 days 54 days

Xinjiang-2 2 days 11 days 25 days

there are zero new cases, and we take the median as 17
days. At the end of the third stage, the last patient has
recovered, which means the ending of the epidemic.
The maximum time we take is 56 days. Based on the
above analysis, (6) can represent a control strategy that
changes over time and is divided into three stages. Fur-
ther, we can calculate a dynamic change contact rate as
follows, which is shown in (b) of Fig. (5).

β̃(t) = β − u(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0.1, τ1 = 0 ≤ t ≤ 6,

1

55
t − 1

110
, 6 < t ≤ 17,

1

130
t + 11

65
, 17 < t ≤ τ2 = 56.

To clarify the rationality of introducing a dynamic con-
trol strategy, we can calculate the average contact rate
of β̃(t) in the interval [τ1, τ2] = [0, 56] as follows

β̃ =
∫ 6
0 0.1 dt + ∫ 17

6

( 1
55 t − 1

110

)
dt + ∫ 56

17

( 1
130 t + 11

65

)
dt

56
= 0.3634.

The dynamic behavior of themodel (2) at the contact
rate β̃(t) and β̄ is shown in Fig. 6. Obviously, under the
two equivalent control strategies, the control effect of
β̃(t) is better than that of β̄. That is, the effect of the
control strategy adjusted in time with the change of the
epidemic is better than the fixed strategy of equivalent
strength. Theorem2proved the existence of the optimal
control strategy when considering the control cost. The
control strategy (6) is an effective construction based
on actual data, and the numerical simulation (Fig. 5)
proves the good effect that can be achieved under this
construction. This provides the disease control depart-
ment with an actionable and effective control strategy
suggestion.

6 Conclusions

In this paper, we mainly focus on the spread and con-
trol of the secondwave of epidemics inChina.Different
countries have different ideologies and adopt different
strategies to deal with the spread of the epidemic. This
has led to the failure of countries around the world to
quickly form an effective control strategy, making the
epidemic still spreading so far. Therefore, it is impor-
tant to study the spread of the disease in the context
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Fig. 6 Long-term asymptotic dynamic behavior of model (2)

of relevant national and regional control policies. The
mathematical model established by scholars has the-
oretical guidance for epidemic control. Therefore, the
established model must be combined with the actual
situation of the country, and the proposed control strat-
egy can be implemented.

In this work, we investigated the case data and reg-
ularity in four cities: Beijing, Liaoning, Urumqi, and
Kashgar. Mining the regularity of the data in detail
lays the foundation for the establishment of mathe-
matical models and parameter selection for numeri-
cal simulation. Furthermore, a two-stage SC-SCIRS
epidemic model with traceability characteristics and
dynamic control strategy was established, and the
dynamic behavior of the model was studied. Specif-
ically, the existence and stability of the disease-free
equilibrium point of the model and the sensitivity of
the basic regeneration number to the parameters have
been rigorously demonstrated. Additionally, consider-
ing the control cost and treatment cost, the existence of
the optimal control strategy is proved. Numerical sim-
ulation verified and extended the theoretical results. In
particular, we constructed a three-stage function in u(t)
is based on the four sets of data. This control function
can adjust the intensity in time based on the outbreak
of the epidemic. This control function can adjust the
intensity appropriately based on the outbreak situation
of the epidemic. And through numerical simulation, it
is proved that the effect of dynamic control strategy

is better than that control strategy with fixed intensity.
An important conclusion is that controlling the class
contacts with others is an effective measure to curb the
spread of the epidemic. In addition, a dynamic control
strategy based on the regularity of actual data was con-
structed and its effectivenesswas verified. This strategy
is feasible and can provide feasible theoretical guidance
for disease control departments.

The model established in this paper is closely inte-
grated with China’s current epidemicmanagement pol-
icy. For example, when a case is diagnosed, the official
website will promptly report its trajectory and look for
people in the same vehicle. This process corresponds
to the two equations of the first stage in model (1).
Because the model in this paper is based on existing
data and policies, the epidemic in China has achieved
good results and is consistent with the conclusions in
the paper, which is the application and effective veri-
fication of our research results. Our research focuses
on finding the optimal control strategy between epi-
demic control and economic development. This is a
serious problem facing the world, especially in coun-
trieswithmore severe epidemics. In the futurework,we
will promote our research methods and results, estab-
lish epidemic models applicable to different national
conditions and policies, and provide feasible sugges-
tions for countries around the world to adopt effective
control strategies.
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