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Stability and rheology of dilute TiO2-water nanofluids
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Abstract

The apparent wall slip (AWS) effect, accompanying the flow of colloidal dispersions in confined geometries, can be

an important factor for the applications of nanofluids in heat transfer and microfluidics. In this study, a series of dilute

TiO2 aqueous dispersions were prepared and tested for the possible presence of the AWS effect by means of a novel

viscometric technique. The nanofluids, prepared from TiO2 rutile or anatase nanopowders by ultrasonic dispersing in

water, were stabilized by adjusting the pH to the maximum zeta potential. The resulting stable nanofluid samples

were dilute, below 0.7 vol.%. All the samples manifest Newtonian behavior with the fluidities almost unaffected by

the presence of the dispersed phase. No case of important slip contribution was detected: the Navier slip coefficient

of approximately 2 mm Pa-1 s-1 would affect the apparent fluidity data in a 100-μm gap by less than 1%.

Background
Bulk rheological properties of nanofluids (shear viscosity

[1,2], yield stress [3-7], and complex modulus [8]) can

be important factors for some applications (e.g., convec-

tive heat transfer [9,10], and filtration [5]) and can also

provide some correlations with other properties, such as

volumetric particle concentration [1,2], thermal conduc-

tivity [11,12], or ξ-potential [3-6].

On the other hand, there are processes with a domi-

nant microscopic length scale, such as small Nernst diffu-

sion thickness in heat/mass transfer [13], small hydraulic

radius in microfluidics [14-17], small pore diameter in

filtration [5], etc., where the bulk rheology characteristics

should be completed using another kind of information.

In some cases, two-scale description (particle size or

inter-particle distance vs. hydraulic radius) is useful [15].

In other cases, an additional macroscopic interfacial

property, like apparent wall slip (AWS) velocity [18,19],

could provide the missing information.

In this study, we examine experimentally the AWS

effect in dilute TiO2-water nanofluids, using a novel

AWS viscometric technique [19].

Experimental procedure
Preparation and stability of the samples

Sample nanofluids were prepared by dispersing a nano-

powder in an aqueous electrolyte solution (the base

solution). The TiO2 nanopowders (A1, A2, A3, R1, and

R2) used in this study are specified in Table 1. The base

solutions with adjusted pH values were prepared by

adding HCl or NaOH to demineralized water with a

possible content of dissolved gases.

In preliminary experiments, 0.02 g of a nanopowder

was added into 25 mL of each base solution. The flask

with a suspension was treated for 30 min in a 40-kHz

ultrasonic bath with a nominal acoustic power of 30 kW

m-3. The samples were then tested using DLS technique

(Zetasizer Nano ZS - Malvern Instruments) to deter-

mine the zeta potential, ξ. Actual values of pH, see

Figure 1, slightly differ from idealized log-linear esti-

mates (dotted line in Figure 1) even for a series of the

base solutions. This difference is caused by dissociation

of water and hydrated TiO2, as well as by the presence

of dissolved CO2 (around cNaOH = 10-5 mol/L). The

resulting ξ-potentials dependent on the actual measured

pH values are plotted in Figure 2.

Assuming that the maximum stability of a TiO2-water

dispersion, i.e., the highest resistance against sedimenta-

tion, can be achieved at the extreme values of ξ-potential

[1], further ten samples (A1±, A2±, A3±, R1±, and R2±),

were prepared to examine their particle size distribution

using again the DLS technique; see also Table 2. The pre-

paration of these samples differs from the preliminary

procedure only in the utilization of a larger primary

amount of nanopowder (2.5 g in 100 g of dispersion) and

a longer ultrasonication time (24 h). An external cooling

system was employed to keep the sample at a constant

temperature of 23°C during ultrasonic treatment. After

keeping the sample aside for next 8 h, the sediment
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(ranging from 5 to 90% of the original content of nano-

powder) was withdrawn and weighed to determine the

final real particle concentration, shown in Table 2.

The resulting particle size distributions, Figure 3, show

remarkable differences in the behaviors of anatase- and

rutile-based dispersions. While the anatase dispersions

display the maximum content of the finest particles in

acid media (A1+, A2+, and A3+), the rutile dispersions

in acid media (R1+ and R2+) are much more coarse. In

alkaline media, on the contrary, the anatase dispersions

(A1-, A2-, and A3-) display a remarkable shift toward

coarse clusters, whereas the rutile dispersions (R1- and

R2-) become finer. As a matter of fact, the coarser dis-

persions (A1-, A2-, A3-, R1+, and R2+) settle rather

fast, while the finer dispersions (A1+, A2+, A3+, R1-,

and R2-) are stable for a few days. Only the stable dis-

persions were further subjected to rheological examina-

tions using the AWS rotational viscometry.

AWS rotational viscometry

The concept of AWS effect from the viscometric view-

point [17-19] is illustrated in Figure 4 for the simple

shear flow between two mutually sliding parallel plates.

A possible near-wall flow anomaly, resulting in a non-

linear velocity profile under constant shear stress s, is

represented by the apparent slip velocity u. The only

experimentally available kinematic quantity, the sliding

velocity U, determines the apparent shear rate gapp ≡ U/

h (or gapp = ΩR/h for the Couette flow in a narrow gap

h between two coaxial cylinders), which is expressed as

a sum of the bulk flow and wall slip contributions, as

follows:

γapp = γ + 2u/h = (ϕ[σ ] + 2χ[σ ]/h) σ (1)

Table 1 Nanopowders used for the preparation of

nanofluids

Powder Mineral Source Density (g cm-3) Max. size (nm)

A1 TiO2 anatase Aldrich 3.90 25

A2 TiO2 anatase ICPFa 3.90 40

A3 TiO2 anatase ICPFa 3.90 20

R1 TiO2 rutile Aldrich 4.17 100

R2 TiO2 rutile Prechezab 4.17 100

aICPF - nanopowder for photocatalytic application supplied by Department of

Catalysis of ICPF ASCR, Prague.
bPrecheza - commercial pigment, produced by Prerov Chemical Works, Czech

Republic.
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Figure 1 Titration curves of the tested samples. Dotted line shows an idealized titration curve. Deviations for the individual samples are due

to dissociation of hydrated TiO2 and dissolved CO2.
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Two material functions, the bulk fluidity �[s] ≡ g/s

and the Navier slip coefficient c[s] ≡ u/s, are constant

in many cases [17-19]. The flow and slip effects can be

distinguished through a series of viscometric experi-

ments, in which the gap thickness h is systematically

varied whereas the shear stress s is kept constant. This

is the essence of AWS viscometry.

Rotational viscometer with a KK sensor

The experimental realization of AWS viscometry needs

a series of sensors of different and well-calibrated

hydraulic radii (tube radius in the capillary viscometry,

gap thickness between cup and bob in the rotational vis-

cometry, etc.). The novel KK-type sensor for the rota-

tional AWS viscometry [19], shown in Figure 5 complies

with this need by means of an axial shift facility for

adjusting ∆z and, subsequently, the gap thickness h is

given by

h = h0 + �z sin (θ) (2)

where h0 corresponds to h at the starting position ∆z =

0. Both the working surfaces of the sensor are the coaxial
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Figure 2 Acidobasic adjusting of ξ-potential. Individual nanopowders are specified in Table 1.

Table 2 Parameters of the stable nanofluids

Sample Powder Base solution pH ξ (mV) Conc. TiO2 (wt.%) Conc. TiO2 (vol.%)

A1+ A1 10-2 M HCl 2.4 69.4 1.2 0.31

A1-a A1 10-3 M NaOH 12.4 -42.7 0.8b 0.2a

A2+ A2 10-2 M HCl 2.4 81.2 2.4 0.65

A2-a A2 10-3 M NaOH 12.4 -44.3 1.2* 0.3*

A3+ A3 10-2 M HCl 2.4 87 1.4 0.36

A3-a A3 10-3 M NaOH 12.3 -44.5 0.8* 0.2*

R1+a R1 10-2 M HCl 2.4 - 0.2* 0.05*

R1- R1 10-2 M NaOH 12.4 -65.2 0.2 0.05

R2+a R2 10-2 M HCl 2.4 34.9 0.2a 0.05a

R2- R2 10-2 M NaOH 12.4 -61.6 0.3 0.07

Volumetric concentrations were calculated using the densities from Table 1.
aUnstable samples with rough estimates of particle concentration.
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cones of the same cone angle θ, as in a Morse clutch. The

gap thickness can be adjusted over a broad range of 100-

2500 μm with substantially (ten times) higher accuracy

than for the plate-plate (PP) sensor. At the same time,

the KK sensor displays much lesser edge effects and bet-

ter reproducibility. In many applications, it is important

to note that the measurements with a varied gap thick-

ness can be made without refilling samples.

The fully automated rotational rheometer HAAKE RS

600 has been used both for driving the KK sensors and

for data acquisition. When operating the KK sensor

under HAAKE software RheoWin, it is appropriate to

identify it with a PP-type sensor. Primary data in the

text files, generated by the HAAKE RheoWin software,

were further treated using a home-made software AWS-

Work, described in [19].

Correction on centrifugal effects in AWS rotational

viscometry

The original theory [19] of the KK sensors ignores pos-

sible inertia effects at the edges of rotating spindle. An

additional correction E of the shear stress on inertia was

until now considered only for the standard cylinder-

cylinder Z40 DIN sensor [20]. This result can be

Figure 3 Particle size distributions via DLS method. Color and style of the curves identifies the samples, specified in Table 2. Note a large

volumetric content of coarse particles in the anatase sample A1+ and in all the rutile samples. This is apparent in the volume-weighed

distributions, while almost hidden in the number-weighed distributions.

U =  h + 2u 

h 

 = const.

 h 

u 

u 

Figure 4 Scheme of a shear flow with the AWS effect. Dotted

line - actual non-linear velocity profile observed at the constant

shear stress s due to the effect of a depletion layer of dispersion at

the wall; Broken solid line - approximation of the actual velocity

profile, introduced by the concept of AWS [18]. U = gh + 2u -

macroscopic sliding velocity, m s-1; h - gap thickness, m; u - AWS

velocity, m s-1; g - bulk shear rate, s-1.

z 

H 

R 

h 

Figure 5 KK sensor for AWS viscometry operating under

HAAKE RS 600 rotational viscometer. Common geometry

parameters for all the KK sensors: H = 60 mm, R = 17.5 mm, cot(θ)

= 10. The actual gap thickness h is adjustable through axial shift ∆z,

see Equation 2. When applying Equation 1 for description of the

AWS effect, take ΩR = U.
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rearranged to a local edge correction for a single semi-

infinite cylinder by radius R rotating with a speed Ω in

an infinite coaxial cylindrical vessel by radius R + h = R

(1 + �), filled with a Newtonian liquid of kinematic visc-

osity υ = 1/(�r):

E(Re, κ) ≡ aκRe
2/(1 + bRe

3/2) (3)

where � ≡ h/R, Re ≡ ΩR
2
/υ, a = 7.0 × 10-4, and b =

2.7 × 10-4.

For a KK-type conical spindle, the local edge effects are

related to different radii at the both fronts, R and lR,

respectively, with a common h and l = 1 - tan(θ) H/R,

Figure 5. The final correction on centrifugal effects can

be approximated for Newtonian liquids by the formula:

σprimary/σcorrected = ϕcorrected/ϕprimary = 1 + E(Re, κ) + E(λ2
Re, κ/λ). (4)

Results and discussion
Stability and texture of dilute nanofluids

All the TiO2 dispersions, prepared in the described way,

were partially settling down. The concentrations of the

final stable dispersions depend on the base solution

used, individual nanopowder, and dispersion procedure.

The series of images in Figure 6 illustrates the influ-

ence of the dispersion procedure and base solution on

the texture of several dispersions of the nanopowder A3.

The photographs were obtained using the SEM imaging

technique (Cameca SX100), applied to the samples of

the dried drops. In conclusion, the particles of the nano-

powder A3 were better dispersed in the acidic solution

than in the neutral or alkaline one (compare Figure 6a,

b, c). The clusters remaining in the acid dispersion were

broken up during the ultrasonic treatment (compare

Figure 6c, d).

The influence of pH on the quality of dispersions was

observed for all the tested dispersions via DLS techni-

que. It can be seen from the number and volume-

weighted particle size distributions (Figure 3) that ana-

tase nanopowders disperse better in the acid solutions

while rutile ones in the alkali solutions. The finer the

dispersion the higher the concentration in the final

stable samples.

AWS rotational viscometry

Rheological measurements were conducted using the

AWS rotational viscometry on the HAAKE RS 600 com-

mercial instrument with a series of home-made KK sen-

sors. Basic characterization of the examined samples is

given in Table 2. As the AWS effect can depend on the

material type and roughness of confining surfaces of the

sensors, four different KK sensors were used, see Table 3.

For the each combination sample - KK sensor, a series of

individual viscometric measurements was made, covering

the range of shear stress s Î 0.05-5 Pa and the range of

gap thickness h Î 150-500 μm. In the final data treat-

ment, including the inertia correction according to Equa-

tions 3 and 4, the primary data with s > 1 Pa or h > 300

μm were disregarded (errors due to inertia effects over

5%). Uncorrected AWS data on � and c, not shown here,A3 with 10
-3

M HCl, US bath 24hA3 with 10
-3

M HCl

A3 with water

2 m

A3 with 10
-3

M NaOH(a) (b)

(c) (d)

Figure 6 Examples of SEM images of dried samples . The

representative photographs were selected for each tested sample. In

contrast to the samples (a, b), the samples (c, d) contain a major part

of the nanopowder in the form of fine particles. In addition, the long-

time ultrasonification, see sample (d), breaks-up the remaining

clusters apparent in sample (c). The specification of A3 nanopowder

is given in Table 1.

Table 3 The KK sensors for AWS rotational viscometry

Sensor Material h0 (μm)

KK01 Stainless steel 173.5 ± 2

KK02 Titanium 134.5 ± 2

KK03 Eloxed dural 131.5 ± 2

KK04 Sand-blasted stainless steel 150.6 ± 2

All sensors share the nominal dimensions R = 17.5 mm; H = 60 mm; cot θ =

10.

The minimum gap thicknesses h0 were determined by calibrations with water.

Table 4 Results of rheological measurements at 23°C

Sample Fluidity � (Pa-1 s-1)

KK01 KK02 KK03 KK04 All sensors

Avg Dev Avg Dev Avg Dev Avg Dev Avg Dev

A1+ 1032 16 1026 47 1049 10 1031 11 1036 10

A2+ 1045 6 1041 6 1045 6 1041 10 1043 2

A3+ 1001 10 1028 8 1022 18 1009 40 1015 12

R1- 1018 19 1031 22 1060 13 1069 14 1045 24

R2- 1042 10 1045 31 1073 12 1030 45 1048 18

Water 1033 17

Avg & Dev, average and standard deviation for a given data series.
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display remarkable dependence on s, evoking a shear-

thickening behavior. However, the correction of primary

data on inertia effects shows that this dependence is only

an experimental artifact.

The AWS data were further treated to separate the

flow and slip contributions and to identify the corre-

sponding material functions �[s] and c[s]. The result-

ing fluidities, given in Table 4, do not deviate from that

of pure water by more than 3%. Statistical estimates of

the slip extrapolation length b [19],

β[σ ] = χ[σ ]/ϕ[σ ] (5)

given in Table 5, indicate the mean values about zero

with uncertainty about ±2 μm. This is in a good agree-

ment with the estimate of instrumental uncertainty ∆h

of the adjustable gap thickness h, given in Table 3. Pos-

sible slip effects in all the studied samples are therefore

quite negligible in comparison with the instrumental

uncertainty.

The absence of slip effect is illustrated also in Figure

7, where the AWS data are fitted on two different con-

stitutive models according to Equation 1, for details on

the parametric filtration see [19]. Figure 7a shows the

results obtained for the model with no-slip assumption,

c = 0, while the Figure 7b shows those for the model

with adjustable but constant c. Comparing of the both

approaches shows that they provide nearly same esti-

mates of the fluidity.

Conclusions
AWS rotational viscometry with KK-type sensors repre-

sents a novel technique suitable for testing microdis-

perse fluids in the presence of slip effects.

Several dilute TiO2-water stable nanofluids with an

optimized pH (via ξ-potential) are used to demonstrate

the capability of this instrumentation to detect possible

slip effects even in low-viscosity liquid samples. The

Table 5 Results of rheological measurements at 23°C

Sample Slip extrapolation length b = c/� (μm)

KK01 KK02 KK03 KK04

Avg Dev Avg Dev Avg Dev Avg Dev

A1+ 2 2 0 2 6 2 0 2

A2+ 2 2 0 2 2 2 2 2

A3+ 9 5 1 2 3 3 5 5

R1- 3 3 5 3 5 5 5 5

R2- 6 4 9 2 7 3 4 4

Water 0 2

Avg & Dev, average and standard deviation for a given data series.
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Figure 7 Example of treating primary AWS data. The example corresponds to sample A1 in KK01 sensor: (a) using constitutive model with

no AWS (zero slip coefficient); (b) using constitutive model with adjustable constant slip coefficient.
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tested stable colloidal samples differ in the nominal

volumetric concentrations of nanoparticles, ranging

from 0.07 to 0.7 vol.%.

The sensitivity of the AWS viscometric instrument on

slip effects depends on the minimum available gap

thickness and the accuracy of its adjustment. Within the

given instrumentational limits, no slip effect was

detected for the nanofluid samples examined for this

investigation.
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AWS: apparent wall slip.
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