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Stability and Scalability of Homogeneous

Vehicular Platoon: Study on the Influence

of Information Flow Topologies
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Abstract—In addition to decentralized controllers, the infor-
mation flow among vehicles can significantly affect the dynamics
of a platoon. This paper studies the influence of information flow
topology on the internal stability and scalability of homogeneous
vehicular platoons moving in a rigid formation. A linearized vehi-
cle longitudinal dynamic model is derived using the exact feedback
linearization technique, which accommodates the inertial delay
of powertrain dynamics. Directed graphs are adopted to describe
different types of allowable information flow interconnecting ve-
hicles, including both radar-based sensors and vehicle-to-vehicle
(V2V) communications. Under linear feedback controllers, a uni-
fied internal stability theorem is proved by using the algebraic
graph theory and Routh–Hurwitz stability criterion. The theorem
explicitly establishes the stabilizing thresholds of linear controller
gains for platoons, under a large class of different information
flow topologies. Using matrix eigenvalue analysis, the scalability
is investigated for platoons under two typical information flow
topologies, i.e., 1) the stability margin of platoon decays to zero
as 0(1/N2) for bidirectional topology; and 2) the stability mar-
gin is always bounded and independent of the platoon size for
bidirectional-leader topology. Numerical simulations are used to
illustrate the results.

Index Terms—Autonomous vehicles, information flow topology,
platoon, scalability, stability.

I. INTRODUCTION

P LATOONING of road vehicles provides a promising solu-

tion to several critical issues of today’s road transportation

due to its potential to significantly increase highway capacity,

enhance safety, and reduce fuel consumption, as well as CO2

emission [1]–[3]. The objective of platoon control is to ensure

that all vehicles in a platoon move at the same speed while

maintaining a desired formation geometry, which is specified

by a desired inter-vehicle spacing policy. Control design of a
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platoon has a long history that dates back to the mid-sixties of

the last century [4]. It has recently attracted extensive research

interests, see [5]–[10] and the references therein.

From the viewpoint of control, a platoon system can be

considered as a combination of vehicle longitudinal dynamics,

information exchange flow, decentralized controllers and inter-

vehicle spacing policies [6], [7], [9]. The vehicle longitudinal

dynamics depict the behavior of each vehicle in longitudinal di-

rection. The platoon is said to be “homogeneous” if all vehicles

have identical dynamics; otherwise it is called “heterogeneous”

[10]. The information exchange flow defines how the vehicles

in a platoon exchange information with each other, including

the exchanged information and information flow topologies

among vehicles. Decentralized controllers implement specific

feedback control laws for each vehicle. Most common con-

trol laws are linear, for comprehensive results on theoretical

analysis and design methods, and convenience in hardware

implementations [7], [10]. The available information to each

controller is often limited to a neighboring region because of

the range limitation of sensing and communication systems.

As a result, controllers use only local information to achieve

a global performance for the platoon. The spacing policy sets

rules of the desired distance between two adjacent vehicles, and

further dictates the desired formation geometry for the platoon.

Here, we focus on a homogenous vehicular platoon with rigid

formation and linear feedback controllers, as used by Seiler [9],

Barooah [11], and Darbha [12].

The information flow topology applied in a platoon is closely

related to the way a vehicle acquires the information of its

surrounding vehicles. Early-stage platoons are mainly radar-

based without widely using the inter-vehicle communications.

This means that a vehicle can only obtain the information of its

nearest neighbors, i.e., front and back vehicles [7], [13], [14].

Under the radar-based sensing framework, the commonly used

information flow topologies include the predecessor following

type, the predecessor-leader following type, and the bidirec-

tional type [5], [9], [13]–[15]. Note that the predecessor-leader

following type needs a leader with information broadcasting

functions. Their relationship with string stability was studied

by Darbha and Hedrick [6], [19], Seiler [9], and Ploeg [10],

[17], [18] etc. Darbha et al. pointed out that under the constant-

distance policy, a predecessor following-type platoon using

identical linear controllers cannot guarantee string stability

because its associated denominator polynomial has at least

an instability root [6]. Seiler et al. showed that there was an
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essential limitation with localized linear controllers using the

constant distance policy and predecessor following type, since

small spacing errors acting on one vehicle can be amplified

along the vehicle string due to a complementary sensitivity

integral constraint [9]. Four major approaches have been pro-

posed to improve the string stability. One approach is to use

non-identical controllers to achieve bounded stability, but at the

expense that the controller gains must increase linearly with

respect to the platoon scale [16]. The second approach is to

broadcast the leader information to every following vehicle,

resulting in the aforementioned predecessor-leader following

topology [6], [9]. This topology inevitably introduces certain

time delays because it needs to transmit information from the

leader to all the following vehicles. The third approach is to

relax the formation rigidity by using the constant time headway

policy instead of the constant distance policy [19], [20]. The

last approach is to extend the information flow topology to

the bidirectional type, e.g., [7], [9], [14], [21], [22], [25] or

to multiple-vehicle look-ahead type, e.g., [18]. For the bidi-

rectional type, two radars are installed on each vehicle, front

and back, to detect its adjacent two vehicles. The controller

then can use the information of both its preceding vehicle and

following vehicle for control. Recently, several rigorous anal-

yses for string stability are provided. For example, Naus et al.

derived a necessary and sufficient frequency domain condition

for platoon string stability, and experimented with two vehi-

cles equipped with cooperative adaptive cruise control [10].

Ploeg et al. proposed a novel definition for string stability on

the basis of the notion of Lp stability [17], which could apply to

both linear and nonlinear platoon system. Several other recent

research on string stability can be found in [23] and [24].

Although extensive research has been conducted on radar-

based topologies, more information flow topologies have

emerged with the rapid deployment of vehicle-to-vehicle (V2V)

communications such as DSRC, VANET, and MANET [26],

[27]. The V2V communication generates various information

flow topologies, including the two-predecessors following type,

two-predecessor-leader following type and h-predecessors fol-

lowing type, etc. [28]. A few studies have been conducted

to examine their influence on platoon performance, including

stability and scalability. For example, Darbha et al. pointed

out that at least one vehicle should communicate to a large

number of other vehicles if the spacing errors in the platoon

need to be guaranteed insensitive to the platoon size [12].

Darbha and Pagilla investigated the limitations of employing

undirected information flow to maintain a rigid formation,

and indicated that there was a critical value of platoon scale

beyond which the motion would lose stability [29]. Fax et al.

used the eigenvalues of the Laplacian matrix to determine the

formation stability, and proved that formation stability could be

decomposed into two components: i.e., stability of information

flow for the given graph and stability of individual vehicles for

the given controller [30]. Ploeg et al. developed a H∞ controller

synthesis approach to guarantee string stability, and designed

controllers for platoons under one- and two- vehicle look-ahead

information flow topologies [18].

This paper further studies the influence of different infor-

mation flow topologies on the internal stability and scalability

of a platoon of homogenous vehicles moving in a rigid forma-

tion. The vehicle dynamics are linearized using exact feedback

linearization technique, and the linear feedback law is limited

to proportional type, which were used in many previous stud-

ies, e.g., [20]–[22], [25], [32]. The constant distance policy

is employed for the high achievable traffic flow. The main

contributions of this paper are:

1) A unified internal stability theorem is derived by using the

algebraic graph theory and Routh-Hurwitz stability crite-

rion, which explicitly establishes the stabilizing thresh-

olds of the linear controller gains. The internal stability

theorem is suitable for a large class of information flow

topologies, either radar-based or communication-based.

This theorem is actually an extension of the main result

in Ghasemi et al. [21], [22]. The main result in [21] and

[22] was derived from another approach, called partial

differential equation approximation, but its application

was limited to bidirectional topology and bidirectional-

leader topology.

2) The scalability of platoons under two typical information

flow topologies is investigated by using matrix eigenvalue

analysis, and it is proved that: 1) the real part of least

stable closed-loop eigenvalue decays to zero as 0(1/N2)
(N denotes the number of following vehicles) for bidirec-

tional topology; 2) the stability margin is always bounded

away from zero and independent of the platoon size N
for bidirectional-leader topology. This finding is actually

an extension of [25], [31] and [32], in which the inertial

delay of vehicle powertrain had not been considered, and

the dynamics of each vehicle were simplified to be ideal

double integrators.

The remainder of this paper is organized as follows:

Section II introduces the problem of platoon control, including

graph-based modeling of different types of information flow

topologies. Section III presents two theorems for homogeneous

platoon, i.e., 1) the internal stability theorem with different

information flow topologies; 2) the scalability theorem with two

typical information flow topologies. Numerical simulations are

shown in Section IV. Section V is for concluding remarks.

II. PROBLEM STATEMENT

The platoon has N + 1 vehicles, shown in Fig. 1, including a

leading vehicle (noted as the leader) and N following vehicles

(noted as the followers). The platoon runs on a flat road, and can

have different information flow topologies, either radar-based

or communication-based. Fig. 1 shows six kinds of commonly

used topologies, including:

1) Predecessor following (PF) topology;

2) Predecessor-leader following (PLF) topology;

3) Bidirectional (BD) topology;

4) Bidirectional-leader (BDL) topology;

5) Two-predecessors following (TPF) topology;

6) Two-predecessor-leader following (TPLF) topology.

For conciseness, many other topologies are not exhibited here,

but they all can be analyzed using similar approaches. Note
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Fig. 1. Typical information flow topologies for platoons. (a) PF. (b) PLF. (c) BD. (d) BDL. (e) TPF. (f) TPLF.

that the exchanged information can contain all the subjected

vehicle’s position, velocity, and acceleration, or some of them.

Notations: Most of the notations in this paper are fairly stan-

dard. For convenience, some notations are explained here. The

real and complex domains are denoted by R and C, respectively.

The real part of a complex number s ∈ C is denoted by Re(s),
and the imaginary part by Im(s). The set of m× n real matrices

is denoted by R
m×n. The transpose of a vector or a matrix A is

noted by AT . We define C_ = {s ∈ C|Re(s) ≤ 0} and C__ =
{s ∈ C|Re(s) < 0}. We use In as the identity matrix of di-

mension n. Let σi(A) denote the i-th eigenvalue of matrix A ∈
R

n×n, i = 1, 2, · · · , n, and all its eigenvalues are represented

in an increasing order of their real parts, i.e., Re(σ1(A)) ≤
Re(σ2) ≤ · · · ≤ Re(σn−1) ≤ Re(σn(A)). The spectrum of A
is denoted by S(A) = {σ1(A), · · · , σn(A)}. A matrix A ∈
R

n×n is called Hurwitz (or stable) if and only if all its eigenval-

ues have negative real part, i.e., σ1(A) ∈ C__, i = 1, 2, · · · , N .

diag{a1, a2, · · · , an} denotes a diagonal matrix whose diago-

nal entries starting at the upper left corner are a1, a2, · · · , an.

Let A ∈ R
m×n, B ∈ R

p×q , then A⊗B is the Kronecker prod-

uct of A and B

A⊗B =

⎡
⎢⎣
a11B · · · am1B

...
. . .

...

a1nB · · · amnB

⎤
⎥⎦ ∈ R

mp×nq. (1)

A real scalar-valued function of time, x : R → R, is denoted

by x(t) ∈ R and sometimes simply denoted as x. Notation O(ǫ)
is used to denote the infinitesimals of the same order as ǫ.

A. Model for Vehicle Longitudinal Dynamics

A platoon can be viewed as a collection of nodes, i.e.,

vehicles. For each vehicle, its longitudinal dynamics include

the engine, drive line, brake system, aerodynamics drag, tire

friction, rolling resistance, and gravitational force, etc. Some

reasonable assumptions should be used to obtain a concise

model for control [19], [20], [33], [34]:

1) The tire longitudinal slip is negligible, and the powertrain

dynamics are lumped into a first-order inertial transfer

function;

2) The vehicle body is considered to be rigid and symmetric;

3) The influence of pitch and yaw motions is neglected;

4) The driving and braking torques are controllable inputs.

The vehicle longitudinal dynamics are simplified, but still

nonlinear, as follows:
⎧
⎪⎪⎨
⎪⎪⎩

ṡi(t) = vi(t)

v̇i(t) =
1

mi,veh

(
ηT,i

Ti(t)
Ri

− CA,iv
2
i −mi,vehgf

)
,

τiṪi(t) + (Ti(t) = Ti,des(t)

i = 1, 2 · · · , N (2)
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where si(t), vi(t) denote the position and velocity of vehicle i,
mi,veh is the vehicle mass, CA,i is the lumped aerodynamic

drag coefficient, g is the acceleration due to gravity, f is

the coefficient of rolling resistance, Ti(t) denotes the actual

driving/braking torque, Ti,des(t) is the desired driving/braking

torque, τi is the inertial delay of vehicle longitudinal dynamics,

Ri denotes the tire radius, and ηT,i is the mechanical efficiency

of driveline. The position and velocity of the leading vehicle are

denoted by s0(t) and v0(t), respectively.

The exact feedback linearization technique is used to con-

vert the nonlinear model into a linear one for controller design.

The same technique has been widely used before, e.g., [7],

[14], [20] and [21]. The output of position with relative degree

three is used to construct the feedback linearization law, as

shown in (3)

Ti,des(t)=
1

ηT,i

(CA,ivi(2τiv̇i+vi)+mi,vehgf+mi,vehui)Ri,

(3)

where ui is the new input signal after linearization. Then, we

obtain a linear model for vehicle longitudinal dynamics

τiȧi(t) + ai(t) = ui(t), (4)

where ai(t) = v̇i(t) denotes the acceleration of vehicle i. For

platoon control, a 3rd-order state space model is derived for

each vehicle:

ẋi(t) = Aixi(t) +Biui(t), (5)

where

xi(t) =

⎡
⎣
si
vi
ai

⎤
⎦ , Ai =

⎡
⎣

0 1 0

0 0 1

0 0 − 1
τi

⎤
⎦ , Bi =

⎡
⎣

0

0
1
τi

⎤
⎦ .

B. Model for Information Flow

The information flow topology describes the information

used by each local controller, and has significant influence

on the collective behavior of the platoon. Moreover, some

properties (e.g., stability and scalability) are not only related

to decentralized controllers, but also depend on the information

flow topology [9], [12], [29], [30], [35]. Here, directed graphs

are adopted to develop a unified model for allowable informa-

tion flow that interconnect vehicles in a platoon, including all

aforementioned topologies.

The platoon includes N followers and one leader. The infor-

mation flow among followers is modeled by a directed graph

topology G = {V,E} with N nodes V = {α1, α2, · · · , αN},

and a set of edges E = V × V . The node αi represents the i-th
following vehicle in a platoon whose dynamics are described

by (5), and each edge represents a directional information

exchange between two vehicles. To model the information flow

from the leader to followers, we define an augmented graph

as G̃ = {Ṽ , Ẽ}, where Ṽ = {α0, α1, . . . , αN} is the node set

including both the leader and the followers and Ẽ = Ṽ × Ṽ
is the set of edges including the information flow both among

followers and from the leader to followers. The properties of

information flow modeled by the directed graphs G and G̃ can

be represented by three matrices:

1) Adjacent matrix M ;

2) Laplacian matrix L;

3) Pinning matrix P .

The method that uses matrices to study graphs is known as

algebraic graph theory [30], [36]. The adjacent matrix associ-

ated with graph G is defined as M = [mij ] ∈ R
N×N with each

entry defined as
{
mij = 1, if {αj , αi} ∈ E

mij = 0, if {αj , αi /∈ E
, (6)

where {αj , αi} ∈ E means there is a directional edge from

vehicle j to vehicle i, i.e., vehicle i can obtain the information

of vehicle j. It is assumed that there is no self-loop, i.e.,

mii = 0. The Laplacian matrix L = [lij ] ∈ R
N×N associated

with graph G is defined as

lij =

{
−mij , i �= j∑N

k=1 mik, i = j
. (7)

The pinning matrix P associated with the augmented graph

G̃ represents the information flow from the leader to followers,

defined as:

P = diag{p1, p2, . . . , pN}, (8)

where pi = 1 if edge {α0, αi} ∈ Ẽ; pi = 0 otherwise. The

expression {α0, αi} ∈ Ẽ means that vehicle i can receive infor-

mation from the leader. The weight pi has been called pinning

gains in the field of complex networks [37]. If pi = 1, vehicle

i is said to be pinned to the leading vehicle. We define leader

accessible set of node i as

Pi =

{
{0}, if pi = 1

∅ if pi = 0
.

Several definitions associated with graph topology G̃ should

be stated for completeness [36]:

1) Directed path. A directed path of length ζ + 1 from node

αi to node αj is an ordered set of distinct nodes {αi, αi1 ,

. . . , αiζ , αj} such that {αi, αi1} ∈ Ẽ,{αiζ , αj} ∈ Ẽ and

{αik , αik+1
}∈ Ẽ for all k ∈ {1, 2, . . . , ζ − 1} and ζ < N .

2) Spanning tree. A spanning tree is a tree formed by some

or all the edges of graph that connect all the nodes of the

graph. The graph G̃ is said to have a spanning tree if a

subset of the edges forms a spanning tree.

3) Neighbor set. Vehicle j is said to be a neighbor of vehicle

i if mij = 1, which means vehicle i can obtain information

from vehicle j by V2V communication or by radar-based

detection. The neighbor set of vehicle i is denoted by Ni =
{j|mij = 1}.

Here, it is assumed that the augmented graph G̃ contains at

least one spanning tree rooting from the leader [38]. In other

words, there exists a directed path (not necessarily unique) from

the leader to every following vehicle, which implies that every



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHENG et al.: STABILITY AND SCALABILITY OF HOMOGENEOUS VEHICULAR PLATOON 5

follower can obtain the leader information directly or indirectly.

It is obvious that all the information flow topologies shown in

Fig. 1 satisfy the assumption of containing a spanning tree.

C. Formulation of Closed-Loop Platoon Dynamics

In engineering practice, both vehicle dynamics and platoon

controllers can be different from each other, which imply that

the platoon is heterogeneous. However, a platoon is often

formed by the vehicles of the same-type, e.g., either by only

trucks or by only passenger cars. In such cases, vehicle dy-

namics are close to each other. In this paper, it is assumed

that the platoon is homogeneous, i.e., Ai = A,Bi = B(i =
1, 2, · · · , N), and their controllers are designed to be identical,

as studied in [9], [11], and [12]. The leading vehicle is consid-

ered to be of constant-velocity type, i.e.,s0 = v0t. The objective

of platoon control is to track the speed of the leading vehicle

while maintaining a rigid formation governed by the constant

distance policy between any two consecutive vehicles, i.e.,
{
vi(t) = v0(t)

si−1(t)− si(t) = di−1,i

, i = 1, 2, · · ·N, (9)

where di−1,i is the desired constant spacing between vehi-

cle i-1 and vehicle i. There are two major spacing policies

for vehicular platoons: the constant distance (CD) policy and

constant time headway (CTH) policy [5], [19]. In the CD

policy, the desired distance between two consecutive vehicles

is independent of vehicle velocity, which can lead to a very

high traffic capacity. For the CTH policy, the desired inter-

vehicle range varies with vehicle velocity, which accords with

driver behaviors to some extent but limits the achievable traffic

capacity. Here, we only consider the CD policy, which means

that the vehicles are controlled to move in a rigid formation

while following a leading vehicle. Note that di−1,i contains the

length of the vehicle body.

The controllers are distributed in each vehicle, and each

controller can only use its neighborhood information specified

by Ii = Ni ∪ Pi. The linear control law of each vehicle is

ui(t)=−
∑

j∈Ii
[k1(si−sj−di,j)+k2(vi−vj)+k3(ai−aj)],

(10)

where k#(# = 1, 2, 3) is the control gain of the linear con-

troller. The augmented graph G̃ specifies the information flow

topology. A control law satisfying (10) is said to have structure

G̃, whereas an unstructured control law is one that has structure

corresponding to the complete graph which requires commu-

nication between any pair of vehicles. Many existing literature

on platoon analysis belongs to the study of structured control

law in an explicit or implicit way, see [6], [17], [18], and [20]

for examples. It should be noted that we are only interested

in static and linear control laws using the graph G̃. Thus, a

communication link, if it exists, is assumed to be perfect in the

sense that we ignore the effects such as quantization issues, data

dropouts and time delays.

The desired trajectory of the i-th vehicle is

s∗i = s0 − d0,i = s0 −
∑i−1

j=0
dj,j+1. (11)

To rewrite (10) into collective form, we define three new

tracking errors s̃i, ṽi and ãi
⎧
⎪⎨
⎪⎩

s̃i = si − s∗i
ṽi = vi − ṡ∗i = vi − v0

ãi = ai − s̈∗i = ai

. (12)

For each vehicle, we can lump its tracking error with neigh-

borhood vehicles specified by Ii. The lumped tracking error is

εi =
∑

j∈Ii
(x̃i − x̃j), (13)

where x̃i = [s̃i, ṽi, ãi]. Substituting (13) into (10), the control

law is rewritten into a compact form:

ui(t) = −kT εi(t), (14)

where k = [k1, k2, k3]
T . Then, the closed-loop dynamics of

vehicle i becomes

˙̃xi = Ax̃i −BkT εi(t)

= Ax̃i −BkT
[∑N

j=1
mij(x̃− x̃j) + pi(x̃i − x̃0)

]
.

(15)

For the closed-loop dynamics of the homogeneous platoon,

we define the collective states of all vehicles as

X = [x̃1, x̃2, · · · , x̃N ]T . (16)

Hence, the unified overall closed-loop dynamics of the pla-

toon interconnected by a given information exchange topology

are written in the following compact form

Ẋ =
{
IN ⊗A− (L+ P )⊗BkT

}
X. (17)

The overall closed-loop system matrix is

Ac = IN ⊗A− (L+ P )⊗BkT . (18)

From (17), it is clear that the platoon dynamics are a func-

tion of vehicle longitudinal dynamics (denoted by A,B), the

information flow topologies (denoted by matrix L+ P ) and

decentralized feedback control law (denoted by controller gain

kT ). The overall closed-loop system matrix Ac, shown in (18),

reflects the local vehicle closed-loop matrix A−BkT as mod-

ified on the information flow topology L+ P . Therefore, the

stability of a platoon depends not only on its decentralized con-

trollers but also on the information flow topologies. Moreover,

the information flow can cast fundamental limitations for cer-

tain platoon properties, i.e., stability and scalability. This paper

focuses on the influence of different information flow topolo-

gies on the internal stability of platoon, and the topology in each

case is fixed. For switching topology case, the matrix L+ P
is time-varying rather than fixed. In Section III, the internal

stability and scalability under different information flow topolo-

gies will be analyzed based on (17) through the algebraic graph

theory, Routh-Hurwitz stability criterion and matrix eigenvalue

analysis.
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III. CLOSED LOOP STABILITY WITH DIFFERENT

INFORMATION FLOW TOPOLOGIES

This section focuses on the stability analysis of homogeneous

platoons in a rigid formation. It should be noted that there are

two kinds of stability for platoons, i.e.,

1) Internal stability. A platoon with linear time-invariant

dynamics is said to be internal stable if and only if all

real parts of the eigenvalues of the closed-loop system are

negative [21], [25].

2) String stability. A platoon is said to be string stable

if and only if the disturbances are not amplified when

propagating along the vehicle string [6], [9], [17].

This paper only considers the internal stability and leaves the

string stability for future discussion. In this section, two theo-

rems will be proved for homogeneous platoons under different

information flow topologies. One is about the unified internal

stability of platoons under a large class of information flow

topologies. The other one is about the scalability of platoons

under two typical topologies.

A. Internal Stability Analysis for Different Information

Flow Topologies

Before presenting the internal stability theorem, we need the

following Lemmas.

Lemma 1. [39]: Let a matrix Q = [qij ] ∈ R
n×n. Then all the

eigenvalues of Q are located in the union of the n disks

⋃n

i=1

{
λ ∈ C||λ− qii| ≤

∑n

j=1,j �=i
|qij |

}
.

Lemma 2. [40]: Let a matrix Q = [qij ] ∈ R
n×n and

J =
{
i ∈ {1, 2, · · · , n}||qii| >

∑
j=1,j �=i

|qij |
}
�= ∅.

If for each i ∈ J , there is a sequence of nonzero elements

of Q of the form {qii1 , qi1i2 , · · · , qirj}withj ∈ J , then Q is

nonsingular.

Lemma 3. [30]: Let λi, i = 1, 2, . . . , N be the eigenvalues of

L+P , which may or may not be distinct. The platoon dynamics

(17) are asymptotically stable if and only if all the matrices

A− λiBkT , i = 1, 2, · · · , N (19)

are Hurwitz. Moreover, we have

S(Ac) =
⋃n

i=1
S(A− λiBkT ). (20)

Lemma 1 is the well-known Geršgorin Disk Criterion. The

first result of this paper is stated as follows.

Theorem 1: Consider the homogeneous platoon using lin-

ear controllers with the closed-loop dynamics as in (17). Let

λi, i = 1, 2, . . . , N be the eigenvalues of L+ P . The following

statements hold:

1.1) All the eigenvalues of L+ P are located in the open

right-half plane, i.e.,−λi ∈ C__, i = 1, 2, . . . , N , when

graph G̃ contains a spanning tree.

1.2) All the eigenvalues of L+ P are real numbers, i.e.,

λi ∈ R, i = 1, 2, . . . , N , if graph G satisfies one of the

following conditions, no matter how many followers are

pinned to the leader. (Note that the parameter h in the

following conditions a) and b) denotes the number of

nodes which the i-th node can reach.)

a) Followers in a platoon are of “look-ahead” type, i.e.,

Ni = {i− h, · · · , i− 1, } ∩ {1, · · · , N}.

b) Followers in a platoon are of symmetric “look-ahead

& look-back” type, i.e., Ni = {i− h, · · · , i+ h} ∩
{1, · · · , N} \ {i}.

c) Information flow among followers is undirected, i.e.,

j ∈ Ni ⇔ i ∈ Nj , i, j = 1, 2, · · · , N .

1.3) If G̃ satisfies the above Statements 1.1 and 1.2, platoon

dynamics (17) are asymptotically stable if and only if
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

k1 > 0

k2 > k1τ/ min
i∈{1,2,··· ,N}

(λik3 + 1)

k3 > −1/ max
i∈{1,2,··· ,N}

(λi)

. (21)

Proof: From the definition of Laplacian matrix L in (7),

we have
{∑N

j=1 lij = 0

lii =
∑N

j=1,j �=i |lij | ≥ 0
, i = 1, 2, · · · , N. (22)

Considering the definition of pinning matrixP , we havepi≥0.

Hence, for matrixL+ P , we have

|lii + pi| = |lii|+ |pi| ≥
∑

j=1,j �=i
|lij |, i = 1, 2, · · · , N.

(23)

By Lemma 1, all the eigenvalues of L+ P are located in the

union of N disks

⋃N

i=1

{
λ ∈ C||λ− lii − pi| ≤

∑N

j=1,j �=i
|lij |

}
. (24)

Then, the range of all the eigenvalues of L+P lies in the disk
{
λ ∈ C|

∣∣∣∣λ− max
i∈{1,2,··· ,N}

(lii + pi)

∣∣∣∣ ≤ max
i∈{1,2,··· ,N}

(lii + pi)

}
.

(25)

Hence, all the eigenvalues of L+ P lie within the union

{λ ∈ C|Re(λ) > 0 ∪ {0}} . (26)

In addition, under the spanning tree assumption, there is at

least one follower can obtain information from leader, i.e., pi =
1, for at least one i ∈ {1, 2, . . . , N}. Without loss of generality,

we assume there are two followers r1 and r2 pinned to leader,

i.e., pr1 = 1 and pr2 = 1. Then, inequality (23) holds strictly

for i = r1 and i = r2. We view L+ P as the matrix Q defined

in Lemma 2, then J = {r1, r2} according to the definition in

Lemma 2. Considering the spanning tree assumption, for any

node i, which does not have a direct connection to the leader

(i.e., i ∈ J), there must be a direct path {αr, αiζ , . . . , αi1 , αi}
connecting node r ∈ J and node i, and the corresponding ele-

ments of L+ P (i.e., lii1 + pii1 , li1i2 + pi1i2 , · · · , liζr + piζr)

are all nonzero. Therefore, L+ P is nonsingular according to
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Lemma 2, which implies that all the eigenvalues of L+ P
are located in the open right-half plane by combining (26),

i.e.,−λi ∈ C__, i = 1, 2, . . . , N .

To prove Statement 1.2, note that L under assumption (a)

is a lower triangular matrix, and P is a diagonal matrix. Thus,

L+ P is always a lower triangular matrix, which implies that

all the eigenvalues of L+ P are real numbers, i.e.,

λi = lii + pi, i = 1, 2, · · · , N. (27)

Meanwhile, L under assumption (b) or assumption (c) is a

symmetric matrix, and hence L+ P is also symmetric, which

implies that all the eigenvalues of L+ P are real numbers, i.e.,

λi ∈ R, i = 1, 2, . . . , N .

To prove Statement 1.3, we know that all the eigenvalues

of L+ P are positive real numbers, by combining the results

in the above two statements. According to Lemma 3, pla-

toon dynamics (17) are asymptotically stable if and only if

the real parts of the eigenvalues of matrices A− λiBkT , i =
1, 2, · · · , N are all negative. The characteristic polynomial of

matrix A− λiBkT is

∣∣sI − (A− λiBkT )
∣∣ = s3 +

λik3 + 1

τ
s2 +

λik2
τ

s+
λik1
τ

.

(28)

The stability of (28) is examined using the Routh–Hurwitz

stability criterion, shown in

s3 1 λik2

τ

s2 λik3+1
τ

λik1

τ

s1 λik2(λik3+1)−λik1τ

τ(λik3+1)

s0 λik1

τ
.

(29)

Given the facts τ > 0, λi > 0, i = 1, 2, . . . , N , we have that

(28) is asymptotically stable if and only if

⎧
⎪⎨
⎪⎩

k1 > 0

k2 > k1τ/(λik3 + 1),

k3 > −1/λi

i = 1, 2, · · · , N. (30)

Thus, A− λiBkT , i = 1, 2, · · · , N are asymptotically sta-

ble, i.e., platoon dynamics (17) are asymptotically stable if and

only if (21) are satisfied. �

Remark 1: For Statement 1.1, similar results were estab-

lished in [30], [41], and [42]. The proof in [41] relies on the

fact that L+ P is irreducible when graph G̃ contains a spanning

tree. The technique used in this paper is similar to [42].

Remark 2: In a platoon, if the vehicle acceleration is in-

accessible, i.e., k3 = 0, then the platoon dynamics (17) are

asymptotically stable if and only if

k1 > 0, k2 > k1τ. (31)

Earlier development of platoons is radar-based, which lacks

acceleration information of other vehicles. In such cases, as

long as k1, k2 satisfy (31), the internal stability of platoon can

be guaranteed.

Remark 3: The conclusion (31) is consistent with [21], [22].

In [21] and [22], similar results were obtained using partial

differential equation approximation, but only suitable for pla-

toons with BD and BDL topologies. The proof here extends their

results, and is suitable for a large class of information flow topolo-

gies as long as they satisfy the conditions in Statements 1.1 and

1.2. These conditions can cover all aforementioned topologies

in Fig. 1.

Remark 4: The conditions in Statements 1.1 and 1.2 guar-

antee the eigenvalues of corresponding matrix L+ P to be real

numbers, which leads to a third-order Routh-Hurwitz stability

criterion (29). Thus, the stabilizing thresholds of the linear

control gains can be explicitly derived. For any given topology,

the eigenvalues of L+ P may have imaginary part. Then, the

Routh–Hurwitz stability criterion is sixth order, which is hard

to explicitly derive the stabilizing thresholds.

Remark 5: The influence of graph G̃ on the stabilizing range

of distributed controller gains is reflected by the eigenvalues of

L+ P . We can obtain a larger range of stabilizing controller

gains by choosing the topology (i.e., with larger λmin since k3
is usually chose to be nonnegative number). The freedom from

the additional stabilizing range could then be used to improve

other performance indexes, e.g., string stability.

B. Scalability Analysis for Typical Information

Flow Topologies

Theorem 1 explicitly establishes the stabilizing thresholds

of linear controller gains for platoons under a large class of

information flow topologies. In general, platoon reduces its

stability margin with increasing number of vehicles [25], [31],

[35]. Note that the stability margin is measured by the absolute

value of the real part of the least stable closed-loop eigenvalue.

In this section, by using matrix eigenvalue analysis, we will

mathematically prove how the stability margin changes with

platoon scale (i.e., scalability) under two typical topologies, i.e.,

BD topology and BDL topology. Before presenting the second

theorem, we need the following Lemmas.

Lemma 4. [39]: Suppose that

D̃ =

[
D y
yT dn

]
∈ R

n×n

(
or D̃ =

[
d1 y
yT D

]
∈ R

n×n

)

is a symmetric matrix and D is a (n-1)-by-(n-1) symmetric

matrix. Let γ1 ≤ γ2 ≤ · · · ≤ γn be the eigenvalues of D̃ and

β1 ≤ β2 ≤ · · · ≤ βn−1 be the eigenvalues of D. Then

γ1 ≤ β2 ≤ · · · ≤ βi−1 ≤ γi ≤ βi+1

≤ γi+1 ≤ · · · ≤ βn−1 ≤ γn. (32)

Lemma 5: Given a real polynomial

p(s, λ) = s3 +
λk3 + 1

τ
s2 + λ

k2
τ
s+ λ

k1
τ

(33)

where s denotes the independent variable, k1, k2, k3, τ are non-

zero constant real numbers, and parameter λ ∈ R. If (33) is

asymptotically stable, then the following statements hold:

5.1) Equation (33) has one characteristic root approaching

−1/τ and two characteristic roots approaching zero as

0(λ) when λ goes to zero.
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5.2) Equation (33) has no characteristic root close to zero

unless λ is close to zero.

Proof: To prove Statement 5.1, consider a generic cubic

polynomial:

p(s) = s3 + bs2 + cs+ d. (34)

When λ goes to zero, we have
⎧
⎪⎨
⎪⎩

b = λk3+1
τ

= 1
τ
+O(λ)

c = λk2

τ
= O(λ)

d = λk1

τ
= O(λ)

. (35)

Note that (33) is stable if and only if b, c, d,> 0, bc > d
according to the Routh-Hurwitz stability criterion. From the

discriminant of cubic polynomial in [43], we have

∆ = b2c2 + 18bcd− 4b3d− 4c3 − 27d2. (36)

Note the facts in (35), when the λ is sufficient small, we have

∆ = O(λ2) +O(λ2)−O(λ1)−O(λ2)−O(λ3) < 0. (37)

Hence, the polynomial (33) has one real characteristic root

and one pair conjugate characteristic roots according to [43],

when the λ is sufficient small. Suppose the characteristic roots

of (33) are ξ, γ ± jβ, where j =
√
−1, then we have

p(s, λ)=s3−(ξ+2γ)s2+(γ2+β2 + 2γξ)s− (γ2 + β2)ξ.
(38)

According to (33) and (38), when the λ is sufficient small,

we have

⎧
⎪⎨
⎪⎩

ξ + 2γ = −λk3+1
τ

= − 1
τ
+O(λ)

γ2 + β2 + 2γξ = λk2

τ
= O(λ)

(γ2 + β2)ξ = −λk1

τ
= O(λ)

. (39)

Hence, we have

⎧
⎪⎨
⎪⎩

ξ = − 1
τ
+O(λ)

γ2 + β2 = O(λ)

γ = 0(λ)

. (40)

Therefore, if λ goes to zero, then polynomial (33) has one

characteristic root ξ approaching −1/τ and two characteristic

roots γ ± jβ approaching zero as the speed of O(λ).
To prove Statement 5.2, suppose that the characteristic roots

of (33) are ξ1, ξ2, ξ3, we have

⎧
⎪⎨
⎪⎩

ξ1 + ξ2 + ξ3 = −λk3+1
τ

ξ1 · ξ2 + ξ2 · ξ3 + ξ1 · ξ3 = λk2

τ

ξ1 · ξ2 · ξ3 = −λk1

τ

. (41)

Since k1, k2, k3, τ are non-zero constant numbers, ξ1, ξ2, ξ3
would not converge to zero unless λ is close to zero. �

Lemma 6: Given two matrices D = αIn and E ∈ R
n×n.

Then σi(D + βE) = α+ βσi(E), i = 1, 2, · · · , n.

Proof: Take any eigenvalue σi(E) and the correspond-

ing eigenvector wiC
n. Then (D + βE)wi = Dwi + βEwi =

αwi + βσi(E)wi = (α+ βσi(E))wi. �

Lemma 7: Given any positive definite matrix D ∈ R
n×n.

Then D−1 is also positive definite and σn−i+1(D
−1), i =

1, 2, · · · , n.

Proof: Take any eigenvalue σi(D) and the corresponding

eigenvector wi ∈ C
n. Then wi = D−1Dwi = D−1σi(D)wi.

Therefore, we have D−1wi = 1/σi(D)wi. �

Using lemmas stated above, we state the second theorem in

this paper.

Theorem 2: Consider the homogeneous platoon using linear

controllers with the closed-loop dynamics as in (17), and the con-

troller satisfies the conditions in Statement 1.3 of Theorem 1.

The following statements hold:

2.1) If graph G̃ is in BD topology, then the stability margin of

platoon decays to zero as O(1/N2).
2.2) If graph G̃ is in BDL topology, then the eigenvalues of ma-

trix LBDL + PBDL are bigger or equal to one. Moreover,

only σmin(LBDL + PBDL) = 1, and σ2(LBDL + PBDL)
decays to one as O(1/N2).

Proof of Statement 2.1: Under the BD topology, L and P
are noted as LBD ∈ R

N×N and PBD ∈ R
N×N , expressed as:

LBD =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1

−1 2 −1

−1 2
. . .

−1 2
. . .

. . .
. . . −1

−1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

PBD =

⎡
⎢⎢⎢⎢⎢⎣

1

0

0

. . .

0

⎤
⎥⎥⎥⎥⎥⎦
.

The sum of LBD and PBD can be rewritten as

LBD + PBD =

[
ZBD −eBD

−eTBD 1

]
, (42)

where ZBD ∈ R
(N−1)×(N−1), eBD ∈ R

(N−1)×1 defined as

ZBD =

⎡
⎢⎢⎢⎢⎢⎢⎣

2 −1

−1 2 −1

−1 2
. . .

. . .
. . . − 1

−1 2

⎤
⎥⎥⎥⎥⎥⎥⎦
, eBD =

⎡
⎢⎢⎢⎣

0

0
...

1

⎤
⎥⎥⎥⎦ .

Further, ZBD is decomposed to ZBD = 2IN−1 −W , where

W ∈ R
(N−1)×(N−1) is defined as

W =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1

1 0 1

1 0
. . .

. . .
. . . 1

1 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHENG et al.: STABILITY AND SCALABILITY OF HOMOGENEOUS VEHICULAR PLATOON 9

It is known from [44] that the eigenvalues of matrix W are

σN−i(W ) = 2 cos
iπ

N
.

According to Lemma 6, the eigenvalues of matrix ZBD are

σi(ZBD) = 2 − 2 cos
iπ

N
= 4 sin2

iπ

2N
. (43)

By Lemma 4, we have

{
σmin(LBD + PBD) ≤ σmin(ZBD) = 4 sin2 iπ

2N ≤ π2

N2

σ2(LBD + PBD) ≤ σ(ZBD) = 4 sin2 π
N

≤ 4π2

N2

.

(44)

Equation (44) actually gives the upper bounds of σmin(LBD +
PBD) and σ2(LBD + PBD).

In addition, according to Statements 1.1 and 1.2, LBD +
PBD is symmetric positive definite. Hence, from Lemma 7 we

know that σi((LBD + PBD)
−1) > 0 and σmin(LBD + PBD) =

1/σmax((LBD + PBD)
−1). As proved in [11], (LBD + PBD)

−1

is equal to

(LBD + PBD)
−1 =

⎡
⎢⎢⎢⎢⎢⎣

1 1 · · · 1 1

1 2 · · · 2 2
...

...
. . .

...
...

1 2 · · · N − 1 N − 1

1 2 · · · N − 1 N

⎤
⎥⎥⎥⎥⎥⎦
.

According to Lemma 1, we know

σmax

(
(LBD + PBD)

−1
)
≤ N +

∑N−1

k=1
k =

N(N + 1)

2
.

Therefore, we obtain the lower bound for the least eigenvalue

of LBD + PBD, i.e.,

σmin(LBD + PBD) ≥
2

N(N + 1)
≥ 1

N2
. (45)

Based on (44) and (45), we can claim that σmin(LBD + PBD)
approaches zero as O(1/N2). According to Lemma 3 and

Lemma 5, we can claim that the stability of platoon, which

is measured by the real part of the least stable closed-loop

eigenvalue, decays to zero as O(σmin(LBD + PBD))O(1/N2),
where N is the number of following vehicles, if the information

flow is in BD topology. �

Proof of Statement 2.2: Under the BDL topology, it is

assumed that the platoon has N + 1 following vehicles with

the purpose of reusing some properties in Statement 2.1. The

matrices L and P are noted as LBDL ∈ R
(N+1)×(N+1) and

PBDL ∈ R
(N+1)×(N+1), the sum of which is expressed as

LBDL + PBDL =

⎡
⎢⎢⎢⎢⎢⎢⎣

2 −1

−1 3 −1

−1 3
. . .

. . .
. . . −1

−1 2

⎤
⎥⎥⎥⎥⎥⎥⎦
. (46)

Further, LBDL + PBDL is decomposed to LBDL + PBDL =
IN+1 + ZBDL, where ZBDL ∈ R

(N+1)×(N+1) is defined as

ZBDL =

[
1 ∗
∗ LBD + PBD

]
.

According to Lemma 4, we haveσmin(ZBDL)≤σmin(LBD+
PBD) ≤ σ2(ZBDL) ≤ σ2(LBD + PBD). Therefore, we get the

bounds for σmin(LBDL + PBDL) and σ2(LBDL + PBDL) based

on Lemma 6:

⎧
⎪⎨
⎪⎩

σmin(LBDL + PBDL) ≤ 1+σmin(LBD+PBD) ≤ 1+ π2

N2

σ2(LBDL + PBDL) ≤ 1 + σ2(LBD + PBD) ≤ 1 + 4π2

N2

σ2(LBDL + PBDL) ≥ 1 + σmin(LBD + PBD) ≥ 1 + 1
N2

.

(47)

Define vector 1 = [1, 1, . . . , 1]T ∈ R
N+1, then it is easy to

know from (46) that

(LBDL + PBDL) · 1 = 1. (48)

Hence, we have σmin(LBDL+PBDL)=1. According to (47),

we also have σ2(LBDL + PBDL) = 1 +O(1/(N + 1)2). �

Remark 6: According to Lemma 3 and Lemma 5, given

any information flow topology satisfying the conditions in

Statements 1.1 and 1.2 and the linear controller gains satis-

fying Statement 1.3, then:

1) The platoon dynamics (17) will not have eigenvalues close

to zero unless σmin(L+ P ) is close to zero, i.e., the

closed-loop system have certain stability margin.

2) The stability margin of platoon dynamics (17) decays to

zero as O(σmin(L+ P )), if σmin(L+ P ) approaches zero

with increasing platoon size.

Remark 7: In theory, the feasibility to handle the scalability

of platoons depends on whether the eigenvalues of L+ P
are analytically obtainable. In general, to analytically obtain

these matrix eigenvalues is rather difficult. Up to now, the

authors can only analyze the matrices related to BD and BDL

topologies, which also received extensive research interest in

today’s literature, e.g., [21], [25], [31], [32].

Remark 8: Statement 2.1 demonstrates the real part of least

stable eigenvalue decays to zero as O(1/N2) for platoons under

BD topology, which is independent of the design of identical

controllers. This conclusion conforms to [25], [31] and [32],

in which partial differential equation is used to approximate the

platoon dynamics. In addition, our research extends their results

by taking into account the inertial delay of vehicle longitudinal

dynamics, whereas that of each vehicle in [25], [31] and [32] is

assumed as an ideal double integrator. Thus, our consideration

is able to provide more accurate prediction to the scalability

limitation in real-world implementation.

Remark 9: Statement 2.2 is an extension of Statement 2.1

when broadcasting the leader information. The least eigenvalue

of matrix LBDL + PBDL for BDL topology is always equal to

one. Considering Lemma 3 and Lemma 5, it is easy to know

that there is a constant gap (stability margin) between the least

stable closed-loop eigenvalue and the imaginary axis, which is

independent of the platoon scale N . Hence, we claim that the
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TABLE I
EIGENVALUES FOR DIFFERENT INFORMATION

FLOW TOPOLOGIES IN FIG. 1 (N = 10)

scalability of platoons under BDL topology can be guaranteed

when the controller gains are properly designed.

Remark 10: For the undirected topology G̃ with all the fol-

lowers pinned to the leader, the corresponding pinning matrix

P is an identity matrix, i.e., P = IN , and L is a symmetric

matrix. According to Lemma 1, we know that σi(L) ≥ 0 and

σi(L+P ) = 1 + σi(L) ≥ 1, i = 1, 2, · · · , N . Hence, the prop-

erty stated in Remark 9 is also correct for such kind of topol-

ogy, i.e., there exists certain size-independent stability margin.

Remark 11: Using the similar analysis framework in

Theorem 2, it’s easy to know that all the eigenvalues of asso-

ciated matrix LPF + PPF for PF topology are equal to one,

which is also independent of the platoon size N . It seems

that platoon under PF topology will have good scalability

performance. However, the algebraic multiplicity of the least

stable eigenvalue for PF topology is as same as the platoon size

N , which leads to algebraic growth (peaking phenomena) in

the transient process. In this case, there are motion modes as

tkeRe(µ)t, k = 1, · · · , N − 1, where μ is the stable closed-loop

eigenvalue with N -th algebraic multiplicity.

IV. SIMULATION RESULTS AND DISCUSSIONS

Numerical simulations are conducted to illustrate the main

results. We consider a homogeneous platoon with 11 identical

vehicles (1 leader and 10 followers) interconnected by the six

information flow topologies shown in Fig. 1. The acceleration

or deceleration of the leader can be viewed as disturbances in a

platoon. The initial state of the leader is set as s0(t) = 0, v0 =
20 m/s and the desired trajectory is given by

v0 =

⎧
⎪⎨
⎪⎩

20 m/s t ≤ 5 s

20 + 2t m/s 5s < t ≤ 10 s

30 m/s t > 10s.

The eigenvalues of associated matrix L+ P for these six

information flow topologies are listed in Table I All the eigen-

values are positive real numbers, which are consistent with

Statements 1.1 and 1.2.

In the simulations, the desired spacing is set as di−1,i = 20 m

and the vehicle length is equal to 4 m. The initial state of

the platoon is set as the desired state, i.e., the initial spacing

errors and velocity errors are all equal to 0. Two scenarios,

i.e., stability and instability, have been simulated by considering

two groups of specific parameters (see Table II). Fig. 2 demon-

strates spacing errors for different information flow topologies

Fig. 2. Performance of stable platoon when Theorem 1.3 is satisfied. (a): PF.
(b): PLF. (c):BD. (d):BDL. (e): TPF. (f): TPLF.

TABLE II
PARAMETERS FOR THE PLATOON

(i.e., Fig. 1(a)–(f)) in Scenario 1, whose parameters are listed

in Table II. As the parameters in Scenario 1 satisfy the internal

stability condition (21), i.e., Statement 1.3 holds, the motion

of the vehicles is stable for all information topologies. It is

noted that for the spacing errors under PLF, BDL and TPLF

topologies shown in Fig. 2, only the first follower has non-

zero spacing error and other followers has almost zero spacing
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Fig. 3. Performance of unstable platoon when Theorem 1.3 is dissatisfied.
(a): PF. (b): PLF. (c): BD. (d): BDL. (e): TPF. (f): TPLF.

errors. The reason is that all the followers in the platoon are

pinned to the leader and have zero initial errors. Hence, the

followers have similar dynamic evolution, which means the

spacing errors between adjacent vehicles are close to zero. On

the other hand, the parameters in Scenario 2 do not satisfy the

stability condition (21), so instability occurs. Considering this

fact, Fig. 3 shows the instability motions of the platoon.

To verify Lemma 5, the three characteristic roots of (33)

have been numerically calculated, shown in Fig. 4. We can

clearly observe that in this group of parameters, i.e., k1 = 1,

k2 = 2, k3 = 1, τ = 0.5 one real characteristic root approaches

−1/τ and the real part of other two conjugate characteristic

roots approach zero as O(λ) when λ approaches zero. To

verify the first statement in Theorem 2, we have calculated

σmin(LBDL + PBDL) for BD topology and its upper/lower

Fig. 4. Three characteristic roots of (33), where k1 = 1, k2 = 2, k3 = 1,
τ = 0.5.

Fig. 5. σmin(LBD + PBD) for BD topology.

bound under different platoon scale, which is shown in Fig. 5.

We can observe that the upper/lower bounds given in Theorem 2

are quite accurate. Fig. 6 shows the σmin(LBDL + PBDL) and

σ2(LBDL + PBDL) for BDL topology under different sizes of

platoon, which obviously confirms with the second statement in

Theorem 2.

V. CONCLUSION

This paper studies the influence of information flow topol-

ogy on the internal stability and scalability of homogeneous

vehicular platoons moving in a rigid formation. Using the

exact feedback linearization, a linearized vehicle longitudinal

dynamic model is derived which takes into account the inertial

delay of powertrain dynamics. Directed graph topologies are

employed to model allowable information flow among ve-

hicles, including both radar-based and communication-based.

Linear distributed controllers are designed, leading to platoon
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Fig. 6. σmin(LBDL + PBDL) and σ2(LBDL + PBDL) for BDL topology.

closed-loop dynamics under the constant distance policy. The

main conclusions are:

1) The first main theorem explicitly establishes the stabi-

lizing thresholds of linear decentralized controller gains for

platoons, which is suitable for a large class of information flow

topologies. This unified internal stability theorem is derived

though using the algebraic graph theory and Routh-Hurwitz

stability criterion.

2) The second main theorem shows that the real part of the

least stable closed-loop eigenvalue decays to zero as O(1/N2)
under bidirectional topology. Hence, such topology with identi-

cal linear controller suffers from fundamental limitations on the

scalability of homogenous vehicle platoon. If the leader infor-

mation is broadcasted to every followers, resulting in the so-

called bidirectional-leader topology, the scalability of platoon can

be significantly improved, because the stability margin is always

bounded away from zero and independent of the platoon size.

Unsolved topics for future research include the unified inter-

nal stability and scalability theorem for heterogeneous platoons

with non-identical controllers. In addition, there is a need to

address the string stability issue for platoon under different

information topologies.
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