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Stability and Stabilization of Delayed T–S Fuzzy
Systems: A Delay Partitioning Approach
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Abstract—This paper proposes a new approach, namely, the
delay partitioning approach, to solving the problems of stabil-
ity analysis and stabilization for continuous time-delay Takagi–
Sugeno fuzzy systems. Based on the idea of delay fractioning, a
new method is proposed for the delay-dependent stability analysis
of fuzzy time-delay systems. Due to the instrumental idea of delay
partitioning, the proposed stability condition is much less conser-
vative than most of the existing results. The conservatism reduction
becomes more obvious with the partitioning getting thinner. Based
on this, the problem of stabilization via the so-called parallel dis-
tributed compensation scheme is also solved. Both the stability and
stabilization results are further extended to time-delay fuzzy sys-
tems with time-varying parameter uncertainties. All the results are
formulated in the form of linear matrix inequalities (LMIs), which
can be readily solved via standard numerical software. The ad-
vantage of the results proposed in this paper lies in their reduced
conservatism, as shown via detailed illustrative examples. The idea
of delay partitioning is well demonstrated to be efficient for conser-
vatism reduction and could be extended to solving other problems
related to fuzzy delay systems.

Index Terms—Delay partitioning, stability, Takagi–Sugeno (T–
S) fuzzy systems, time-delay systems, uncertainties.

I. INTRODUCTION

S INCE most physical systems and processes in the real world
are nonlinear, researchers have been devoting their efforts

to seeking an effective means of controlling nonlinear systems.
Among the many developments, there are growing interests in
the fuzzy control of complex nonlinear systems and, in par-
ticular, Takagi–Sugeno (T–S) fuzzy-model-based control [11],
[21]. It has been proved that T–S fuzzy models can approximate
any smooth nonlinear system to any accuracy on a compact set,
which is realized by piecewise smoothly connecting a family
of local linear models with fuzzy membership functions. This
“blending” makes T–S fuzzy models similar to linear systems,
and the stability analysis and synthesis can be derived by making
full use of the fruitful results on linear systems. So far, a great
number of results have been reported for T–S fuzzy systems. To
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mention a few, the problem of stability analysis is investigated
in [19], [29], and [31]; stabilizing and H∞ control designs are
reported in [4], [5], [15], [22], [28], [40], [45], and [47]; state
estimation is addressed in [1], [10], and [46]; reliable control
strategies are presented in [34] and [35]; and fault detection is
considered in [25].

On the other hand, after-effect phenomena often appear in
various engineering, communication, and chemical processes.
In modern industry, the traditional point-to-point communica-
tion architecture is no longer efficient, as the physical setups and
functionalities are continuously expanding, which pushes the in-
troduction of communication network media due to advantages
such as modularity, decentralization of control, integrated diag-
nostics, quick and easy maintenance, and low cost. As the hard-
ware devices for networks and network nodes become cheaper,
the insertion of networks into control loops becomes increas-
ingly common. However, due to the time-sharing nature of the
communication media, time delays inevitably appear in the con-
trol loops. In control systems, time delays often degrade the sys-
tem’s performance and even cause instability. Therefore, time
delays have received great attention in recent years, and many
researchers have studied various analytical techniques and de-
veloped many synthesis methods for time-delay systems. For
instance, stability analysis is carried out in [18], [24], [39],
and [43]; stabilizing and H∞ controllers are designed in [27]
and [38]; model reduction is addressed in [41]; and filtering
problems are investigated in [2], [13], [17], [33], and [44].

When nonlinearity is considered, T–S fuzzy systems with
time delays have received great attention in recent years. Re-
searchers have proposed various approaches for the analysis
and synthesis of fuzzy time-delay systems [23], [32]. Gener-
ally speaking, these approaches are based on two theories. One
is the Lyapunov–Krasovskii stability theory [14], [36], [47],
which is widely used but needs much information about the
time delay. The other is the Lyapunov–Razumikhin method [6],
which does not need too much information about the time de-
lay, but the obtained results may be conservative. Existing results
can be roughly classified into two types: One is dependent on
the size of the delay, i.e., the so-called “delay-dependent” ap-
proach [3], [9], [12], while the other is not concerned with the
size of the delay, which is called as the “delay-independent”
approach. It has been recognized that the former is less con-
servative than the latter. As the conservatism has been well
recognized as one of the most important deficiencies in existing
results, in recent years, a lot of attention has been devoted to
reducing the overdesign via various methods. Among these ef-
forts, the introduction of new types of Lyapunov functional [7],
[36] and adoption of appropriate bounding techniques [7] have
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been the most common approaches that have been reported.
It is worth mentioning, however, that the improvement due to
the earlier methods is still limited, and how to further reduce
the conservatism and overdesign still remains an important and
challenging problem.

Motivated by these earlier developments, in this paper, we
propose a new approach for the stability analysis and stabiliza-
tion of T–S fuzzy time-delay systems. Our objective is to further
reduce the conservatism and overdesign in the existing results,
and the instrumental idea to achieve our goal is “delay partition-
ing.” Based on this idea, a new method is first proposed for the
delay-dependent stability analysis of fuzzy time-delay systems.
The proposed stability condition is much less conservative than
most of the existing results due to the delay partitioning, and
it becomes even less conservative when the partitioning goes
finer. Using this result, the problem of stabilization via the so-
called parallel distributed compensation scheme is also solved.
Both the stability and stabilization results are further extended to
time-delay fuzzy systems with parameter uncertainties. All the
results are formulated in the form of linear matrix inequalities
(LMIs), which can be readily solved via standard numerical soft-
ware. The merit of the results proposed in this paper lies in their
reduced conservatism, as will be shown via detailed examples.

The remaining portion of the paper is organized as follows.
Section II formulates the problem under consideration. Stability
and robust stability analysis results are presented in Section III.
Based on the results obtained in Section III, controller designs
are presented in Section IV. Illustrative examples are given in
Section V to demonstrate the effectiveness of the theoretical re-
sults. Finally, some concluding remarks are given in Section VI.

The notation used throughout the paper is fairly standard.
The superscript “T ” stands for matrix transposition; R

n denotes
the n-dimensional Euclidean space. The notation ‖ · ‖ refers to
the Euclidean vector norm, and diag{. . .} stands for a block-
diagonal matrix. In symmetric block matrices or complex matrix
expressions, we use an asterisk (∗) to represent a term that is in-
duced by symmetry. I and 0 denote the identity matrix and zero
matrix with compatible dimensions, respectively, and sym(A)
is defined as A + AT . A − B > 0 means that A − B is a real
symmetric positive definite matrix. Matrices, if their dimen-
sions are not explicitly stated, are assumed to be compatible for
algebraic operations.

II. PRELIMINARIES

Consider a nonlinear time-delay system that can be repre-
sented by the following T–S fuzzy time-delay model:

Plant rule: IF θ1(t) is Mi1 and θ2(t) is Mi2 and · · · and θp(t)
is Mip , THEN


ẋ(t) = (Ai + ∆Ai(t))x(t) + (Adi + ∆Adi(t))x(t − h)
+ (Bi + ∆Bi(t))u(t), t > 0

x(t) = ϕ(t), t ∈
[
−h̄, 0

]
, i = 1, 2, . . . , r

(1)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

p is the control
input vector, h is a constant time delay satisfying 0 ≤ h ≤ h̄,

ϕ(t) is the initial condition, Mij is the fuzzy set, r is the number
of IF–THEN rules, and θ(t) = [θ1(t), θ2(t), . . . , θp(t)] is the
premise variables vector. It is assumed that the premise vari-
ables do not depend on the input u(t), and Ai , Bi , and Adi are
known constant matrices with appropriate dimensions. ∆Ai(t),
∆Adi(t), and ∆Bi(t) denote the uncertainties in the system and
they are of the form [26]

∆Ai(t) = DaiF (t)Eai, ∆Adi(t) = DdiF (t)Edi

∆Bi(t) = DbiF (t)Ebi, i = 1, 2, . . . , r (2)

where Dai, Ddi, Dbi, Eai, Edi , and Ebi are known constant
matrices and F (t) is an unknown real time-varying matrix with
Lebesgue measurable elements bounded by

FT (t)F (t) ≤ I. (3)

Given a pair of (x(t), u(t)) , the overall fuzzy system is inferred
as

ẋ(t) =
r∑

i=1

λi(θ(t))[Ãix(t) + Ãdix(t − h) + B̃iu(t)] (4)

where

Ãi = Ai + ∆Ai(t), Ãdi = Adi + ∆Adi(t)

B̃i = Bi + ∆Bi(t) (5)

and
r∑

i=1

λi(θ(t)) = 1

λi(θ(t)) =
ωi(θ(t))∑r
i=1 ωi(θ(t))

≥ 0

ωi(θ(t)) =
p∏

j=1

Mij (θj (t))

with Mij (θj (t)) representing the grade of membership of θj (t)
in Mij . Then, it can be seen that

ωi(θ(t)) ≥ 0, i = 1, 2, . . . , r

r∑
i=1

ωi(θ(t)) > 0

for all t. In this paper, we will first consider the nominal fuzzy
system of (1), which is given by

ẋ(t) =
r∑

i=1

λi(θ(t)) (Aix(t) + Adix(t − h) + Biu(t)) . (6)

A more compact presentation of the T–S fuzzy model is given
by

ẋ(t) = A(t)x(t) + Ad(t)x(t − h) + B(t)u(t)

x(t) = ϕ(t), t ∈ [−h̄, 0] (7)

where

A(t) =
r∑

i=1

λi(θ(t))Ai, Ad(t) =
r∑

i=1

λi(θ(t))Adi
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B(t) =
r∑

i=1

λi(θ(t))Bi.

The parallel distributed compensation strategy is utilized and
the fuzzy state-feedback controller obeys the following rules.

Controller rule: IF θ1(t) is Mi1 and θ2(t) is Mi2 and · · · and
θp(t) is Mip , THEN

u(t) = Kix(t)

i = 1, . . . , r (8)

where x(t) ∈ R
n is the input of the controller, u(t) ∈ R

m is the
output of the controller, and Ki is the gain matrix of the state-
feedback controller. Thus, the controller can be represented by
the following input–output form:

u(t) =
r∑

i=1

λi(θ(t))Kix(t) (9)

with its compact form

u(t) = K(t)x(t) (10)

where

K(t) =
r∑

i=1

λi(θ(t))Ki.

Thus, the closed-loop system can be obtained as

ẋ(t) =
r∑

i=1

r∑
j=1

λi(θ(t))λj (θ(t))[Ãix(t) + Ãdix(t − h)

+ B̃iKjx(t)]. (11)

The closed-loop system for the nominal case is given by

ẋ(t) =
r∑

i=1

r∑
j=1

λi(θ(t))λj (θ(t))[Aix(t) + Adix(t − h)

+BiKjx(t)] (12)
and its compact form is given by

ẋ(t) = [A(t) + B(t)K(t)] x(t) + Ad(t)x(t − h). (13)

III. STABILITY ANALYSIS

In this section, by employing the instrumental idea of de-
lay fractioning, where similar ideas have also appeared in [16]
and [20], a new Lyapunov–Krasovskii functional candidate
for T–S fuzzy time-delay systems is introduced. Based on
this Lyapunov–Krasovskii functional candidate, a new delay-
dependent stability criterion is first derived for nominal fuzzy
time-delay systems. Then, this result is further extended to ob-
tain a new robust stability condition for fuzzy time-delay sys-
tems with parameter uncertainties.

We first introduce the following matrix functions, which will
be used in the subsequent results:

R(t) =
r∑

i=1

λi(θ(t))Ri > 0, Q(t) =
r∑

i=1

λi(θ(t))Qi > 0

Z(t) =
r∑

i=1

λi(θ(t))Zi > 0

S1(t) =
r∑

i=1

λi(θ(t))S1i , S2(t) =
r∑

i=1

λi(θ(t))S2i (14)

where Ri > 0, Qi > 0, Zi > 0, and S1i and S2i are constant
matrices.

A. Nominal Systems

In this section, by assuming that the controller gain matrices in
the controller (9) are given, a delay-dependent stability criterion
for the nominal closed-loop system in (12) is presented in the
following theorem.

Theorem 1: Consider the nominal fuzzy time-delay system
in (7) and suppose that the controller gain matrices in (10) are
known. Given an integer m ≥ 1 and a scalar h > 0, if there
exist a matrix P > 0 and matrix functions Q(t) > 0, Z(t) > 0,
R(t) > 0, S1(t), and S2(t) in the form of (14), such that the
following inequalities are satisfied for any , w, and some positive
scalar σ: 

 Ω(t) + σWT
σ Wσ S1(t)

∗ −m

h
Z(t)


 < 0 (15)

Z(t) < R(w) (16)

where

Ω(t) = WT
P P̄WP +

h

m
WT

R R (t) WR + WT
Q 1

Q(t)WQ 1

− WT
Q 2

Q

(
t − h

m

)
WQ 2 + sym(S(t)WS (t))

P̄ =
[

0 P
P 0

]
, S(t) = [S1(t) S2(t) ]

WP =
[
In 0n,(m+1)n

0n,(m+1)n In

]
, WR = [ 0n,(m+1)n In ]

WQ 1 = [ Imn 0mn,2n ] , Wσ = [ In 0n,(m+1)n ]

WQ 2 = [ 0mn,n Imn 0mn,n ]

WS (t) =
[

In − In 0n,mn

A(t) + B(t)K(t) 0n,(m−1)nAd(t) − In

]
(17)

then the fuzzy system in (13) is asymptotically stable.
Proof: To prove the theorem, we choose a Lyapunov–

Krasovskii functional candidate as

V (t) = V1(t) + V2(t) + V3(t) (18)

and

V1(t) = xT (t)Px(t)

V2(t) =
∫ 0

−h/m

∫ t

t+v

ẋT (w)R(w)ẋ(w) dw dv

V3(t) =
∫ t

t−h/m

γT (w)Q(w)γ(w) dw
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where P > 0, R(t) > 0, and Q(t) > 0 have been defined in
(14), and

γ(w) =




x(w)

x

(
w − h

m

)

x

(
w − 2h

m

)
...

x

(
w − m − 1

m
h

)




. (19)

The time derivative of V (t) along the trajectory of the system
in (13) is given by

V̇1(t) = 2ẋT (t)Px(t)

V̇2(t) =
h

m
ẋT (t)R(t)ẋ(t) −

∫ t

t−h/m

ẋT (w)R(w)ẋ(w) dw

V̇3(t) = γT (t)Q(t)γ(t)− γT

(
t− h

m

)
Q

(
t− h

m

)
γ

(
t− h

m

)
.

Define

ξ(t) =




γ(t)

x(t − h)

ẋ(t)




and according to the Newton–Leibniz formula and the system
in (12), with S1(t), S2(t) defined in (14), we have

Π1 = 2ξT (t)S1(t)
[
x(t)−x

(
t− h

m

)
−

∫ t

t−h/m

ẋ(w) dw

]
= 0

Π2 = 2ξT (t)S2(t) [((A(t) + B(t)K(t))x(t) + Ad(t)x(t − h))

−ẋ(t) = 0] .

Therefore, the following holds:

V̇ (t) ≤ 2ẋT (t)Px(t) +
h

m
ẋT (t)R(t)ẋ(t)

−
∫ t

t−h/m

ẋT (w)R(w)ẋ(w)dw + γT (t)Q(t)γ(t)

− γT

(
t − h

m

)
Q

(
t − h

m

)
γ

(
t − h

m

)

+ 2ξT (t)S1(t)
[
x(t)−x

(
t− h

m

)
−

∫ t

t−h/m

ẋ(w)dw

]

+ 2ξT (t)S2(t) [(A(t) + B(t)K(t))x(t)

+Ad(t)x(t − h) − ẋ(t)]

+
h

m
ξT (t)S1(t)Z−1(t)ST

1 (t)ξ(t)

−
∫ t

t−h/m

ξT (t)S1(t)Z−1(t)ST
1 (t)ξ(t)dw

where Z(t) is to be determined.

If
Z(t) < R(w)

we have

V̇ (t) ≤ Λ(t) +
h

m
ξT (t)S1(t)Z−1(t)ST

1 (t)ξ(t)

−
∫ t

t−h/m

(ẋT (w)R(w) + ξT (t)S1(t))

× R−1(w)(R(w)ẋ(w) + ST
1 (t)ξ(t))dw (20)

where

Λ(t) = 2ẋT (t)Px(t) +
h

m
ẋT (t)R(t)ẋ(t) + γT (t)Q(t)γ(t)

− γT

(
t − h

m

)
Q

(
t − h

m

)
γ

(
t − h

m

)

+ 2ξT (t)S1(t)
[
x(t) − x

(
t − h

m

)]

+ 2ξT (t)S2(t) [(A(t) + B(t)K(t))x(t)

+Ad(t)x(t − h) − ẋ(t)]

= ξT (t)Ω(t)ξ(t).

From (15), we know that

Ω(t) + σWT
σ Wσ +

h

m
S1(t)Z−1(t)ST

1 (t) < 0.

Note that the last term in (20) is nonpositive, and

Ω(t) +
h

m
S1(t)Z−1 (t) ST

1 (t) > −σWT
σ Wσ .

Therefore

V̇ (t) < Λ(t) +
h

m
ξT (t)S1(t)Z−1(t)ST

1 (t)ξ(t)

< −ξT (t)σWT
σ Wσξ(t).

Thus, one can always find a sufficiently small σ > 0, for x(t) �=
0, satisfying

V̇ (t) < −σ ‖x(t)‖2

which indicates that the closed-loop fuzzy system is asymptoti-
cally stable, and the proof is completed. �

It is noted that Theorem 1, expressed in the form of parameter-
dependent matrix inequalities, cannot be directly implemented
for the stability analysis. Our next objective is to convert the
inequalities in (15) and (16) to some finite LMIs, which can be
readily solved using standard numerical software. We have the
following theorem.

Theorem 2: Consider the nominal fuzzy time-delay system
in (12) and suppose the controller gain matrices Ki in (9) are
known. Given an integer m ≥ 1 and a scalar h > 0, if there exist
positive definite matrices P , Qi , Zi , and Ri , and matrices S1i

and S2i , for some positive scalar σ, satisfying

ϕiilk < 0, i, l, k = 1, . . . , r (21)

ϕijlk + ϕjilk < 0, 1 ≤ i < j ≤ r, l, k = 1, . . . , r (22)

Zi < Rj , i, j = 1, . . . , r (23)



754 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 17, NO. 4, AUGUST 2009

where

ϕijlk =


Ωij lk + σWT

σ Wσ S1i

∗ −m

h
Zi




Ωij lk = WT
P P̄WP +

h

m
WT

R RiWR + WT
Q 1

QiWQ 1

− WT
Q 2

QlWQ 2 + sym(SiWSjk )

Si = [S1i S2i ]

WSjk =
[

In − In 0n,mn

Aj + BjKk0n,(m−1)nAdj − In

]
(24)

and P̄ , WP , WR , WQ 1 , WQ 2 , and Wσ are defined in (17), then
the fuzzy system in (12) is asymptotically stable.

Proof: Inequalities (15) and (16) can be rewritten as
r∑

i=1

λi(θ(t))
r∑

j=1

λj (θ(t))
r∑

l=1

λl

(
θ

(
t− h

m

)) r∑
k=1

λk (θ(t))ϕijlk

=
r∑

i=1

λ2
i (θ(t))

r∑
l=1

λl

(
θ

(
t − h

m

)) r∑
k=1

λk (θ(t))ϕiilk

+ 2
r−1∑
i=1

λi(θ(t))
r∑

j>i

λj (θ(t))
r∑

l=1

λl

(
θ

(
t − h

m

))

×
r∑

k=1

λk (θ(t))
(

ϕijlk + ϕjilk

2

)
< 0

and
r∑

i=1

λi(θ(t))
r∑

j=1

λj (θ(w)) (Zi − Rj ) < 0.

Obviously, (21)–(23) guarantee the inequalities (15) and (16)
for any t and w. �

The nominal fuzzy time-delay system in (6) with u(t) = 0
can be described as

ẋ(t) =
r∑

i=1

λi(θ(t)) [Aix(t) + Adix(t − h)] .

A new stability condition for this nominal unforced system is
given in the following corollary, which can be proved by fol-
lowing similar arguments as those in the proof of Theorem 1.

Corollary 1: Given an integer m ≥ 1 and a scalar h > 0,
the nominal fuzzy time-delay system in (12) when u(t) = 0 is
asymptotically stable if there exist positive definite matrices P ,
Qi , Zi , and Ri , and matrices S1i and S2i , for some positive
scalar σ, satisfying
Ωiil + σWT

σ Wσ S1i

∗ −m

h
Zi


 < 0, i, l = 1, . . . , r (25)


Ωij l +σWT

σ Wσ S1i

∗ −m

h
Zi


+


Ωj il + σWT

σ Wσ S1j

∗ −m

h
Zj


< 0

1 ≤ i < j ≤ r, l = 1, . . . , r (26)

Zi < Rj , i, j = 1, . . . , r (27)

where

Ωij l = WT
P P̄WP +

h

m
WT

R RiWR + WT
Q 1

QiWQ 1

− WT
Q 2

QlWQ 2 + sym(SiW̃j )

W̃j =
[

In − In 0n,mn

Aj 0n,(m−1)n Adj − In

]
(28)

and P̄ , Si , WP , WR , WQ 1 , WQ 2 , and Wσ are the same as those
in (24).

Remark 1: Theorem 1 and Corollary 1 present new stability
conditions for fuzzy time-delay systems with or without control
inputs, respectively. These conditions are derived based on the
new Lyapunov–Krasovskii functional candidate defined in (18).
It is worth noting that this Lyapunov–Krasovskii functional is
essentially different from most of the existing ones used for
fuzzy delay systems in that a new delay partitioning idea has
been incorporated. Another feature worth mentioning is that in
obtaining the new stability conditions, we have also incorporated
the idea of basis dependence. These advanced ideas help reduce
the conservatism, which will be well illustrated later in the
Section VI.

Remark 2: Due to the incorporation of the idea of basis depen-
dence, the stability conditions in Theorem 1 and Corollary 1 are
large-computationally heavy, especially for systems with many
fuzzy rules. If we do not utilize the basis-dependent idea, we
can obtain Corollary 2, which is computationally more efficient.

Theorem 2 is developed based on a fuzzy basis-dependent
Lyapunov functional. If we simplify it to the quadratic approach
(i.e., fixed Lyapunov matrices are used for the whole fuzzy
system), we obtain Corollary 2 given next. In this case, Z is a
redundant matrix variable (i.e., we do not need to introduce the
matrix variable Z).

Corollary 2: Consider the nominal fuzzy time-delay system
in (12) and suppose that the controller gain matrices Ki in (9)
are known. Given an integer m ≥ 1 and a scalar h > 0, if there
exist positive definite matrices P, Q, and R, and matrices S1
and S2 , for some positive scalar σ, satisfying
 Ωii + σWT

σ Wσ S1

∗ −m

h
R


 < 0, i = 1, . . . , r (29)


Ωij + σWT

σ Wσ S1

∗ −m

h
R


+


Ωj i + σWT

σ Wσ S1

∗ −m

h
R


< 0

1 ≤ i < j ≤ r (30)

where

Ωij = WT
P P̄WP +

h

m
WT

R RWR + WT
Q 1

QWQ 1

− WT
Q 2

QWQ 2 + sym(S̄Wij )

S̄ = [S1 S2 ]

Wij =
[

In − In 0n,mn

Ai + BiKj 0n,(m−1)n Adi − In

]
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and P̄ , WP , WR , WQ 1 , WQ 2 , and Wσ are defined in (17), then
the fuzzy system in (12) is asymptotically stable.

Proof: The inequalities in (29) and (30) guarantee the follow-
ing inequality holds:

 Ω(t) + σWT
σ Wσ S1

∗ −m

h
R


 < 0 (31)

where

Ω(t) = WT
P P̄WP +

h

m
WT

R RWR + WT
Q 1

QWQ 1

− WT
Q 2

QWQ 2 + sym(S̄W (t))

S̄ = [S1 S2 ]

W (t) =
[

In − In 0n,mn

A(t) + B(t)K(t) 0n,(m−1)n Ad(t) − In

]
. (32)

The Lyapunov–Krasovskii functional candidate is introduced
by simplifying the basis-dependent Lyapunov–Krasovskii func-
tional candidate in Theorem 1 to quadratic one

V (t) = V1(t) + V2(t) + V3(t)

and

V1(t) = xT (t)Px(t)

V2(t) =
∫ 0

−h/m

∫ t

t+v

ẋT (w)Rẋ(w)dwdv

V3(t) =
∫ t

t−h/m

γT (w)Qγ(w)dw

where P > 0, R > 0, and Q > 0 are to be determined, and γ(w)
is the same as that in the proof of Theorem 1. By following
similar lines as in Theorem 1, we obtain

V̇ (t) ≤ 2ẋT (t)Px(t)+
h

m
ẋT (t)Rẋ(t)−

∫ t

t−h/m

ẋT(w)Rẋ(w)dw

+ γT (t)Qγ(t) − γT

(
t − h

m

)
Qγ

(
t − h

m

)

+ 2ξT (t)S1

[
x(t) − x

(
t − h

m

)
−

∫ t

t−h/m

ẋ(w)dw

]

+ 2ξT (t)S2 [(A(t) + B(t)K(t))x(t)

+Ad(t)x(t − h) − ẋ(t)] +
h

m
ξT (t)S1R

−1ST
1 ξ(t)

−
∫ t

t−h/m

ξT (t)S1R
−1ST

1 ξ(t)dw

i.e.,

V̇ (t) ≤ Λ(t) +
h

m
ξT (t)S1R

−1ST
1 ξ(t) −

∫ t

t−h/m

(ẋT (w)R

+ ξT (t)S1)R−1(Rẋ(w) + ST
1 ξ(t)) dw

where

Λ(t) = 2ẋT (t)Px(t) +
h

m
ẋT (t)Rẋ(t) + γT (t)Qγ(t)

− γT

(
t − h

m

)
Qγ

(
t − h

m

)

+ 2ξT (t)S1

[
x(t) − x

(
t − h

m

)]

+ 2ξT (t)S2 [(A(t) + B(t)K(t))x(t)

+Ad(t)x(t − h) − ẋ(t)]

= ξT (t)Ω(t)ξ(t).

From (31), we know that

Ω(t) + σWT
σ Wσ +

h

m
S1R

−1ST
1 < 0.

By following similar arguments as those in the proof of
Theorem 1, we can complete the proof. �

B. Uncertain Systems

In this section, we consider the robust stability analysis of
fuzzy time-delay systems with parameter uncertainties. The re-
sults for nominal systems in the previous section will be ex-
tended to systems with time-varying structured uncertainties
described in (11). Before proceeding further, we first give the
following lemma that is needed for our subsequent derivation.

Lemma 1 [37]: Given matrices Φ = ΦT , D, E, and R =
RT > 0 of appropriate dimensions

Φ + DFE + ET FT DT < 0,

for all F satisfying FT F ≤ R, if and only if there exists a scalar
ε > 0 such that

Φ + εDDT + ε−1ET RE < 0.

Theorem 3: Consider the fuzzy time-delay system in (11) and
suppose that the controller gain matrices Ki in (8) are known.
Given an integer m ≥ 1 and a scalar h > 0, if there exist positive
definite matrices P, Qi, Zi, and Ri, and matrices S1i and S2i ,
scalars εij lk > 0, ε′ij lk > 0, and ε′′ij lk > 0, for some positive
scalar σ, satisfying

ψiilk < 0, i, l, k = 1, . . . , r (33)

ψijlk + ψjilk < 0, 1 ≤ i < j ≤ r, l, k = 1, . . . , r (34)

Zi < Rj , i, j = 1, . . . , r (35)

where

ψijlk =




Θij lk S1i S2iDaj S2iDdj S2iDbj

∗ −m

h
Zi 0 0 0

∗ ∗ −εij lk In 0 0

∗ ∗ ∗ −ε′ij lk In 0

∗ ∗ ∗ ∗ −ε′′ij lk In




Θij lk = Ωij lk + σWT
σ Wσ + εij lkET

AjEAj

+ ε′ij lkET
DjEDj + ε′′ij lkET

BjkEBjk
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EAi = [Eai 0e1 ,(m+1)n ]

EBij = [EbiKj 0e2 ,(m+1)n ]

EDi = [ 0e3 ,mn Edi 0e3 ,n ]

Ωij lk and Wσ are defined in (24), and e1 , e2 , and e3 are the
numbers of rows in matrices Eai , EbiKj , and Edi , respectively,
then the fuzzy system in (11) is asymptotically stable.

Proof: Replacing Ai , Bi and Adi in (21) by Ai +
DaiF (t)Eai , Bi + DbiF (t)Ebi , and Adi + DdiF (t)Edi ,
respectively, we have

Ωiilk + σWT
σ Wσ +

h

m
S1iZ

−1
i ST

1i + sym((S2iDaiF (t)EAi

+ S2iDbiF (t)EBik + S2iDdiF (t)EDi) < 0

i, l, k = 1, . . . , r.

According to Lemma 1, the previous inequality holds if

Ωiilk + σWT
σ Wσ +

h

m
S1iZ

−1
i ST

1i + ε−1
iilkS2iDaiD

T
aiS

T
2i

+ ε′−1
iilkS2iDdiD

T
diS

T
2i + ε′′−1

iilk S2iDbiD
T
biS

T
2i

+ εiilkET
AiEAi + ε′iilkET

DiEDi + ε′′iilkET
BikEBik < 0

which, by Schur complement, is equivalent to the inequality
in (33). By following similar lines, the inequality (34) can be
obtained. The proof is completed. �

The fuzzy time-delay systems with uncertainties in (11) when
u(t) = 0 can be described as

ẋ(t) =
r∑

i=1

λi [Ãix(t) + Ãdix(t − h)].

Then, we have the following corollary, which can be proved by
following similar arguments as those in the proof of Theorem 3.

Corollary 3: Given an integer m ≥ 1 and a scalar h > 0, the
fuzzy time-delay system in (11) when u(t) = 0 is asymptotically
stable if there exist positive definite matrices P, Qi, Zi, and Ri,
and matrices S1i and S2i , scalars εij l > 0 and ε′ij l > 0, for some
positive scalar σ, satisfying

γiil < 0, i, l = 1, . . . , r

γij l + γjil < 0, 1 ≤ i < j ≤ r, l = 1, . . . , r

Zi < Rj , i, j = 1, . . . , r

where

γij l =




Θij l S1i S2iDaj S2iDdj

∗ −m

h
Zi 0 0

∗ ∗ −εij lIn 0

∗ ∗ ∗ −ε′ij lIn




Θij l = Ωij l + σWT
σ Wσ + εij lE

T
AjEAj + ε′ij lE

T
DjEDj

and Ωij l and Wσ are defined in (28).

IV. CONTROLLER DESIGN

In this section, fuzzy state-feedback controllers will be de-
signed based on the results developed in the previous section.
Delay-dependent stabilization methods will be developed such
that the closed-loop fuzzy systems are asymptotically stable.

A. Nominal Systems

In this section, based on Theorem 1, a state-feedback con-
troller is designed guaranteeing the asymptotic stability of the
closed-loop nominal fuzzy system in (12).

Theorem 4: Consider the nominal fuzzy time-delay system
in (6). Given an integer m > 1, and scalars h > 0, τ1 , τ2 , . . .,
τ(m+2) , there exists a fuzzy state-feedback controller in the form
of (8) such that the closed-loop system in (12) is asymptotically
stable if there exist positive definite matrices P̂ , Q̂i , R̂i , and
Ẑi , and matrices X, Ŝ1i , and Mi, for some positive scalar σ,
satisfying


Γiil Ŝ1i WT
σ XT

∗ −m

h
Ẑi 0

∗ ∗ −σ−1I


 < 0, i, l = 1, . . . r (36)




Γij l Ŝ1i WT
σ XT

∗ −m

h
Ẑi 0

∗ ∗ −σ−1I


+




Γj il Ŝ1j WT
σ XT

∗ −m

h
Ẑj 0

∗ ∗ −σ−1I


< 0

1 ≤ i < j ≤ r, l = 1, . . . , r (37)

Ẑi < R̂j , i, j = 1, . . . r (38)

where

Γij l = WT
P P̌WP +

h

m
WT

R R̂iWR + WT
Q 1

Q̂iWQ 1

− WT
Q 2

Q̂lWQ 2 + sym(GiŴij )

P̌ =
[

0 P̂

P̂ 0

]
, Gi = [S1i U ]

U = [ τ1In τ2In · · · τ(m+2)In ]T

Ŵij =
[

In − In 0n,mn

AiX + BiMj 0n,(m−1)n AdiX − X

]
(39)

and WP , WR , WQ 1 , WQ 2 , and Wσ are defined in (17). Further-
more, if the previous conditions are satisfied, the matrix gains
of the controller are given by

Ki = MiX
−1 , i = 1, . . . , r. (40)

Proof: Suppose there exist positive definite matrices P̂ , Q̂i ,
R̂i , and Ẑi , and matrices X, Ŝ1i , and Mi satisfying the ma-
trix inequalities in Theorem 4. Without the loss of generality,
we assume that X is invertible (invoke a small perturbation if
necessary). Define S = X−T and the following matrices:

T̄ = diag {S, S, . . . S} ∈ R
(m+4)n×(m+4)n

T̄1 = diag {S, S, . . . , S} ∈ R
(m+2)n×(m+2)n

T̄2 = diag {S, S, . . . , S} ∈ R
mn×mn .
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Pre- and postmultiplying (36) and (37) with T̄ and T̄ T , we
obtain

T̄




Γiil Ŝ1i WT
σ XT

∗ −m

h
Ẑi 0

∗ ∗ −σ−1I


 T̄ T < 0, i, l = 1, . . . r (41)

T̄




Γij l Ŝ1i WT
σ XT

∗ −m

h
Ẑi 0

∗ ∗ −σ−1I


 T̄ T

+ T̄




Γj il Ŝ1j WT
σ XT

∗ −m

h
Ẑj 0

∗ ∗ −σ−1I


 T̄ T < 0

1 ≤ i < j ≤ r, l = 1, . . . , r. (42)

Since

T̄




Γij l Ŝ1i WT
σ XT

∗ −m

h
Ẑi 0

∗ ∗ −σ−1I


 T̄ T

=




T̄1 0 0

∗ S 0

∗ ∗ S







Γij l Ŝ1i WT
σ XT

∗ −m

h
Ẑi 0

∗ ∗ −σ−1I




×




T̄ T
1 0 0

∗ ST 0

∗ ∗ ST




=




T̄1Γij l T̄
T
1 T̄1 Ŝ1iS

T T̄1W
T
σ XT ST

∗ −m

h
SẐiS

T 0

∗ ∗ −σ−1SST




where

T̄1Γij l T̄
T
1 = WT

P

[
0 SP̂ST

SP̂ST 0

]
WP +

h

m
WT

R SR̂iS
T WR

+ WT
Q 1

T̄2Q̂iT̄
T
2 WQ 1 − WT

Q 2
T̄2Q̂l T̄

T
2 WQ 2

+ sym(T̄1GiŴij T̄
T
1 )

and

T̄1W
T
σ XT ST = WT

σ ST .

By defining

P = SP̂ST , Ri = SR̂iS
T , Qi = T̄2Q̂i T̄

T
2

S1i = T̄1 Ŝ1iS
T , Zi = SẐiS

T

S2i = [ τ1S
T τ2S

T · · · τ(m+2)S
T ]T

we have

T̄1Γij l T̄
T
1 = WT

P

[
0 P

P 0

]
WP +

h

m
WT

R RiWR + WT
Q 1

QiWQ 1

− WT
Q 2

QlWQ 2 + sym(T̄1GiŴij T̄
T
1 )

where

T̄1GiŴij T̄
T
1

= T̄1 Ŝ1i [ In −In 0n,mn ] T̄ T
1

+ T̄1U [ AiX + BiMj 0n,(m−1)n AdiX −X ] T̄ T
1

= T̄1 Ŝ1iS
T [ In −In 0n,mn ]

+ T̄1U [ AiX + BiMj 0n,(m−1)n AdiX −X ] T̄ T
1

= S1i [ In −In 0n,mn ]

+ [ τ1S
T τ2S

T · · · τ(m+2)S
T ]T

× [ AiX + BiMj 0n,(m−1)n AdiX −X ] T̄ T
1

= [S1i S2i ]
[

In − In 0n,mn

Aj + BjKk 0n,(m−1)n Adj − In

]
.

Thus, by Schur complement, we can obtain that

T̄




Γij l Ŝ1i WT
σ XT

∗ −m

h
Ẑi 0

∗ ∗ −σ−1I


 T̄ T < 0 (43)

is equivalent to

[ Ωij lk + σWT
σ Wσ S1i

∗ −m

h
Zi

]
< 0.

Therefore, we conclude that the inequalities in (41) and (42) are
equivalent to those in (21) and (22). Pre- and postmultiplying
(38) with S and ST , we obtain (23). The proof is completed. �

B. Uncertain Systems

In this section, we consider the problem of robust state-
feedback controller design for the fuzzy delay systems with
uncertainties in (1).

Theorem 5: Consider the fuzzy time-delay system in (1).
Given an integer m > 1, and scalars h > 0, τ1 , τ2 , . . ., τ(m+2) ,
there exists a fuzzy state-feedback controller in the form of
(8) such that the closed-loop system in (11) is asymptotically
stable if there exist positive definite matrices P̂ , Q̂i , R̂i , and Ẑi ,
matrices X, Ŝ1i , and, Mi , and scalars εij l > 0, ε′ij l > 0, and
ε′′ij l > 0, for some positive scalar σ, satisfying

Ξiil < 0, i, l = 1, . . . r (44)

Ξij l + Ξj il < 0, 1 ≤ i < j ≤ r, l = 1, . . . , r (45)

Ẑi < R̂j , i, j = 1, . . . r (46)
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where

Ξij l =




Γ̃ij l Ŝ1i WT
σ XT ẼT

Ai ẼT
B ij ẼT

Di

∗ −m

h
Ẑi 0 0 0 0

∗ ∗ −σ−1I 0 0 0
∗ ∗ ∗ −εij lIn 0 0
∗ ∗ ∗ ∗ −ε′ ij lIn 0
∗ ∗ ∗ ∗ ∗ −ε′′ij lIn




Γ̃ij l = Γij l + εij l (UDai) (UDai)
T

+ ε
′

ij l (UDbi) (UDbi)
T + ε

′′

ij l (UDdi) (UDdi)
T

ẼAi = [EaiX 0f1 ,(m+1)n ]

ẼB ij = [EbiMj 0f2 ,(m+1)n ]

ẼDi = [ 0f3 ,mn EdiX 0f3 ,n ] (47)

and Γij l , U , and Wσ are defined in (39), and f1 , f2 , and f3 are
the numbers of rows in matrices EaiX , EbiMj , and EdiX , re-
spectively. Furthermore, if the previous conditions are satisfied,
the matrix gains of the controller are given by

Ki = MiX
−1 , i = 1, . . . , r.

Proof: Replacing Ai, Adi, and Bi in the inequalities (36) with

Ai + DaiF (t)Eai(t), Adi + DdiF (t)Edi(t)

and Bi + DbiF (t)Ebi(t), respectively, we get

Γiil +
h

m
Ŝ1i Ẑ

−1
i ŜT

1i + σWT
σ XT XWσ + sym(UDaiF (t)ẼAi

+ UDbiF (t)ẼB ij + UDdiF (t)ẼDi) < 0.

According to Lemma 1, the previous inequality holds if and
only if

Γiil +
h

m
Ŝ1i Ẑ

−1
i ŜT

1i + σWT
σ XT XWσ + εij l (UDai) (UDai)

T

+ ε′ij l (UDbi) (UDbi)
T + ε′′ij l (UDdi) (UDdi)

T

+ ε−1
ij l Ẽ

T
AiẼAi + ε′−1

ij l ẼT
B ij ẼB ij + ε′′Tij l Ẽ

T
DiẼDi < 0.

By the Schur complement, the previous inequality is equivalent
to (44). By following similar lines, the inequality (45) can be
obtained, and the proof is completed. �

Remark 3: Notice that there are some tuning parameters in
the proposed controller design methods, and the values of these
parameters are playing important roles with respect to the re-
duction of conservatism. To find a better combination of these
parameters, one might resort to some optimization algorithms.

Remark 4: It is obvious that when the delay partitioning num-
ber m becomes larger, the conservatism of the results is further
reduced, while the computational cost increases. This is reason-
able since m is related to the number of decision variables. Thus,
a larger m implies that the solution can be searched in a larger
set; on the other hand, it can be seen that the total number of de-
cision variables is dependent on the delay partitioning number
m, and it will increase if m increases. For example, in Corollary
3, the relation between the total number of decision variables N

TABLE I
ALLOWABLE MAXIMUM TIME DELAY h

and the delay partitioning number m can be represented as

N = NP + NRi
+ NZi

+ NQi
+ NQl

+ NS1 i
+ NS2 i

where

NP = NRi
= NZi

=
n (n + 1)

2

NQi
= NQl

=
mn (mn + 1)

2
NS1 i

= NS2 i
= (m + 2) nn

and NP , NRi
, NQi

, NQl
, NS1 i

, and NS2 i
are the number of

decision variables in P , Ri , Qi , Ql , S1i , and S2i .

V. ILLUSTRATIVE EXAMPLE

In this section, several examples are provided to demonstrate
the effectiveness of the proposed approaches. By comparing
with the results in the literature, the reduced conservatism of
our methods becomes apparent. The first example is to show
the advantage of the stability condition proposed in this paper.
The second one is used to show the superiority of the proposed
controller design methods. The third example is to show the
applicability of the proposed controller design methods.

A. Example 1

Consider the following fuzzy system with a constant time
delay, which has been used in many papers:

ẋ(t) =
2∑

i=1

λi [Aix(t) + Adix(t − h)] (48)

where

A1 =
[−2.1 0.1
−0.2 −0.9

]
, A2 =

[−1.9 0
−0.2 −1.1

]

Ad1 =
[−1.1 0.1
−0.8 −0.9

]
, Ad2 =

[−0.9 0
−1.1 −1.2

]
. (49)

The purpose here is to find the allowable maximum time-delay
value h under which the fuzzy system is stable. Table I shows
the maximum time-delay bounds obtained by the methods in
[7], [30], [36], and [42] and that proposed by us, where “N”
stands for the total number of decision variables.

Table I clearly shows that our method yields much larger delay
bounds than the existing result. It can also be seen from Table I
that the conservatism is further reduced when m increases. The
advantage of our result is apparent.
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TABLE II
MAXIMUM TIME DELAY h OF THE NOMINAL SYSTEM

TABLE III
MAXIMUM TIME DELAY h OF THE UNCERTAIN SYSTEM

B. Example 2

Consider the following fuzzy time-delay system with
uncertainties:

ẋ(t) =
r∑

i=1

λi [(Ai + ∆Ai(t))x(t) + Adix(t − h)

+ (Bi + ∆Bi(t))u(t)] (50)

where

A1 =
[

0 0.6
0 1

]
, A2 =

[
1 0
1 0

]
, Ad1 =

[
0.5 0.9
0 2

]

Ad2 =
[

0.9 0
1 1.6

]
, Bi =

[
1
1

]

and

∆Ai(t) = DF (t)Eai, ∆Adi(t) = DF (t)Edi

∆Bi(t) = DF (t)Ebi, F (t) = sin(t)

where

D =
[

1
0

]
, Ea1 = [ 0 0 ]

Ea2 = [−0.05 0 ] , Eb1 = Eb2 = 0.03.

First, we consider the nominal fuzzy system of (50). The
model is the same as [36, Ex.2]. The approach in [30] fails
to find stabilizing controllers. Table II shows the maximum
time-delay values obtained by the controller design approaches
in [7], [36], and [42] and the method presented in this paper. It
is apparently shown that the time-delay bound obtained by our
method is much larger than those obtained by others.

The fuzzy controller gains by our method are given by

K1 = [ 80.2956 −217.9431 ]

K2 = [ 79.7132 −218.4776 ] . (51)

Next, we consider robust control for the fuzzy system in (50).
The results by applying the methods in [7] and [42] and Theorem
4 are listed in Table III. The reduction of conservatism given by
our approach is clearly shown in Table III.

Fig. 1. State response of the nominal system.

Fig. 2. State response of the uncertain system.

By Theorem 4 in this paper, for h = 0.3991, the state-
feedback gains are given by

K1 = [ 16.0804 −42.6979 ]

K2 = [ 15.0867 −42.9237 ] . (52)

In the simulation, we utilize the following fuzzy membership
function [36]:


λ1 (x1(t)) =

1
(1 + exp (−2x1(t)))

λ2 (x1(t)) = 1 − λ1 (x1(t)) .

Fig. 1 shows that the states of the nominal closed-loop sys-
tem converge to zero when the fuzzy controller gains are given
in (51), and Fig. 2 shows the state response of the uncertain
closed-loop system with the controller gains in (52), where
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the initial condition is assumed to be x(t) = [ 1.6 0.6 ]T , for
t ∈ [−0.3991, 0].

C. Example 3

Consider the truck–trailer model with time delay formulated
in [6]

ẋ1(t) = −c
vt̄

Lt0
x1(t) − (1 − c)

vt̄

Lt0
x1(t − h) +

vt̄

lt0
u(t)

ẋ2(t) = c
vt̄

Lt0
x1(t) + (1 − c)

vt̄

Lt0
x1(t − h)

ẋ3(t) =
vt̄

t0
sin

(
x2(t) + c

vt̄

2L
x1(t) + (1 − c)

vt̄

2L
x1(t − h)

)

where x1(t) is the angular difference between the truck and
trailer, x2(t) is the angle of the trailer, and x3(t) is the vertical
position of rear end of the trailer. The model parameters are
given as l = 2.8, L = 5.5, v = −1.0, t̄ = 2.0, t0 = 0.5, and
c = 0.7.

Let θ(t) = x2(t) + c(vt̄/2L)x1(t) + (1 − c)(vt̄/2L)x1(t −
h), and the membership functions are defined in [36]. The T–S
fuzzy model that represents the nonlinear system is as follows:

Model rule 1: IF θ(t) is about 0 rad

THEN ẋ(t) = A1x(t) + Ad1x(t − h) + B1u(t)

Model rule 2: IF θ(t) is about π rad or − π rad

THEN ẋ(t) = A2x(t) + Ad2x(t − h) + B2u(t)

where x(t) = [x1(t) x2(t) x3(t) ]T , and

A1 =




−c
vt̄

Lt0
0 0

c
vt̄

Lt0
0 0

c
v2 t̄2

2Lt0

vt̄

t0
0




, Ad1 =




− (1 − c)
vt̄

Lt0
0 0

(1 − c)
vt̄

Lt0
0 0

(1 − c)
v2 t̄2

2Lt0
0 0




A2 =




−c
vt̄

Lt0
0 0

c
vt̄

Lt0
0 0

c
gv2 t̄2

2Lt0

gvt̄

t0
0




, Ad2 =




− (1 − c)
vt̄

Lt0
0 0

(1 − c)
vt̄

Lt0
0 0

(1 − c)
gv2 t̄2

2Lt0
0 0




B1 =
[

vt̄

lt0
0 0

]T

, B2 =
[

vt̄

lt0
0 0

]T

.

We assume that the uncertainties in the system are modeled as
that in [8], where F (t) = sin (2t), and

Da = Dd = [ 0.255 0.255 0.255 ]T

Ea1 = Ea2 = Ed1 = Ed2 = [ 0.1 0 0 ]

Db = [ 0.1790 0 0 ]T , Eb1 = 0.05, Eb2 = 0.15.

Fig. 3. State response for Example 3.

By using Theorem 4, we found that the fuzzy system is robustly
stabilizable with the maximum time-delay value h = 10.4653,
and the fuzzy state-feedback controller gains are given by

K1 = [ 1.2896 −0.4511 0.0052 ]

K2 = [ 1.2912 −0.4602 0.0052 ] .

The obtained fuzzy state-feedback controller makes the closed-
loop states converge to zero, as is shown in Fig. 3, where the
initial condition is assumed to be x(t) = [ 5 −3 4 ]T , for
t ∈ [−10.4653, 0].

VI. CONCLUDING REMARKS

The problems of delay-dependent stability analysis and stabi-
lization of Takagi–Sugeno fuzzy time-delay systems have been
investigated. Based on the delay fractioning technique, a new
approach has been proposed, with elegant delay-dependent sta-
bility condition derived for the nominal fuzzy delay systems.
This result has been further utilized to solve the stabilization
problem. The results for the nominal system have also been ex-
tended to deal with the robust stability analysis and stabilization
problems for fuzzy delay systems with time-varying parameter
uncertainties. Several examples have been provided to show the
effectiveness and advantage of the obtained results. The delay
partititioning idea has been well demonstrated to be efficient for
reducing conservatism and could be further extended to solve
other related problems.
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