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Abstract—This technical note is concerned with the problems 
of stability and stabilization for a class of discrete-time semi-

Markov jump linear systems (S-MJLSs). The discrete-time semi-

Markov kernel (SMK) is introduced, where the probability density 
function of sojourn-time is dependent on both current and next 
system mode. As a consequence, different types of distributions 
and/or different parameters in a same type of distribution of 
sojourn-time, depending on the target mode towards which the 
system jumps, can coexist in each mode of a SMK. The underlying 
S-MJLSs are therefore more general than those considered in ex-

isting studies. A new stability concept generalizing the traditional 
mean-square stability is proposed such that numerically testable 
criteria on the basis of SMK are obtained. Numerical examples are 
presented to illustrate the validity and advantage of the developed 
theoretical results.

Index Terms—Mean-square stability, semi-Markov jump linear 
systems, semi-Markov kernel, sojourn-time.

I. INTRODUCTION

The past decades have seen a great advance in theories and ap-

plications of Markov jump linear systems (MJLSs). The systems 
can effectively model dynamical processes involved with stochastic 
switching (generally autonomous) subject to a Markov chain. Typ-

ical examples include fault-tolerant control systems where abrupt 
faults occur randomly and networked control systems where network-

induced communication imperfections vary in a stochastic way, see 
for example [1] and [2]. The primary concern of MJLSs is the stability 
analysis that is relatively challenging due to the hybrid nature of the 
system. Up to date, quite a few important stability notions, stochastic 
stability, mean-square stability (MSS), almost sure stability and so on, 
are persistently utilized and many results are rather fundamental in 
the field of stochastic switching systems, see for example, [3] and [4]. 
Other issues including control, estimation, model reduction of MJLSs 
and the underlying systems with various complex dynamics, time-

delays, uncertainties, positiveness, etc., have also been intensively 
studied, see for example, [5]–[7] and the references therein.

However, as pointed out in [8]–[12], although Markov processes or 
Markov chain do have the ability in describing the mode switching in
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many practical applications, they cannot cover all the scenarios yet.

A key restriction in the underlying MJLSs is that the sojourn-time

(the interval between two consecutive jumps) of each subsystem is

subject to exponential distribution (geometric distribution in discrete-

time domain, respectively). To relax the restriction, the concepts of

nonhomogeneous Markov chain and semi-Markov chain, where the

transition probabilities (TPs) are time-varying and memory, respec-

tively, have been introduced in the control community, and studies on

the corresponding systems have been gradually launched. As for the

former case that is relatively tractable, the systems with dwell-time1

switching TPs [10], piecewise homogeneous TPs [11], and polytopic

time-varying TPs [12], etc., have been proposed within the past few

years, and various methodologies have been explored for different

situations. Such proposals have provided a basic foundation for further

studies on the systems with nonhomogeneous TPs.

On the other hand, the developed theories on semi-Markov jump

linear systems (S-MJLSs) are far away from maturity yet, although

the systems have been investigated since 1960s, see for example,

[8], [9], [13] and [14]. The inherent difficulties mainly lie in how

the probability density function (PDF) information of the sojourn-

time can be completely used in deriving criteria of stability analysis

and control synthesis, and further, how the obtained criteria can be

numerically tested. With the assumption that the PDF is dependent

on the current system mode, the stabilization problem for a class

of continuous-time S-MJLSs has been addressed in [8] by solving

a set of coupled algebraic Riccati equations. Further improvements

achieved in [9] offer a framework under which the control problems

can be solved by the techniques of linear matrix inequalities (more

conveniently to be checked), with a priori information of the upper

and lower bounds of a PDF. However, it is noted that almost all the

existing results presume that each mode possesses a single distribution

of sojourn-time with certain parameters in a semi-Markov chain. It

is very likely that the types of distributions and/or the parameters in

a same type of distribution of sojourn-time can be different for each

mode, depending on the target mode to which the system jumps from

the current mode.

Motivated by the above observations, in this technical note, we aim

at addressing the problems of stability and stabilization for a class of

discrete-time S-MJLSs. There are two main contributions. First, the

concept of discrete-time semi-Markov kernel (SMK) is introduced,

and the PDF of sojourn-time in the SMK is allowed to depend on both

the current and next system mode. As a result, different parameters

in a same type of distribution or even different types of distributions

of sojourn-time can be simultaneously considered in each mode of

a SMK depending on the target mode, and the underlying S-MJLSs

are therefore more general than those studied previously. Second, a

new stability concept called σ-error mean square stability (σ-MSS) is

proposed, where σ is used to characterize the degree of “approximation

error” of σ-MSS to MSS (without the error the underlying system

holds MSS). The stability concept generalizes the traditional MSS,

1A term commonly used in the context of nondeterministic switched systems,
where dwell-time is generally no greater than the running time (or sojourn-time
called in this technical note) of an activated subsystem.



Fig. 1. Illustration of stochastic processes Rn, kn and Sn (M = 3).

based on which the numerically testable stability and stabilization

criteria that explicitly contains the PDF information of sojourn-time

can be obtained.

Notations: In this technical note, Rn denotes the n-dimensional

Euclidean space; ‖ · ‖ refers to the Euclidean vector norm; R+ and Z+

denote the set of non-negative real numbers and set of non-negative

integers, respectively; R[s1,s2],Z≥s1 and Z[s1,s2] denote the sets {k ∈
R+ |s1 ≤ k ≤ s2}, {k ∈ Z+ |k ≥ s1} and {k ∈ Z+ |s1 ≤ k ≤ s2}, re-

spectively. For notation (Ψ,F ,Pr), Ψ represents the sample space,

F is the σ-algebra of subsets of the sample space and Pr is the

probability measure on F . C1 denotes the space of continuously

differentiable functions, and a function κ : [0,∞) → [0,∞) is said to

be of class K∞ if it is continuous, strictly increasing, unbounded, and

κ(0) = 0. In addition, diag{· · ·} stands for a block-diagonal matrix

and diag(n){X} a n× n block-diagonal matrix where all diagonal

entries are X . Symbol ∗ is used as an ellipsis for the terms that are

introduced by symmetry.

II. PRELIMINARIES AND PROBLEM FORMULATION

Fix the complete probability space (Ψ,F ,Pr) and consider the

following discrete-time stochastic switching systems:

x(k + 1) = A(rk)x(k) +B(rk)u(k) (1)

where x(k) ∈ R
n, u(k) ∈ R

nu are the system state and control in-

put, respectively. {rk}k∈Z+
is a stochastic process, considered to

be a semi-Markov chain, which takes values in a finite set I
∆
=

{1, 2, . . . ,M}, and governs the switching among M system modes.

For rk = i ∈ I, the pair of matrices of the ith system mode is

denoted by (Ai, Bi), which are real known matrices with appropriate

dimensions.

To introduce the semi-Markov chain formally, we shall recall two

concepts on Markov renewal chain and semi-Markov kernel, for which

three following stochastic processes are first needed:

i) The stochastic process {Rn}n∈Z+
taking values in I, where Rn

is the index of system mode at the nth jump;

ii) The stochastic process {kn}n∈Z+
taking values in Z+ , where kn

denotes the time at the nth jump. It is noted that k0 = 0 and kn
increases monotonically with n;

iii) The stochastic process {Sn}n∈Z+
taking values in Z+ , where

Sn = kn − kn−1, ∀n ∈ Z≥1 denotes the sojourn-time of mode

Rn−1 between the (n− 1)th jump and nth jump, and S0 = 0.

These stochastic processes are illustrated in Fig. 1, and more details

can be found in [15] and the references therein.

Definition 1 [15]: The stochastic process {(Rn, kn)}n∈Z+
is

said to be a discrete-time homogeneous Markov renewal chain

(MRC) if for any j ∈ I, τ ∈ Z+ and n ∈ Z+ , Pr(Rn+1 = j, Sn+1 =
τ |R0, . . . , Rn = i; k0, . . . , kn)= Pr(Rn+1 = j, Sn+1 = τ |Rn = i)
= Pr(R1 = j, S1 = τ |R0 = i).

Then, let πij(τ)
∆
= Pr(Rn+1=j, Sn+1=τ |Rn = i),∀i, j ∈ I,

∀τ ∈Z+, the matrix Π(τ)=[πij(τ)]i,j∈I
is called discrete-time semi-

Markov kernel (SMK), where πij(τ) ∈ R[0,1] and
∑∞

τ=0

∑

j∈I

πij(τ) = 1 with πij(0) = 0. In addition, from [15], {Rn}n∈Z+
is

called the embedded Markov chain (EMC) of MRC {(Rn, kn)}n∈Z+
,

and the TPs matrix Θ = [θij ]i,j∈I of {Rn}n∈Z+
is defined by

θij
∆
= Pr(Rn+1 = j|Rn = i), ∀i, j ∈ I with θii = 0.

With the above concepts, the definition of semi-Markov chain is

given as below.

Definition 2 [15]: Consider a MRC {(Rn, kn)}n∈Z+
. The chain

{rk}k∈Z+
is said to be a semi-Markov chain (SMC) associated with

MRC {(Rn, kn)}n∈Z+
, if rk = RN(k), ∀k ∈ Z+ , where N(k)

∆
=

max{n ∈ Z+ |kn ≤ k}.

It is worth noting that the difference between EMC and SMC lies in

that the stochastic variable varies with jump instant kn in the former,

whereas with the sampling instant k in the latter. From Definition 2,

it is straightforward that the evolution of SMC is generated by the

SMK Π(τ) that is dependent on sojourn-time τ . Thus, the knowledge

on the probability density function (PDF) of sojourn-time is required

to characterize a SMC. In this technical note, the PDF depending on

both the current and next system mode is considered and defined as

ωij(τ)
∆
= Pr(Sn+1 = τ |Rn+1 = j,Rn = i), ∀i, j ∈ I,∀τ ∈ Z+. As

a consequence

πij(τ)=
Pr(Rn+1=j,Rn= i)

Pr(Rn = i)

Pr(Rn+1=j, Sn+1=τ,Rn= i)

Pr(Rn+1 = j,Rn = i)
= θijωij(τ). (2)

Remark 1: Letting the PDF that only depends on the current system

mode be denoted as fi(τ) = Pr(Sn+1 = τ |Rn = i), ∀i ∈ I, ∀τ ∈
Z+, it yields that fi(τ) =

∑

j∈I
πij(τ) =

∑

j∈I
θijωij(τ). It can be

observed that different ωij(τ) may lead to a same fi(τ). In almost all

the previous studies on S-MJLSs, fi(τ) is used to obtain the sojourn-

time-dependent transition probability at mode i, say, denoted as λi(τ),
and further the TPs λij(τ) by multiplying θij . Therefore the PDF

fi(τ) can be only one type, but ωij(τ) that is used to form SMK in

this technical note can be rk+1 dependent, having different types of

distributions or different parameters in a same type of distribution for

any i ∈ I. Therefore, the PDF considered in the technical note is more

specific and capable of describing the corresponding SMC accurately

rather than fi(τ).
Throughout the technical note, the cumulative density function

(CDF) of sojourn-time for the ith system mode, ∀i ∈ I, is denoted

as Fi(τ) = Pr(Sn+1 ≤ τ |Rn = i) =
∑τ

l=0

∑

j∈I
πij(l), and it is

assumed that ωij(0) = Fi(0) = 0 without loss of generality. Now,

to present the purposes of this technical note more precisely, the

following stability definitions are required.

Definition 3: Consider a discrete-time stochastic switching nonlin-

ear system xk+1 = f(xk, rk), where rk is a certain stochastic process

governing the system switching and taking values in I. The system

is said to be mean-square stable if, for any initial conditions x0 ∈
R

n, r0 ∈ I, the following holds:

lim
k→∞

E

[

‖x(k)‖2
]

|x0,r0 = 0. (3)

Remark 2: In Definition 3, when rk is a Markov chain and the

underlying system is linear, we can typically find the corresponding

version of Definition 3 in the literature of MJLSs, see for example,

[10] and [16]. Nonetheless, one drawback of Definition 3 is that it

is established allowing for the random sojourn-time to be any length

(even infinity), regardless of the fact that the practical sojourn-time

is generally finite. Therefore, letting T i
max denote the upper bound of

sojourn-time for the ith mode of system (1), we generalize the MSS in

this technical note to the following concept.



Definition 4: System (1) with u(k) ≡ 0, is said to be σ-error mean-

square stable if, for any initial conditions x0 ∈ R
n, r0 ∈ I and the up-

per bound of sojourn-time T i
max∈Z≥1 , ∀i∈I, the following holds:

lim
k→∞

E

[

‖x(k)‖2
]

|x0,r0,Sn+1≤T i
max|Rn=i

= 0. (4)

Further, σ is defined as

σ
∆
=
∑

i∈I

∣

∣ln
(

Fi

(

T i
max

))∣

∣ . (5)

Remark 3: Note that in Definition 4, σ varies with T i
max

(σ decreases if all T i
max are increased). In view of this, σ is actu-

ally capable to characterize the degree of “approximation error” of

σ-MSS to MSS. Particularly, when T i
max → ∞, ∀i ∈ I, which im-

plies that Fi(T
i
max) → 1, then, σ → 0 and accordingly the σ-MSS

approximates to MSS without any error.

Then, the objectives in this technical note are to derive the σ-MSS

criterion for system (1), and to design a state-feedback stabilizing con-

troller guaranteeing the σ-MSS of the resulting closed-loop system.

The mode-dependent controller is considered here with the form

u(k) = Kix(k), ∀rk = i ∈ I (6)

where Ki is the controller gain to be determined.

III. MAIN RESULTS

In this section, the numerically testable stability and stabilization

criteria for S-MJLSs will be developed. A result on MSS of stochastic

switching nonlinear systems is first given as below for later use.

Lemma 1: Consider a discrete-time stochastic switching nonlinear

system xk+1 = f(xk, rk), where xk and rk denote the system state

and mode index, respectively. The switching instants are denoted by

k0, k1, . . . , ks, . . . with k0 = 0. The system is mean-square stable,

if there exist a set of C1 functions V (xk, rk) : R
n → R and three

class K∞ functions α1, α2, α3, such that for any initial conditions

x0 ∈ R
n, r0 ∈ I and a given finite hi > 0, ∀rks = i ∈ I

α1 (‖xk‖) ≤ V (xk, rks) ≤ α2 (‖xk‖) (7)

V (xk, rks) ≤ hiV (xks , rks) , k ∈ Z(ks,ks+1] (8)

E

[

V
(

xks+1
, rks+1

)]

|x0,r0−V(xks ,rks)≤−α3(‖xks‖) . (9)

Proof: It follows from the proof of [16, Theorem 1] that (9)

ensures
∑∞

s=0
E[α3(‖xks‖)]|x0,r0 ≤E[V (x0, r0)]<∞which implies

lims→∞ E[α3(‖xks‖)]|x0,r0 = 0. Since α3 ∈ K∞, lims→∞

E[‖xks‖
2]|x0,r0 = 0 holds. On the other hand, taking mathematical

expectations at both sides of (7), (8), we have E[α1(‖xk‖)]|x0,r0 ≤
hiE[V (xks , rks)]|x0,r0≤ hiE[α2(‖xks‖)]|x0,r0 . As s → ∞, k→∞,

therefore limk→∞E[α1(‖xk‖)]|x0,r0≤hi lims→∞ E[α2(‖xks‖)]|x0,r0 ,

which implies (3).

Then, the following theorem gives a criterion of σ-MSS for un-

forced S-MJLSs.

Theorem 1: Consider S-MJLS (1) with u(k) ≡ 0 and a given finite

constant hi > 0. If, ∀i ∈ I, there exist T i
max ∈ Z≥1 and matrices Pi ≻

0 such that ∀t ∈ Z[1,T i
max]

A′t
i PiA

t
i − hiPi ≺ 0 (10)

T i
max
∑

τ=1

A′τ
i Pi(τ)A

τ
i − Pi ≺ 0 (11)

where Pi(τ)
∆
=
∑

j∈I
πij(τ)Pj/ηi with ηi

∆
=
∑T i

max
τ=1

∑

j∈I
πij(τ),

then the system is σ-error mean-square stable.

Proof: Construct the Lyapunov function as Vi(xk)
∆
=

V (xk, Rn)|Rn=i = x′
kPixk, ∀i ∈ I, where Pi satisfies (10) and (11).

First, it is straightforward that

inf
i∈I

{λmin(Pi)} ‖xk‖
2 ≤ Vi(xk) ≤ sup

i∈I

{λmax(Pi)} ‖xk‖
2 (12)

Fig. 2. Illustration of Theorem 1 for M = 3. In (k, Vi)-coordinate, solid
line shows the real evolution of Lyapunov function, and in (τ, Vi)-coordinate,
dashed line illustrates a possible evolution of the Lyapunov function starting
from a fixed mode at a certain jumping instant; circles initiate V1, squares

initiate V2 and triangles initiate V3.

where λmin(Pi) (respectively, λmax(Pi)) denotes the minimal (re-

spectively, maximal) eigenvalue of Pi. In addition, for the case Rn =
i, the following is ensured by (10) ∀t ∈ Z[1,T i

max]

Vi (xkn+t)− hiVi (xkn) = x′
kn

(

A′t
i PiA

t
i − hiPi

)

xkn < 0. (13)

On the other hand, for Rn = i, Rn+1 = j, letting the sojourn-time

kn+1 − kn be denoted by τ , it follows from (11) that

E

[

Vj

(

xkn+1

)]

|
x0,r0,Sn+1≤Ti

max|Rn=i
− Vi

(

xkn

)

= x
′
kn

⎡

⎣

Ti
max
∑

τ=1

∑

j∈I

πij(τ)A
′τ
i PjA

τ
i /ηi − Pi

⎤

⎦ xkn

≤ −λmin

⎛

⎝−

Ti
max
∑

τ=1

A
′τ
i Pi(τ)A

τ
i + Pi

⎞

⎠

∥

∥xkn

∥

∥

2

≤ −β

∥

∥xkn

∥

∥

2
(14)

where ηi is defined in (11) and β
∆
= infi∈I{λmin(−

∑T i
max

τ=1

A′τ
i Pi(τ)A

τ
i + Pi)}. Then, by (12), (13), (14) and Lemma 1, it

follows that S-MJLS (1) is mean-square stable provided that the upper

bound of sojourn-time is T i
max, i.e., (4) holds, thus the σ-MSS of the

system is guaranteed.

Note that the Lyapunov function of each mode is not necessarily

monotonically decreasing (hi can be greater than 1), as shown in (10).

An illustration of Theorem 1 for M = 3 is given in Fig. 2, where

the system at kn is supposed to run in mode 1. In (τ, Vi)-coordinate,

V2(xkn+τ ) and/or V3(xkn+τ ) (the corresponding hollow square or

triangle) can be greater than V1(xkn) (the solid circle in (k, Vi)-
coordinate). However, as long as the expectation V̄i(xkn+1

) is lower

than Vi(xkn), the value of Lyapunov function at jumping instants

will tend to zero in stochastic sense, forcing Vi(xk) → 0, despite the

allowable increase of Lyapunov function associated with mode 1 to

some extent.

Remark 4: Combining with Remark 3, one can conclude from

Theorem 1 that the unforced S-MJLSs will be mean-square stable

when T i
max → ∞, ∀i ∈ I, but obviously the resulting conditions

(10), (11) can not be numerically tested. Therefore, a finite T i
max is

necessitated in Theorem 1, which corresponds to the proposed σ-MSS

with σ > 0.

Remark 5: In Theorem 1, the SMK Π(τ) is directly utilized to

establish the stability criterion. In fact, Π(τ) can be first used to obtain

the memory TPs (if denoted by λij(τ)), and the following stability

criterion can be arrived at:
∑

j∈I

λij(τ)A
′

iPj(τ)Ai − Pi(τ − 1) ≺ 0 (15)

where Pi(τ) is a time-varying Lyapunov matrix and τ ∈ Z≥1. Note

that when λij(τ) ≡ λij (the corresponding PDF of sojourn-time is



subject to geometric distribution with parameter μi, i.e., ωi1(τ) =

· · · = ωiM (τ) = μi(1− μi)
τ−1 ∆

= ωi(τ)) and Pi(τ) ≡ Pi, (15) re-

duces to the usual stability criterion for MJLSs. It can be readily proved

(cf. [4]) that (15) is a necessary and sufficient condition for the MSS

of the unforced system (1). However, (15) is not numerically testable

even conservatively setting Pi(τ) ≡ Pi. Additional approximation

techniques such as taking bounds for λij(τ) are needed to make (15)

be time-invariant, cf. [9]. Besides, (15) aims at MSS that is not “scaled”

compared with σ-MSS.

Remark 6: It is also worth mentioning that if the sojourn-time is

subject to “exponentially modulated periodic (EMP)” distribution (cf.

[17]), say ωi(τ) = ω̄i(τ)(1− μi)
τ−1, where ω̄i(τ) satisfies ω̄i(τ) =

ω̄i(τ + T ) with T being the period, then the TPs obtained from SMK

will be periodically time-varying. The corresponding criterion in (15)

will be periodic and testable accordingly, i.e., only a finite set of Pi(v),
v ∈ Z[1,T ] is required. The benefit in this scenario therefore suggests

that the EMP distribution can be considered to approximate to those

general “exponential-like” distributions of sojourn-time, for the sake

of a finite number of conditions.

Though the stability criterion explored in Theorem 1 can be used for

analysis of the σ-MSS of S-MJLSs, the requirements (10), (11) impose

a significant difficulty in deriving tractable conditions of controller

design due to the existence of the power of Ai. To circumvent the

difficulty, certain techniques will be further explored below to obtain

sufficient conditions for Theorem 1.

Theorem 2: Consider the S-MJLS (1) with u(k) ≡ 0 and a given

finite constant hi > 0. If, ∀i ∈ I, there exist T i
max ∈ Z≥1 and a

set of matrices Oi(t,m), ∀t ∈ Z[1,T i
max]

, ∀m ∈ Z[0,t] with Oi
∆
=

Oi(t, t) ≻ 0 and Oi(τ, n), ∀τ ∈ Z[1,T i
max]

, ∀n ∈ Z[0,τ−1] such that

∀t ∈ Z[1,T i
max]

, ∀m ∈ Z[0,t−1] and ∀n ∈ Z[0,T i
max−1]

A′
iOi(t,m+ 1)Ai −Oi(t,m) ≺0 (16)

Oi(t,0)− hiOi ≺0 (17)
Ti
max
∑

τ=n+1

[

A′
iOi(τ,n+ 1)Ai −Oi(τ,n)

]

≺0 (18)

Ti
max
∑

τ=1

Oi(τ,0)−Oi ≺0 (19)

where Oi(l, l)
∆
=
∑

j∈I
πij(l)Oj/ηi with ηi defined in (11), then the

unforced S-MJLS is σ-error mean-square stable.

Proof: It follows from (16) that
∑t−1

m=0
A′m

i (A′
iOi(t,m+

1)Ai −Oi(t,m))Am
i ≺ 0 and accordingly

A′t
i Oi(t, t)A

t
i −Oi(t, 0) ≺ 0. (20)

By (17), (20), and bearing in mind Oi = Oi(t, t), it can be obtained

that A′t
i OiA

t
i ≺ hiOi. Further, setting the positive definite matrix

Oi = Pi, we have A′t
i PiA

t
i − hiPi ≺ 0.

Likewise, (18) ensures that
∑T i

max−1

n=0
A′n

i [
∑T i

max
τ=n+1

[A′
iOi(τ, n+

1)Ai −Oi(τ, n)]]A
n
i ≺ 0, which is equivalent to

∑T i
max

τ=1

∑τ−1

n=0

A′n
i [A′

iOi(τ, n+ 1)Ai −Oi(τ, n)]A
n
i ≺ 0 and implies

Ti
max
∑

τ=1

[

A′τ
i Oi(τ, τ)A

τ
i −Oi(τ,0)

]

≺ 0. (21)

Combining (19) and (21), we have
∑T i

max
τ=1

A′τ
i Oi(τ, τ)A

τ
i − Pi ≺

0. Then setting the positive definite matrix Oi(τ, τ) = Pi(τ) gives

rise to
∑T i

max
τ=1

A′τ
i Pi(τ)A

τ
i − Pi ≺ 0. Thus, by Theorem 1, it can

be concluded that the system is σ-error mean-square stable and this

completes the proof.

Then, based on Theorem 2, the existence conditions of mode-

dependent stabilizing controller (6) for S-MJLS (1) are presented in

the following theorem.

Theorem 3: Consider the S-MJLS (1) with a given finite con-

stant hi > 0. If, ∀i ∈ I, there exist T i
max ∈ Z≥1 and a set of matri-

ces Hi(t,m), ∀t ∈ Z[1,T i
max]

, ∀m ∈ Z[0,t] with Hi
∆
= Hi(t, t) ≻ 0

and Hi(n), ∀n ∈ Z[0,T i
max]

, Zi, Ui such that ∀t ∈ Z[1,T i
max]

, ∀m ∈
Z[0,t−1] and ∀n ∈ Z[0,T i

max−1]

[

Hi(t,m+ 1)−Zi −Z′
i AiZi +BiUi

∗ −Hi(t,m)

]

≺ 0 (22)

Hi(t,0)− hiHi ≺ 0 (23)
[

H−Z −Z′ 0 (AiZi + BiUi)Li(n+ 1)

∗ Hi(n+ 1)−Zi −Z′
i (AiZi +BiUi)Li(n+ 1)

∗ ∗ −Hi(n)

]

≺ 0 (24)

Hi(0)−Hi ≺ 0 (25)

where Ai
∆
= diag(M){Ai}, Bi

∆
= diag(M){Bi}, Zi

∆
= diag(M){Zi},

Ui
∆
= diag(M){Ui}, H

∆
= diag{H1,H2, . . . ,HM}, Z

∆
=

diag{Z1, Z2, . . . , ZM}, Li(n) = I, ∀n ∈ Z[1,T i
max−1] with

Li(T
i
max) = 0, and Li(n)

∆
= [ℓi1(n)I, ℓi2(n)I, . . . , ℓiM (n)I]′

with ℓij(n)
∆
=
√

πij(n)/ηi and ηi defined in (11), then a mode-

dependent controller of form (6) can be obtained to guarantee the

σ-MSS of the resulting closed-loop system. Moreover, the admissible

controller gain is given by Ki = UiZ
−1
i .

Proof: Letting Ōi(l)
∆
=
∑T i

max
τ=l+1

Oi(τ, l), ∀l ∈ Z[0,T i
max−1] and

Ōi(T
i
max)

∆
= 0, we can rewrite (18) and (19) as

Ōi(0)−Oi≺0 (26)

A′
iOi(n+1, n+1)Ai+A′

iŌi(n+1)Ai−Ōi(n)≺0. (27)

Consider (27), by Schur complement, it yields that
[

−O 0 OAiLi(n+ 1)
∗ −Ōi(n+ 1) Ōi(n+ 1)Ai

∗ ∗ −Ōi(n)

]

≺ 0 (28)

where Ai,Li(n) are defined in (24) and O
∆
= diag{O1, O2, . . . ,

OM}. Performing a congruence transformation to (28) bydiag{O−1V,

Ōi(n+ 1)−1Vi, I}, where V
∆
= diag{V1, V2, . . . , VM}, and since

(O − V)′O−1(O − V) ≻ 0 ensures O − V − V ′ ≻ −V ′O−1V , we

can obtain
[

O−V−V ′ 0 V ′AiLi(n+ 1)
∗ Ōi(n+ 1)− Vi − V ′

i V ′
i Ai

∗ ∗ −Ōi(n)

]

≺ 0. (29)

Then, apply the congruence transformation to (24) by diag{V, Vi, Vi},

it gives (29) while replacing Ai by Ai +BiKi and setting Zi
∆
= V −1

i ,

Ui
∆
= KiV

−1
i , H = V ′−1OV−1, Hi(n)

∆
= V ′−1

i Ōi(n)V
−1
i .

On the other hand, performing a congruence transformation to (25)

by Vi, we have (26) accordingly. Then, it implies that (24) and (25)

guarantee (18) and (19) in Theorem 2. Same techniques can be applied

to the case that (22) and (23) ensures (16) and (17). Thus, it can be

concluded from Theorem 2 that (22)–(25) can guarantee the σ-MSS

of the resulting closed-loop system with the admissible controller gain

given by Ki = UiZ
−1
i .

Remark 7: In Theorems 1 and 3, for a given set of hi, the T i
max

can be maximized while achieving a minimal σ-error and ensuring

a feasible solution of (10), (11), and (22)–(25), for stability and

stabilization problems, respectively. Besides, note also that if hi > 1,

the corresponding Lyapunov function in the ith mode can raise to

some extent, which implies that mode i can be unstable/unstabilizable

with τ ≤ T i
max. Nevertheless, it can be conjectured that if such an

unstable/unstabilizable mode is expected to run longer (i.e., a larger

T i
max), then probably a much larger hi (hi ≫ 1) is required, which

will result in a huge energy growth.



TABLE I
THE OPTIMAL T i

max AND THE MINIMAL σ-ERROR FOR GIVEN DIFFERENT hi, i = 1, 2

Fig. 3. 100 realizations of state response of the system when generating different random jumping sequences. In (b) and (d), the sequences are further subject
to T 1

max = 5, T 2
max = 7 and T 1

max = 4, T 2
max = 3, respectively. (a) α = 1.07 (not MSS). (b) α = 1.07 (σ-MSS with σ-error = 0.09). (c) α = 1.15 (not

MSS). (d) α = 1.15 (σ-MSS with σ-error = 0.27).

IV. NUMERICAL EXAMPLES

In this section, both a MJLS and a S-MJLS will be provided to show

the validity and advantage of the obtained theoretical results.

Example 1: (MJLS) Consider an unforced MJLS with two modes

A1 = α

[

−0.36 0.69
−1.81 1.97

]

A2 = α

[

0.34 0.62
−0.37 1.36

]

where α > 0 characterizes the distance of system eigenvalues and unit

circle. The EMC is an anti-identity matrix, and the sojourn-time is

subject to geometric distribution with ω1(τ) = 0.4(1− 0.4)τ−1 and

ω2(τ) = 0.5(1− 0.5)τ−1.

Based on the usual criterion of MSS (the required TPs matrix can be

straightforwardly obtained from ω1(τ) and ω2(τ)), it can be readily

checked that the system is not mean-square stable when α ≥ 1.07.

Turning to Theorem 1, given different hi, we can maximize the upper

bound of sojourn-time for each mode (denoted as [T i
max]opt, i = 1, 2)

in achieving a minimal σ-error of approximation to MSS, as computed

in Table I. It can be seen that when α > 1.27, no matter how large the

set of hi is given, a finite σ-error for the MSS cannot be guaranteed (the

corresponding system does not hold σ-MSS). As for 1.07 ≤ α ≤ 1.27,

however, different minimal σ-error can be found for different hi.

Particularly, the smaller the α is assigned, the larger the [T i
max]opt can

be found, and thus the smaller the minimal σ-error can be achieved.

Consider α = 1.07, x0 = [1 1]′, Fig. 3(a) illustrates the state re-

sponse when randomly generating 100 realizations of jumping se-

quences satisfying the geometric distribution, and Fig. 3(b) presents

the case where the jumping sequences are further subject to T 1
max =

5, T 2
max = 7. The scenario of α = 1.15 is also given in Fig. 3(c)

and (d) (T 1
max = 4, T 2

max = 3). It can be observed that although the

two systems are not mean-square stable, they are σ-error mean-

square stable with different approximation σ-error to be 0.09 and

0.27, respectively. Both Table I and Fig. 3 therefore demonstrate that

the proposed σ-MSS is of the advantage of being well-scaled rather

than MSS.

Example 2: (S-MJLS) Consider a dynamic system with possible

failures in both structure and actuator as

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

A1=

[

−0.36 0.69

−1.81 1.97

]

B1=

[

−0.1

0.1

]

(Normal Case)

A2=

[

0.34 0.62

−0.37 1.36

]

B2=

[

0.1

0.1

]

(Slight Fault)

A3=

[

0.34 0.62

−0.37 1.36

]

B3=

[

0

0

]

(Serious Fault (unworkable actuator))

The switching among the three modes is governed by a SMC, where

the SMK is computed by (2) with Θ = [0 0.7 0.3; 0.4 0 0.6; 0.5 0.5 0]
and, ∀i, j ∈ {1, 2, 3}

[ωij(τ)]

=

⎡

⎣

0 0.6τ ·0.410−τ ·10!
(10−τ)!τ !

0.4τ ·0.610−τ ·10!
(10−τ)!τ !

0.9(τ−1)2−0.9τ
2

0 0.510·10!
(10−τ)!τ !

0.4(τ−1)1.3−0.4τ
1.3

0.3(τ−1)0.8−0.3τ
0.8

0

⎤

⎦

·

Note from ωij(τ) that the “hybrid” PDF of sojourn-time in mode

1 and mode 3 are considered as Bernoulli distribution and Weibull

distribution, respectively, with different parameters when the target

modes are different, and the two types of distributions are supposed

to coexist in mode 2.

First, it is checked that the open-loop system is not σ-error mean-

square stable for any hi > 0 by Theorem 1. Applying Theorem 3,

the desired mode-dependent controllers can be designed such that

the resulting closed-loop systems are σ-error mean-square stable for

certain sets of hi. Also, [T i
max]opt can be further obtained to achieve

a minimal σ-error for the MSS of the system and ensuring a feasible

solution of the controller. It can be verified that no matter how large h1

and h2 are assigned, no feasible controllers can be obtained if h3 < 1.

Thus, consider h3 ≥ 1 and change h1, h2, the different [T i
max]opt

can be obtained. Fig. 4(a)–(c) present the two sets of [T i
max]opt that

vary with h2 ∈ R[0.001,0.005] and h3 ∈ R[1.1,1.5], for given h1 to be

0.01 and 0.001, respectively [the corresponding σ-error, which can be

computed by (5), is shown in Fig. 4(d)].

Then, setting h1 = 0.01, h2 = 0.005 and h3 = 1.5, the upper

bound of sojourn-time can be optimized as [T 1
max]opt = [T 2

max]opt =

9 and [T 3
max]opt = 3, which guarantee the minimal σ-error to be

0.0467. Given the initial condition x0 = [−0.5 1]′, Fig. 5 shows

the 100 realizations of the state response of the closed-loop system

for randomly generating jumping sequences satisfying (the required

T i
max) T 1

max = T 2
max = 9 and T 3

max = 3. It can be observed that the

designed controller is valid in the presence of an unstabilizable mode

and despite the coexistence of “hybrid” distributions of sojourn-time

in a same SMK. In addition, as shown in Fig. 4(d), when fixing

T 1
max = T 2

max = 9, the σ-error can be smaller if further increasing

T 3
max, which seemingly can be attained by raising hi. However, it can

be checked that even hi = 107 can not give rise to an increase from

T 3
max = 3 to T 3

max = 4, which verifies the conjecture in Remark 7 that

only a proper sojourn-time of the unstabilizable mode can be allowed.



Fig. 4. Optimal T i
max varying with hi and the σ-error varying with T i

max, i = 1,2,3 (note that in (a)-(c), four squares or circles in the horizontal specify a
face where the T i

max is constant, e.g., in (a), for 0.001 ≤ h2 ≤ 0.002, and 1.5 ≤ h3 ≤ 1.6, T 1
max is 8 and 7 for h1 = 0.01 and h1 = 0.001, respectively).

(a) Variation of optimal T 1
max. (b) Variation of optimal T 2

max. (c) Variation of optimal T 3
max. (d) σ-error varying with T i

max.

Fig. 5. 100 realizations of state response for different random jumping se-
quences satisfying T 1

max = T 2
max = 9 and T 3

max = 3. (a) State response x1.
(b) State response x2.

V. CONCLUSION

In this technical note, the stability and stabilization problems of

discrete-time S-MJLSs were investigated. The notion of discrete-time

SMK is introduced, and the PDF of sojourn-time inside the SMK can

be considered to be dependent on both current and next system mode.

The underlying S-MJLSs are therefore more general than existing

ones, since different parameters in a same type of distribution and/or

different types of distributions can coexist in each mode of a SMK.

The stability concept of σ-MSS was proposed, where σ is capable of

characterizing the degree of approximation error of σ-MSS to MSS.

Numerically testable stability and stabilization criteria that explicitly

contain the PDF information of sojourn-time were obtained. A direct

future work will be the developments of the S-MJLSs in continuous-

time domain based on the SMK approach.
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