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Abstract

The DBI galileons are a generalization of the galileon terms, which extend the internal galilean

symmetry to an internal relativistic symmetry, and can also be thought of as generalizations of

DBI which yield second order field equations. We show that, when considered as local modifica-

tions to gravity, such as in the Solar system, there exists a region of parameter space in which

spherically symmetric static solutions exist and are stable. However, these solutions always exhibit

superluminality, casting doubt on the existence of a standard Lorentz invariant UV completion.
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I. INTRODUCTION

The Dirac-Born-Infeld (DBI) action, which describes the dynamics of a brane embedded in

a higher dimensional spacetime, has provided an important setting within which to study

inflation [1, 2], late-time cosmic acceleration [3], tunneling [4], and exotic topological de-

fects [5–9]. The DBI action has been extensively studied in recent years, and its rather

special properties are now well-understood.

At the same time, increasing attention has been paid to induced gravity theories, such

as the Dvali-Gabadadze-Poratti (DGP) model [10]. In these, branes in extra dimensions

again form the basic objects, but the Einstein-Hilbert action for gravity is written both

in the bulk and on the the branes themselves, leading to a highly nontrivial behavior of

the resulting 4-dimensional effective theory on the brane. The theory admits a limit which

contains a scalar field π which interacts through a higher derivative cubic coupling possessing

an internal galilean invariance δπ = ωµx
µ + ε (with ωµ and ε infinitesimal constants) and

second order field equations [11, 12]. These general properties can be generalized to higher

order interactions, and the resulting theories are know as galileons [13].

It has recently been shown [14] that the galileon and DBI theories are intimately related.

Beginning from a co-dimension one probe brane in a 5D Poincare symmetric bulk, a 4D

action can be formed using solely the 4D Lovelock invariants and the boundary terms of

5D Lovelock invariants. The resuting action then consists of DBI galileon terms. These

terms are generalizations of the square root DBI action, in the sense that they share its

symmetries and yield second order field equations. In a small field limit, the relativistic

symmetry stemming from the 5D Poincare symmetry and brane reparametrization invariance

reduces to the galilean symmetry of the DGP model and the DBI galilean terms reduce to

the galilean terms catalogued in [13]. Several authors [15–18] have now demonstrated that

a natural generalization of these galileon models to co-dimension greater than one exists,

and that many features, including a powerful non-renormalization theorem and a consistent

effective field theory [16], hold in general.

In this paper we find general static spherically symmetric solutions of DBI galileon theories,

and explore their stability. Such an analysis was performed for the ordinary galileons in [13],
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and for multi-galileon theories in [19, 20]. In the case of the DGP model [13], it was found

that for some choices of parameters, stable solutions exists but always contain superluminal

signal propagation. We follow the same approach here, extending the results to the DBI

galileons, and reach similar conclusions. The analysis is only valid in the Mp → ∞ limit.

As shown in [24], the stability of these theories depends on terms suppressed by the square

of the Planck mass.

II. DBI GALILEAN TERMS AND EQUATIONS OF MOTION

We are interested in the generalizations of DBI discussed in [14]. The relevant theory consists

of a single scalar π, in 3+1 dimensions, with an action invariant under the internal relativistic

symmetry

δπ = ωµx
µ − ωµπ∂µπ + ε , (1)

with xµ the spacetime coordinate, ωµ a constant infinitesimal vector, and ε an infinitesimal

constant.

To construct the action for π, one follows the prescription of [14] (see also [16] for further

details). Consider an embedding of a 3-brane in flat 5-d Minkowski space, XA(xµ) (where A

is the 5-d bulk index and µ the 4-d world-volume index), and a world-volume action which is

invariant under world-volume reparametrizations and bulk Poincare transformations. The

reparametrization invariance forces the action to be a diffeomorphism scalar constructed

out of the induced metric gµν(x) ≡ ∂XA

∂xµ
∂XB

∂xν
GAB (X(x)), where GAB is the bulk metric as a

function of the embedding variables XA(x). Poincare invariance requires the bulk metric to

be the flat Minkowski metric GAB(X) = ηAB. We then fix the gauge Xµ(x) = xµ, and let

the unfixed degree of freedom be X5 ≡ π, so that the induced metric becomes

gµν = ηµν + ∂µπ∂νπ . (2)

Any action which is a diffeomorphism scalar, evaluated on this metric, will yield an action

for π having the invariance (1), in which ωµ is a boost in the fifth direction along with

a compensating gauge transformation to maintain the gauge choice Xµ(x) = xµ. The

parameter ε, the shift on π, is the translation in the fifth dimension. In addition, the action
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will have the usual 4-dimensional spacetime Poincare invariance, which combines with the

boost and the shift (1) to form the full 5-d Poincare group.

The ingredients available to construct such an action are the induced metric gµν , the covari-

ant derivative ∇µ compatible with the induced metric, the Riemann curvature tensor Rρ
σµν

corresponding to this derivative, and the extrinsic curvature Kµν of the embedding. Thus,

the most general action is

S =

∫
d4x
√
−gF

(
gµν ,∇µ, R

ρ
σµν , Kµν

)∣∣∣∣
gµν=ηµν+∂µπ∂νπ

, (3)

For example, the DBI action arises from∫
d4x
√
−g →

∫
d4x

√
1 + (∂π)2 . (4)

where here, and in the remainder of this paper, we use the mostly plus metric convention.

As detailed in [14], only certain choices of F in (3) will lead to theories that have second

order equations of motion; the Lovelock invariants and their boundary terms. The terms

available are

L2 = −
√
−g , (5)

L3 =
√
−gK , (6)

L4 = −
√
−g R , (7)

L5 =
3

2

√
−gKGB , (8)

where

KGB = −2

3
K3
µν +KK2

µν −
1

3
K3 − 2(Rµν −

1

2
Rgµν)K

µν (9)

is the Myers boundary term from the second order Lovelock invariant in the bulk [21], and

L3 is the Gibbons-Hawking-York boundary term for the Einstein-Hilbert action in the bulk

[22, 23].

In the following, we use the notation Π for the matrix of partials Πµν ≡ ∂µ∂νπ, and [Πn] ≡

Tr(Πn), e.g. [Π] = �π, [Π2] = ∂µ∂νπ∂
µ∂νπ, as well as [πn] ≡ ∂π · Πn−2 · ∂π, e.g. [π2] =

∂µπ∂
µπ, [π3] = ∂µπ∂

µ∂νπ∂νπ. Indices are raised and lowered with the flat metric, and we

use the mostly plus signature. Also, we define

γ =
1√

1 + (∂π)2
. (10)
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In terms of these combinations of the field π and its derivatives, the terms above become

L2 = −
√

1 + (∂π)2 , (11)

L3 = − [Π] + γ2
[
π3
]
, (12)

L4 = −γ
(
[Π]2 −

[
Π2
])
− 2γ3

([
π4
]
− [Π]

[
π3
])

, (13)

L5 = −γ2
(
[Π]3 + 2

[
Π3
]
− 3 [Π]

[
Π2
])
− γ4

(
6 [Π]

[
π4
]
− 6

[
π5
]
− 3

(
[Π]2 −

[
Π2
]) [

π3
])

,

(14)

where we have explicitly retained all total derivatives.

In 3 + 1 dimensions, the above terms are the only ones possessing the symmetry (1) and

yielding second order equations of motion. The first term is the DBI action, which when

expanded gives the standard kinetic term for the scalar. The second is the relativistic version

of the cubic DGP π-lagrangian (up to a total derivative). These are the DBI generalizations

of the galileons studied in [13]. The galileons are recovered by expanding in powers of the

field π and taking the lowest non-trivial contribution from each term [14].

The resulting equations of motion take the form En = 0, with n = 2, 3, 4, 5, and

E2 = γ [Π]− γ3
[
π3
]
, (15)

E3 = γ2
(
[Π]2 −

[
Π2
])

+ 2γ4
([
π4
]
− [Π]

[
π3
])

, (16)

E4 = γ3
(
[Π]3 + 2

[
Π3
]
− 3 [Π]

[
Π2
])

+ γ5
(
6 [Π]

[
π4
]
− 6

[
π5
]
− 3

(
[Π]2 −

[
Π2
]) [

π3
])

,

(17)

E5 = γ6
(

[Π]4 − 6
[
Π2
]

[Π]2 + 8 [Π]
[
Π3
]

+ 3
[
Π2
]2 − 6

[
Π4
])

. (18)

These satisfy the following interesting recursion relation noticed in [14],

δ

δπ

(√
−g
)

= K , (19)

δ

δπ

(√
−g K

)
= R , (20)

δ

δπ

(√
−g R

)
=

3

2
KGB , (21)

δ

δπ

(√
−gKGB

)
=

2

3
LGB4 , (22)

where LGB4 = R2 − 4R2
µν +R2

µναβ is the second order Lovelock invariant.
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In this paper we consider a theory containing these terms with arbitrary coefficients dn, and

which is linearly coupled to the trace T of the energy momentum tensor of matter, so that

the complete Lagrangian density is

L =
5∑

n=2

dnLn + πT , (23)

with equation of motion E = 0, where

E ≡
5∑

n=2

dnEn + T . (24)

The linear coupling is not invariant under the symmetry operation (1). Rather, it was chosen

for simplicity and for comparison with the results of [13] where the same choice was made.

It is also the coupling that arises if the scalar is considered as a modification to gravity

that conformally mixes with the graviton, as happens in the DGP model. Although there

may exist physically interesting couplings which obey the symmetry, the simplest example,

∂µπ∂νπT
µν , which arises naturally from the brane construction, gives no contribution to the

equations of motion for static sources.

Our goal is to derive constraints on these models from the requirements of stability and

subluminality of mode propagation around spherically symmetric backgrounds. We shall

begin this analysis in the next section, but it is important to note that one constraint can

be seen immediately;

d2 > 0 , (25)

since otherwise the kinetic term will yield a ghost (or will be absent, if we set d2 = 0).

III. SPHERICAL SOLUTIONS

We search for static spherically symmetric solutions to the equations of motion in spherical

polar coordinates (r, θ, φ), in the presence of a positive mass delta function source at the

origin

T = −Mδ3(r), M > 0 . (26)

To evaluate the equations of motion we need find only the non-vanishing elements of Πµν =

∂µ∂νπ − Γαµν∂απ. These are Πrr = π,rr, Πθθ = rπ,r, and Πφφ = r sin2 θπ,r. Since the flat
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metric is diagonal we then have

[Πn] = (Πrrη
rr)n +

(
Πθθη

θθ
)n

+
(
Πφφη

φφ
)n

= πn,rr +
2πn,r
rn

, (27)[
πn+2

]
= π2

,r (Πrr)
n (ηrr)n+1 = π2

,rπ
n
,rr . (28)

Using these, the equations of motion (24) become

E2 =
1

r2

d

dr

[
r3y
]
, (29)

E3 =
2

r2

d

dr

[
r3y2

]
, (30)

E4 =
2

r2

d

dr

[
r3y3

]
, (31)

E5 = 0 , (32)

where we have defined

y ≡ γπ′

r
. (33)

The fifth order term vanishes because our focus on static solutions reduces the problem to a

three dimensional one, and the fifth order term is trivial in three dimensions. The remaining

equations of motion can be written as a polynomial in y as

1

r2

d

dr

[
r3P (y)

]
= Mδ3(r) , (34)

with

P (y) ≡ d2y + 2d3y
2 + 2d4y

3 . (35)

Note that the equations of motion are a total r-derivative. This is a consequence of the

shift invariance π → π + c of the Lagrangian, which has an associated Noether current Jµ,

in terms of which the equations of motion take the form ∂µ(−Jµ) = 0. We may therefore

integrate the equations of motion once to obtain

P (y) =
M

4πr3
. (36)

We now study the existence of spherically symmetric solutions, and the resulting constraints

on the coefficients d2, d3, d4. Our boundary condition is that π approaches a constant as

r →∞. The other boundary condition is fixed by the delta function at the origin. Focusing

on small r, (36) yields
π′3

(1 + π′2)3/2
d4 =

M

8π
. (37)
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This determines a finite value for π′ at the origin, and therefore implies that π must also be

finite there. Since the absolute value of the prefactor in front of d4 on the left hand side is

always less than unity, we then obtain the constraint

|d4| >
M

8π
. (38)

This constraint is unique to the DBI action - no such constraint arises in the usual galileon

theories. The fourth-order term dominates at short distances, and its non-linearities render

π finite at the origin. In particular therefore, note that there are no spherically symmetric

static solutions in the pure DBI model, for which d3 = d4 = 0.

As we have demonstrated, π′(r) ranges from some finite non-zero value at r = 0, to zero as

r →∞ (since π itself goes to a constant). Thus, the variable y = γπ′/r ranges from infinity

to zero as r ranges from zero to infinity (we will see shortly that it does so monotonically).

As r varies from the origin to infinity, the right hand side of (36) ranges from zero to infinity,

so the cubic polynomial on the left must do so as well. Looking at small y, along with the

requirement d2 > 0 for a healthy kinetic term, tells us that P (y) intersects the origin and is

monotonically increasing near the origin, and hence that y as a function of r is monotonically

decreasing in the same region. As y gets larger (r smaller, P (y) larger), the solution for

y(r) must continue to exist and be smooth, which means that P (y) must not have any of

its critical points in the region y > 0. Thus P (y) monotonically increases for y > 0, and

hence y(r) is monotonically decreasing for r > 0. Looking at the form of y, this implies in

turn that π′(r) is monotonic, ranging from some finite value to zero as r goes from zero to

infinity. Integrating, we see that π(r) is monotonic as well.

The condition we have then is

P ′(y) = d2 + 4d3y + 6d4y
2 > 0, for y > 0 . (39)

Focusing on large y implies that d4 ≥ 0, so that we can now remove the absolute value sign

in (38). We already know that d2 > 0, from the requirement of a healthy kinetic term, but

it is worth pointing out that a direct implication of (39), applied at small y, is that spherical

solutions do not exist for a ghost-like theory with d2 < 0. Furthermore, we are safe if the

minimum of P ′(y) occurs above zero, which happens if

|d3| <
√

3

2
d2d4 . (40)
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Otherwise, the largest root of P ′(y) must occur for y ≤ 0, which happens if d3 ≥ 0.

In summary, the flat space theory is ghost-free and spherical solutions exist if and only if

d2 > 0, d4 >
M

8π
, d3 > −

√
3

2
d2d4 . (41)

IV. STABILITY

The existence of spherically symmetric solutions is, of course, not sufficient to guarantee

viability of the theories in question. The next test is to examine the stability of these

solutions. To do this, we expand the action in perturbations around the spherical solutions

π(x) = π0(r) + ϕ(x) , (42)

and isolate the terms quadratic in ϕ. These terms take the form

Sϕ =
1

2

∫
dt

∫
d2Ω

∫ ∞
0

r2dr
[
Kt(r)ϕ̇

2 −Kr(r)(∂rϕ)2 −KΩ(r)(∂Ωϕ)2
]
, (43)

where overdots denote time derivatives, (∂Ωϕ)2 = (∂θϕ)2 + 1
sin2 θ

(∂φϕ)2 is the angular part of

(~∇ϕ)2, and the kinetic coefficients K depend on r through the background radial solution

π0(r) and its derivatives. Note that the quadratic action contains only second derivatives

acting on the perturbations. This is because the field equations are second order, despite

the fact that the lagrangian is higher derivative, as we mentioned earlier.

In order for the solution to be stable, each Ki(r) (i = t, r, Ω) must be positive for all

r > 0. If Kt is negative in some region, then localized excitations will be ghostlike and will

carry negative energy. If either of Kr, KΩ are negative in some region, then it is possible

to find localized perturbations for which gradients lower the energy of the background solu-

tion. This kind of instability, associated with negative gradient energy for certain classes of

fluctuations, is more troublesome than a tachyon-like instability associated with a negative

mass squared term or upside down potential. A tachyon-like instability is, like the Jeans

instability, dominated by modes with momenta of order the tachyonic mass scale, which can

be parametrically smaller than the UV cutoff, and thus computable within the effective the-

ory. By contrast, the gradient instability can be due to very short wavelength wave-packets

with high momentum. Thus, this instability also plagues fluctuations right down to the UV
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cutoff of the theory, so that quantities such as decay rates are dominated by the shortest

distances in the theory, and cannot be reliably computed within the effective theory.

To obtain explicit expressions for the functions Ki(r), we expand the equations of motion

to linear order in ϕ

E [π0 + ϕ]→ δSϕ
δϕ

= −Kt(r) ϕ̈+
1

r2
∂r
(
r2Kr(r) ∂rϕ

)
+KΩ(r) ∂2

Ωϕ , (44)

where ∂2
Ω = 1

sin θ
∂
∂θ

(
sin θ ∂

∂θ

)
+ 1

sin2 θ
∂2

∂φ2
is the angular part of the laplacian.

We begin with the radial perturbations, and find Kr simply by perturbing the radial equa-

tion (34), using a perturbation that depends only on r

δE =
1

r2

d

dr

[
r3P ′(y)δy

]
=

1

r2

d

dr

[
r2P ′(y)γ3ϕ′

]
. (45)

From this we read off

Kr(r) = γ3P ′(y) . (46)

From (39), we then see that if the solution exists, then K(r) is automatically positive, since

γ > 0.

Now turn to the angular perturbations. To find KΩ, we vary the full equations (24), al-

lowing the perturbation to depend only on angular variables, and keeping in mind that the

background depends only on r. Using the following useful expressions

δ [Πn] =
nπ′n−1

rn−1
∂2

Ωϕ , δ [πn] = 0 , δγ = 0 , (47)

it is simple to show that

KΩ(r) =
γ

2r

d

dr

[
r2P ′(y)

]
. (48)

Recall that the coefficient d5 does not enter in either Kr or KΩ, because we are still consid-

ering static configurations, for which the fifth DBI term vanishes.

Lastly, we consider the temporal perturbations. We find Kt by varying the full equa-

tions (24), this time allowing the perturbation to depend only on time. Once again, some

useful expressions

δ [Π] = −ϕ̈ , δ [Πn] = 0 (n > 1) , δ [πn] = 0 , δγ = 0 , (49)
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allow us to show that

Kt(r) =
γ

3r2

d

dr

[
r3
(
d2 + 6d3y + 18d4y

2 + 24d5y
3
)]

. (50)

We see that d5 enters here for the first time, since we have deviated, at last, from static

equations.

As we have written them, the functions Ki(r) depend on γ, r,
dy

dr
and y. However, we

may eliminate
dy

dr
in favor of y by using the implicit function theorem on the function

F (y, r) = P (y)− M

4πr3
= 0. This yields

dy

dr
= −∂rF

∂yF
= −3

r

P (y)

P ′(y)
.

Substituting this into our expressions for the Ki(r) we obtain

Kr = γ3
[
d2 + 4d3y + 6d4y

2
]
,

KΩ = γ

[
d2

2 + 2d2d3y + (4d2
3 − 6d2d4) y2

d2 + 4d3y + 6d4y2

]
,

Kt = γ

[
d2

2 + (4d2d3) y + 12 (d2
3 − d2d4) y2 + 24 (d3d4 − 2d5d2) y3 + 12 (3d2

4 − 4d3d5) y4

d2 + 4d3y + 6d4y2

]
.

(51)

Note that the explicit r dependence has canceled out.

Since the solution spans all positive values of y as r varies from zero to infinity, we require

Kt and KΩ to be positive for all y > 0. The denominators in (51) are automatically positive,

from (39). Given the constraints (41), The numerator in KΩ is positive for d3 ≥
√

3
2
d2 d4

which also ensures that the numerator in Kt is positive provided d5 ≤ 3
4

d24
d3

.

The radial solution therefore exists and is stable if and only if

d2 > 0 , d4 >
M

8π
, d3 ≥

√
3

2
d2d4 , d5 ≤

3

4

d2
4

d3

. (52)

V. PROPAGATION SPEED OF FLUCTUATIONS

As a final test of the viability of the DBI galileon theories, we consider the propagation

speeds of small fluctuations around the stable spherical solutions. For radially propagating

11



fluctuations this speed is

c2
r =

Kr

Kt

. (53)

At large distances from the source (small y), this becomes

c2
r = 1 + 4

d3

d2

y +O(y4/3) > 1 , (54)

where here and in what follows we express γ in terms of y via

γ =
√

1− r2y2 =

√
1−

(
M

4πP (y)

)2/3

y2 . (55)

Therefore, given the constraints implied by existence and stability of the solutions, this is

always superluminal.

At smaller distances (larger y), the speed is

c2
r =

3d2
4

3d2
4 − 4d3d5

[
1−

(
M

8πd4

)2/3
]

+O
(

1

y

)
, (56)

so the propagation speed is subluminal in this region if

d5 <
3d2

4

4d3

(
M

8πd4

)2/3

. (57)

The speed of angular excitations is

c2
Ω =

KΩ

Kt

. (58)

The difference between the numerator and the denominator is, apart from an overall positive

factor,

KΩ −Kt ∼ −2d2d3y −
(
8d2

3 − 6d2d4

)
y2 − 24 (d3d4 − 2d2d5) y3 − 12

(
3d2

4 − 4d3d5

)
y4 . (59)

Given the constraints (52), this is always negative, so the speed of angular excitations is

always subluminal. Also, the angular speed goes to zero as r goes to zero. The radial and

angular speeds for a sample solution are shown in figure 1.

Certainly the existence of superluminally propagating modes raises questions about the via-

bility of galileon DBI theories. Whether such a feature in really a problem that conclusively

rules out a low-energy effective theory is still being debated [25–27], but it has been argued

that, at the least, it may preclude the possibility of embedding the theory into a local,

Lorentz invariant UV completion [28].
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c2
r

c2
Ω

r1 2 3

0.5

1

1.5

FIG. 1: Speed of fluctuations c2
r and c2

Ω, in the radial and angular directions respectively, for a

sample solution satisfying the existence and stability constraints (52), as well as (57). The values

chosen are d2 = 1, d3 = 2, d4 = 1, d5 = −1, M = 1.

VI. CONCLUSIONS

The DBI galileon theories establish a natural generalization of, and connection between, the

galileon and DBI models through their higher-dimensional realizations and brane actions.

In this paper we have studied spherically symmetric solutions to the DBI galileon models,

demonstrating that there exists a range of parameters in which such solutions exist. We

have also examined the stability of these solutions and computed the propagation speeds

of perturbations around the solutions. While we have found that there exists a region

of parameter space in which our solutions are stable, we have shown that these solutions

always exhibit superluminal propagation. Such behavior is familiar from that of the ordinary

galileon theories. Thus, although one might have thought that the γ factors appearing for

DBI galileons could cure the superluminality issues, the results we find here indicate that

they do not.

We have worked in dimensionless units, which corresponds to setting to unity a scale, Λ,

suppressing all the non-linearities in the Lagrangian. In addition, we have absorbed into
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the stress tensor a scale, Mp, representing the coupling strength. Restoring these scales, the

condition (38) tells us d4 &M/Mp, so in gravitational applications, where M is the mass of

the Sun and Mp the Planck mass, this tells us that d4 must be huge, of order the solar mass

in Planck units. One might worry that this necessitates strong coupling, but this is not the

case because the coefficient d2, which multiplies the kinetic term, may also be chosen to be

very large, so that after canonical normalization the true couplings are still small.

To see the consequences of this, consider expanding the action with the scale Λ restored. The

DBI term reads schematically d2Λ4

√
1 + (∂π)2

Λ4 ∼ (∂π̂)2 + 1
d2Λ4 (∂π̂)4 + · · · , with the canoni-

cally normalized field π̂ = d
1/2
2 π. The scale suppressing the non-linear terms here is d

1/4
2 Λ.

Similarly, the quartic galileon term is, schematically, d4

[
1 + (∂π)2

Λ4 + · · ·
]

1
Λ6 (∂2π)2(∂π)2 =

d4
d2Λ2

1
d2Λ4 (∂2π̂)2(∂π̂)2+ d4

d2Λ2
1

d22Λ8 (∂2π̂)2(∂π̂)4+· · · , which means that the strong coupling scales

are
(
d22
d4

)1/6

Λ,
(
d32
d4

)1/10

Λ, · · · . Since d4 is so large, keeping the lowest strong coupling scale

reasonably high requires choosing d2 large, say d2
2 ∼ d4, in which case all the higher order

DBI scales are much higher (corresponding to small coupling), and the theory becomes very

similar to the ordinary galileons, explaining why we find conclusions similar to the con-

clusions in that case. In addition, note that the coupling to the stress tensor, in terms of

the canonically normalized field, is ∼ 1

d
1/2
2 Mp

π̂T , so that the true Planck mass is actually

∼ d
1/2
2 Mp, and the necessary size of d4 is actually larger than the solar mass in physical

Planck units.

On the other hand, in some situations, it may be too much to demand that the spherical

solutions exist for all r. For example, if π represents the fifth coordinate of a brane embed-

ding, we should not expect that the brane configuration should be everywhere expressible

as a single valued function of the four coordinates xµ (the solutions of [29–32] are examples

of this). In this case, the restrictions on the coefficient d4 may be relaxed.

DBI galileon theories therefore, like the ordinary galileons, face a challenge from the superlu-

minal propagation of perturbations around simple spherically symmetric solutions. Whether

these theories are viable depends on the development of an argument that this superluminal-

ity does not lead to the pathologies that are traditionally associated with this behavior, or

whether a modification to the theory or its couplings to matter or gravity can eliminate this

behavior. If the effects of gravity are taken into account, It should be mentioned that the

14



coupling of galileons to gravity is non-trivial if one wishes to keep the equations of motion

second order [33, 34], and the issue of superluminality should in principle be re-examined

in the full covariant context, though the effects should be Planck suppressed. It should

be straightforward to extend these results to anti-DBI type theories [35, 36], which do not

necessarily have a higher dimensional brane interpretation.
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