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Networked control system is a research area where the theory is behind practice. Closing the feedback loop through shared network
induces time delay and some of the data could be lost. So the network induced time delay and data loss are inevitable in networked
control Systems.	e time delay may degrade the performance of control systems or even worse lead to system instability. Once the
structure of a networked control system is con
rmed, it is essential to identify the maximum time delay allowed for maintaining
the system stability which, in turn, is also associated with the process of controller design. Some studies reported methods for
estimating the maximum time delay allowed for maintaining system stability; however, most of the reported methods are normally
overcomplicated for practical applications. A method based on the 
nite di�erence approximation is proposed in this paper for
estimating the maximum time delay tolerance, which has a simple structure and is easy to apply.

1. Introduction

	e key feature of networked control systems (NCSs) is that
the information is exchanged through a network among
control system components. So the network induced time
delay is inevitable in NCSs. 	e time delay, either constant
(up to jitter) or random, may degrade the performance of
control systems and even destabilize the systems. NCSs can
be de
ned as a control system where the control loop is
closed through a real-time communication network [1]. 	e
term networked control systems 
rst appeared in Walsh’s
article in 1999 [2]. A typical organization of an NCS is shown
in Figure 1. 	e reference input, plant output, and control
input are exchanged through a real-time communication
network. 	e main advantages of NCSs are modularity,
simpli
ed wiring, low cost, reduced weight, decentralization
of control, integrated diagnosis, simple installation, quick
and easy maintenance [3], and 
exible expandability (easy
to add/remove sensors, actuators, or controllers with low
cost). NCSs are able to easily fuse global information to
make intelligent decisions over large physical spaces which
is important for many engineering systems such as the power
system.

As the control loop is closed through a communication
network the time delay and data dropout are unavoidable.
	erefore networked control system can be regarded as a
special case time delay system and many authors applied
the time delay theorems to study NCSs [4]. Time delay, no
doubt, increases complexity in analysis and design of NCSs.
Conventional control theories built on a number of standing
assumptions including synchronized control and nondelayed
sensing and actuationmust be reevaluated before they can be
applied for NCSs [5].

	e main goal of the most recent work is to reduce
the conservativeness of the maximum time delay by using
Lyapunov-Krasovskii functional with improved algorithms
for solving the linear matrix inequalities (LMIs) set but
with the expense of increasing complexity and computation
time. Analytical and graphical methods have been studied
in the literature (see, e.g., [6]). 	e stability criteria for
NCSs based on Lyapunov-Krasovskii functional approach
have been reported in [7–9]. In [7], a Lyapunov-Krasovskii
function is used to derive a set of LMIs and the stability
problem is generalized to a feasibility problem for the LMIs
set. Inmany of the previously reportedworks, the controller is
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Figure 1: A typical networked control system.

designed in the absence of the time delay. In [10], an improved
Lyapunov-Krasovskii function is used with triple integral
terms.	e LMImethods require the closed-loop system to be
Hurwitz [8, 11, 12]. In [13], a modi
ed cone complementary
linearization algorithm based on the Lyapunov-Krasovskii
approach is implemented. And the method reported in [14]
is claimed to be less conservative and the computational
complexity is reduced.

	e authors in [15] derived an LMI-based method in
the frequency domain, and then the LMI is transformed
onto an equivalent nonfrequency domain LMI by applying
Kalman-Yakubovich-Popov lemma. It has been reported in
[16] that the ordinary Lyapunov stability analysis is linked by
a suggested variable to state vectors through convolution and
the stability analysis is simpli
ed to only require solving a
nonlinear algebraic matrix equation.

In [11], the hybrid system technique is used to derive a
stability region. An upper bound is derived for time delay in
an inequality form and the results are rather conservative.	e
hybrid system stability analysis technique has also been used
in [17]. A simple analytical relation is derived between the
sampling period, the time delay, and the controller gains.	e
same approach is used in [18] withmore conservative stability
region results.	emodel-based approach for deriving neces-
sary and su�cient conditions for stability is presented in [19].
	e stability criteria are derived in terms of the update time
and the parameters of the model. 	e model-based approach
is then extended to multiunits NCS in [20]. 	e optimal
stochastic control was studied in [21] with a discrete-time
system model where the random time delays are modeled
using Markov chains and the controller uses the knowledge
of the past state time delays by time stamping.

Most of the previously developed approaches require
excessive load of computations, and also, for higher order
systems, the load of computations will increase dramatically.
In practice, engineers may 
nd it di�cult to apply those
available methods in control system design because of the
complexity of the methods and lack of guideline in linking
between the design parameters and the system performance.
Almost all the design procedures highly depend on the
postdesign simulation to determine the design parameters.
So there is a demand for a simple design approach with
clear guidance for practical applications. In this paper, a new
stability analysis and control design method is proposed,
in which the design approach is simple and a clear design
procedure is given.

	e paper starts from the mathematical model of NCS
and then the proposed method for estimating the maximum
allowable delay bound is brie
y described.A few examples are
illustrated and the results are compared with those previously
published in the literature. 	e cart and inverted pendulum
problem is used to study the e�ect of the parameters on the
maximum allowable delay bound.

2. Mathematical Analysis

Although the issues involved with time delays in control
systems have been studied for a long time, it is di�cult
to 
nd a method simple enough to be accepted by control
system design engineers. It is found that the most previously
reported methods rely on LMI techniques and they are
generally too complicated for practical engineers to use
and also involve heavy load of numerical calculations and
computing time.	epaper proposes a newmethodwhich has
a simple structure and is used for estimating the maximum
time delay allowed while the system stability can still be
maintained. In most control systems the sampling time is
preferred to be small [22]. 	e maximum allowable delay
bound (MADB) can be de
ned as the maximum sampling
period that guarantees the stability even with poor system
performance. A continuous time-invariant linear system is
shown in Figure 2 and given by

ẋ (�) = Ax (�) + Bu (�) ,
y (�) = Cx (�) +Du (�) , (1)

where x(�) ∈ R
� is the system state vector, u(�) ∈ R

� is the
system control input, y(�) ∈ R

� is the system output, and
A ∈ R

�×�, B ∈ R
�×�, C ∈ R

�×�, andD ∈ R
�×� are constant

matrices with appropriate sizes.
Suppose that the control signals are connected to the

control plant through a kind of network, so the time delay
is inevitable to be involved in the feedback loop. 	e state
feedback is therefore can be written as

u (�) = Kx (� − ��� − �� − ���) , (2)

where ��� is the time delay between the sensor and the
controller, �� is the time delay in the controller, and ��� is the
time delay from the controller to the actuator. K represents
the feedback control gains with appropriate size. From (2) the
networked control system can be modeled where the time
delay is lumped between the sensor and the controller as
shown in Figure 3.

	e time delaymay be constant, variable, or even random.
In NCSs, the time delay is composed of the time delay
from sensors to controllers, time delay in the controller, and
controllers to actuators time delay which is given by� = ��� + �� + ���. (3)

For a general formulation the packet dropouts can be incor-
porated in (3) as follows:� = ��� + �� + ��� + �ℎ, (4)



Mathematical Problems in Engineering 3

Actuator Plant Sensor

Controller

�ca �sc

x(t)

Kx(t − �sc − �c − �ca)

Kx(t − �sc − �c)
x(t − �sc)

Figure 2: Anetworked control systemwith the time delay both from
the sensor to the controller and from the controller to the actuator.
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Figure 3: A simpli
ed model of the networked control system.

where� is the number of dropouts and ℎ the sampling period.
And by (4) the data dropouts can be considered as a special
case of time delay [23, 24]. It is supposed that the following
hypotheses hold.

Hypothesis 1 (H.1). (i) 	e sensors are clock driven. (ii) 	e
controllers and the actuators are event driven. (iii) 	e data
are transmitted as a single packet. (iv) 	e old packets are
discarded. (v) All the states are available for measurements
and hence for transmission.

Hypothesis 2 (H.2). 	e time delay � is small to be less than
one unit of its measurement.

De�nition 1 (D.1). For a function
(�), the �th order reminder
for its Taylor’s series expansion is de
ned by�� (
 (�) , �) = ∞∑

�


(�) (�)�! ��. (5)

Applying the state feedback proposed in (2) to the system (1),
we have

ẋ (�) = Αx (�) + BKx (� − �) . (6)

From (6), the following can be derived:

ẋ (�) = (A + BK) x (�) + BK [x (� − �) − x (�)] . (7)

�eorem 2. Suppose that (H.1) and (H.2) hold. For system (1)
with the feedback control of (2), the closed-loop system is glob-
ally asymptotically stable if �	(Ψ) ∈ �−, for � = 1, 2, . . . , � and
all the state variables’ 2nd order reminders are small enough for
the given value of �, whereΨ is given by

Ψ = [(� + �BK)−1 (A + BK)] . (8)

Proof. 	e expression for x(� − �) can be obtained by Taylor
expansion as

x (� − �) = ∞∑
�=0

(−1)� ���! x(�) (�) , (9)

where x(�)(�) is the �th order derivative. 	e 
rst order
approximation of the delay term is given by

x (� − �) = x (�) − �ẋ (�) + (�22 ) ẍ (�) + R3 (x, �) ,
x (� − �) ≈ x (�) − �ẋ (�) + (�22 ) ẍ (�) ,
x (� − �) = x (�) − �ẋ (�) + R2 (x, �) .

(10)

From (10) it can be seen that R2(�, �) depends on the time
delay, �, and the higher order derivatives of x(�)which can be
neglected if the time delay and the norm ofR2(�, �) are small.
	en we have

x (� − �) ≈ x (�) − �ẋ (�) . (11)

	e assumption in (11) can be used without signi
cant
error, and this can be true for the following reasons. Firstly,
the time delay in a computer network is very small in order
of milli- or microseconds and at the worst few tenths of
the second. Secondly, in most of the real control system
applications the linearizedmodel is used and the higher order
terms are already neglected. Additionally, the higher order
derivatives will be multiplied by ��/� which is much more
smaller than � because � ≪ 1. Substituting (11) into (7), the
following can be derived:

ẋ (�) ≈ (A + BK) x (�) − �BKẋ (�) , (12)

ẋ (�) ≈ [(I + �BK)−1 (A + BK)] x (�) , (13)

Ψ = [(I + �BK)−1 (A + BK)] . (14)

	e system (13) will be globally asymptotically stable if�	 (Ψ) ∈ C−, for � = 1, 2, . . . , �. (15)

Corollary 3. Suppose (H.1) and (H.2) hold. For the control
system (1) with the control law (2), the closed-loop system is
globally asymptotically stable if� < 1‖BK‖ . (16)

Proof. For system (1), suppose that the state feedback has
been designed to ensure �(A + BK) ∈ C−. 	erefore, for a

chosen positive de
nite matrix P = PT, it will 
nd a positive

de
nite matrixQ = QT to have

P (A + BK) + (A + BK)T P = −Q. (17)
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Choose a Lyapunov functional candidate as

V (�) = x
T
Px > 0 ∀x ̸= 0. (18)

	e objective for the next step is to 
nd the range of � that
will ensure (V̇(�) < 0 ∀x ̸= 0) [25–27]. Taking the derivative
of (18),

V̇ (�) = ẋ
T
Px + x

T
Pẋ≈ x

T [(A + BK)T PP−1 (I + �BK)−T P+P (I + �BK)−1 P−1P (A + BK)] x− x
T [P (A + BK) + (A + BK)T P] x+ x
T [P (A + BK) + (A + BK)T P] x≈ x

T [(A + BK)T PP−1 (I + �BK)−T P− (A + BK)T P + P (I + �BK)−1 P−1P (A + BK)− P (A + BK) ] x − x
T
Qx.

(19)

Rearranging the terms in the above equation, then

V̇ (x) ≈ x
T {(A + BK)T P [P−1 (I + �BK)−T P − I]+ [P (I + �BK)−1 P−1 − I]P (A + BK)} x− x

T
Qx. (20)

If P(I + �BK)−1P−1 − I = I then (20) will become

x
T [P (A + BK) + (A + BK)T P] x − x

T
Qx = 0. (21)

Move the last term to the right hand side; the following will
be derived:

x
T [P (A + BK) + (A + BK)T P] x = x

T
Qx. (22)

So ‖P(A + BK) + (A + BK)TP‖ ⋅ ‖x‖2 = ‖Q‖ ⋅ ‖x‖2.
Assuming that we can 
nd a positive number to make the

following hold:#####P (A + BK) + (A + BK)T P##### = 2$ #####(A + BK)T P##### = ‖Q‖
(23)

then $ can be considered as the norm of P−1(I+�BK)−1P− I.
	erefore, we have

x
T [(A + BK)T P [P−1 (I + �BK)−T P − I]+ [P (I + �BK)−1 P−1 − I]P (A + BK)] x≤ 2 #####(P−1 (I + �BK)−T P − I)P (A + BK)##### ⋅ ‖x‖2 . (24)

Choose #####P−1 (I + �BK)−1 P − I
##### ≤ 1. (25)

UseNeumann series formula for the inverse of the sumof two
matrices:(I + �BK)−1= I − �BK + �2 (BK)2 − �3 (BK)3 + ⋅ ⋅ ⋅ − . (26)

For small time delays � ≪ 1 (26) can be given as(I + �BK)−1 ≈ I − �BK. (27)

Applying (27) into (25) then we have#####P−1 (I + �BK)−1 P − I
#####≈ #####P−1 (I − �BK)P − I

##### = ‖�BK‖ < 1. (28)

And 
nally we get � < 1‖BK‖ . (29)

	at is, for any � < 1/‖BK‖, V̇(�) < 0, the system will be
globally asymptotically stable.

	eorem 2 and Corollary 3 give us a simple tool in
estimating the maximum allowable time delay for NCSs.
Further analysis in the frequency domain is described below.
Taking Laplace transform of (12), we have*X (*) = (A + BK)X (*) − �*BKX (*) ,[*I − (A + BK) + �*BK]X (*) = 0. (30)

	e characteristics equation is de
ned as[*I − (A + BK) + �*BK] = 0. (31)

For a stable system the roots of the characteristics equation
(31) must lie in the le� hand side of the *-plane. From
the characteristics equation, it is clear that the term �*BK
in
uences the system performance and the stability as the
term of �*BKmay push the closed-loop system poles toward
the right hand side of the *-plane.

As we have seen the system characteristic is determined
by the term �BKẋ(�) in a certain level. 	is term can be
regarded as a di�erentiator in the feedback loop, so it will
introduce extra zeros to the closed-loop system and the
time delay can be considered to have resulted in a variable
gain to the feedback path. For more accurate estimation the
second or third-order di�erence approximation can be used
as follows:[*I − (A + BK) + �*BK − �2*22 BK] = 0,

[*I − (A + BK) + �*BK − �2*22 BK + �3*36 BK] = 0. (32)

In the following a simple corollary for estimating the MADB
in single-input-single-output NCS will be derived.
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Corollary 4. Suppose that (H.1) and (H.2) hold.�e system (2)
with the controller (3) is asymptotically stable if� < 14444�min (BK)4444 . (33)

Proof. 	e main assumption is that the eigenvalues of the
compensator, BK, are all negative, *1 < 0, . . . , *� < 0, and
are given by

BK − *I�×� = [[[[[
911 − * 912 ⋅ ⋅ ⋅ 91�921 922 − * ⋅ ⋅ ⋅ 92�... ... d

...9�1 9�2 ⋅ ⋅ ⋅ 9�� − *
]]]]] . (34)

	e characteristic equation is the determinant of (34). As-
sume that the eigenvalues are given by*1 = @1, . . . , *� = @�,@1 < 0, . . . , @� < 0. (35)

Preliminary 1 (inverse eigenvalues theorem [28]). Given a
matrix X that is nonsingular, with eigenvalues �1, . . . , �� >0, �1, . . . , �� are eigenvalues of X if and only if �1−1, . . . , ��−1
are eigenvalues of X−1.

	e eigenvalues of (I�×� + �BK) are given by� ⋅ BK + I�×� − �I�×�
= [[[[[

�911 + 1 − � �912 ⋅ ⋅ ⋅ �91��921 �922 + 1 − � ⋅ ⋅ ⋅ �92�... ... d
...�9�1 �9�2 ⋅ ⋅ ⋅ �9�� + 1 − �

]]]]] , (36)

Δ (� ⋅ BK + I�×� − �I�×�)
= det([[[[[

�911 + 1 − � �912 ⋅ ⋅ ⋅ �91��921 �922 + 1 − � ⋅ ⋅ ⋅ �92�... ... d
...�9�1 �9�2 ⋅ ⋅ ⋅ �9�� + 1 − �

]]]]]),
Δ (� ⋅ BK + I�×� − �I�×�)
= �� det(((

(
[[[[[[[[[[
911 + 1 − �� 912 ⋅ ⋅ ⋅ 91�921 922 + 1 − �� ⋅ ⋅ ⋅ 92�... ... d

...9�1 9�2 ⋅ ⋅ ⋅ 9�� + 1 − ��
]]]]]]]]]]
)))
)

.
(37)

Replacing (1 − �)/� by −* in (37) we get

= �� det([[[[[
911 − * 912 ⋅ ⋅ ⋅ 91�921 922 − * ⋅ ⋅ ⋅ 92�... ... d

...9�1 9�2 ⋅ ⋅ ⋅ 9�� − *
]]]]]) = 0. (38)

Solving (38) the eigenvalues are given as(�1 − 1)� = @1, . . . , (�� − 1)� = @�,@1 < 0, . . . , @� < 0,�1 = 1 + �@1, . . . , �� = 1 + �@�,@1 < 0, . . . , @� < 0.
(39)

If � < 1/|@max| then all the eigenvalues are positive and the
system is asymptotically stable, and if � > 1/|@max| at least
one of the eigenvalues will be negative then.

If � < 1/|�min(BK)| and (H.1) and (H.2) hold then the
system is asymptotically stable.

Corollary 5. Suppose that (H.1) and (H.2) hold. For system
(1) with the control law (2), the closed-loop system is globally
asymptotically stable if� < 19J* (KB) (KℎLML 9J* �* �ℎL 9J*NOP�L V9OPL) . (40)

From Preliminary 1, the signs of the eigenvalues of (I�×� +�BK)−1 and (I�×� + �BK) are the same. For a single-input-
single-output control system the matrix BK can be written as

BK = [[[[[
J1J2...J�
]]]]] [R1 R2 ⋅ ⋅ ⋅ R�] = [[[[[

J1R1 J1R2 ⋅ ⋅ ⋅ J1R�J2R1 J2R2 ⋅ ⋅ ⋅ J2R�... ... d
...J�R1 J�R2 ⋅ ⋅ ⋅ J�R�

]]]]] .
(41)

�e interesting property of BK is that it is singular. �e eigen-
values of BK are given by

BK − �I�×� = [[[[[[[
J1R1 − � J1R2 ⋅ ⋅ ⋅ J1R�J2R1 J2R2 − � ⋅ ⋅ ⋅ J2R�... ... d

...J�R1 J�R2 ⋅ ⋅ ⋅ J�R� − �
]]]]]]]
. (42)

�e characteristics equation of BK is the determinant of (42)
and is given by�2 − Tr (BK) � + 12 [Tr (BK2) − Tr (BK)2]...�� − Tr (BK) ��−1 + 12 [Tr (BK2) − Tr (BK)2] ��−2+ ⋅ ⋅ ⋅ + 12 [Tr (BK2) − Tr (BK)2] .

(43)

Because BK is singular det(BK) = 0 and hence
det (BK) = 12 [Tr (BK2) − Tr (BK)2] = 0,

Tr (BK2) = Tr (BK)2 . (44)
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Substituting (44) into (43), then (43) becomes�2 − Tr (BK) � T→ � (� − Tr (BK))...(−1)� �� − Tr (BK) ��−1 T→ (−1)� ��−1 (� − Tr (BK)) . (45)
Finally the eigenvalues of BK are�1, . . . , ��−1 = 0 �� = Tr (BK) < 0. (46)

Equation (46) shows that the minimum eigenvalue of BK
equals Tr(BK). If the eigenvalues of (I�×� +�BK) are *1, . . . , *�,
then the eigenvalues of (I�×� + �BK)−1 are 1/*1, . . . , 1/*�. �e
eigenvalues of (I�×� + �BK) are given by� ⋅ BK + I�×� − *I�×�

= [[[[[[[
�J1R1 + 1 − * �J1R2 ⋅ ⋅ ⋅ �J1R��J2R1 �J2R2 + 1 − * ⋅ ⋅ ⋅ �J2R�... ... d

...�J�R1 �J�R2 ⋅ ⋅ ⋅ �J�R� + 1 − *
]]]]]]]
.
(47)

By solving (47) it can be found that*1, . . . , *�−1 = 1,*� = 1 + � ⋅ Tr (BK) = 1 + � ⋅ �max (BK) (48)

if � < 1/|Tr(BK)| → *� > 0 → *1, . . . , *� > 0.
For single-input-single-output NCS we have9J* (KB) = Tr (BK) ; �ℎL� (49)

if � < 1/|KB| and both (H.1) and (H.2) hold then the system is
asymptotically stable.

	is inequality can be used as a simple and fast tool
for estimating the MADB in NCS and involves only single
calculation.

3. Stability Analysis Case Studies

In general, two approaches are applied to controller design
for NCSs. 	e 
rst approach is to design a controller without
considering time delay and then to design a communication
protocol that minimizes the e�ects caused by time delays.
	e second approach is to design the controller while taking
the time delay and data dropouts into account [11, 29]. 	e
proposedmethod in this paper is used to estimate theMADB
for predesigned control system. In this section, a number of
examples are studied to demonstrate the proposed method
and compare its results with the previously published cases
in the literature. In particular, the results derived using the
method proposed in this paper have been compared with
the results using the LMI method given in [7] and with
the fourth-order Pade approximation.	e fourth-order Pade
approximation [6] is used for the delay term in the *-domain
and is de
ned as

L−
� ≈ W� (*) = X� (*)Y� (*) = (∑��=0 (−1)� \���*�)(∑��=0 \���*�) . (50)

	e coe�cients are given by\� = ((2� − R)!�!)(2�!R! (� − R)!) R = 0, 1, . . . , � (� = 4) . (51)

With the fourth-order Pade approximation, the truncation
error in the time delay calculation is less than 0.0001. 	e
LMI-basedmethod which has been used for the comparisons
is based on using Lyapunov-Krasovskii functional and can be
summarized as follows.

Corollary 6 (see [7]). For a given scalar � and a matrix K, if
there exist matrices P > 0, T > 0, N	, and M	 (� = 1, 2, 3) of
appropriate dimension such that

[[[[[[[[[[

M1 +M
1 − N1A − A
N
1 M
2 −M1 − A
N
2 − N1BK M
3 − A
N
3 + N1 + P �M1∗ −M2 −M
2 − N2BK − (BK)
N
2 −M
3 + N2 − (BK)
N
3 �M2∗ ∗ N3 + N
3 + �T �M3∗ ∗ ∗ −�T
]]]]]]]]]]

< 0, (52)

then the system (1)-(2) is exponentially asymptotically stable.
With a given controller gain K, solving the LMI in Corollary 6
using the LMIMatlab Toolbox the maximum time delay can be
computed.

Example 7. 	e system in this example is the most widely
used example in the literature and is described by the

following equation:�̇ (�) = [0 10 −0.1] � (�) + [ 00.1] P (�) . (53)

In previous reports [1, 7], the feedback control is chosen to beP (�) = [−3.75 −11.5] � (�) . (54)
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From Corollary 3, 1/‖BK‖ = 0.8695, so the MADB is esti-
mated to be 0.8695 s. Using 	eorem 2 and Corollary 5 the
MADB is 0.8695 s. 	e same result can be obtained using the
LMImethod as reported in [7, 23, 24, 30]. In [11, 17], the value
reported for MADB is 4.5 × 10−4 s and in [22] it is 0.0538 s.
In [29], the MADB is 0.785 s. It has been reported in [10],
where an improved Lyapunov-Krasovskii approach has been
used, that the MADB is 1.0551 s and also 1.05 s reported in
[23] with improved algorithm for solving the LMI. In [1], the
MADB is 1.0081 s. Using the proposed method with second
order 
nite di�erence approximation we can obtain 1.13 s as
theMADB.	e system response with 0.8695 s time delay and

x(0) = [0.1 0]T is shown in Figure 4which proves the system
is stable with the estimated MADB.

Example 8 (see [31]). Consider

�̇ (�) = [[0 1 00 0 10 −2 −3]]� (�) + [[001]]P (�) ,
P (�) = [−160 −54 −11] � (�) . (55)

For this third-order system both the LMI and ourmethod
give 0.0909 s as theMADB. Also with Corollary 5 theMADB
is 0.0909 s.

Example 9 (see [31]). 	e last example is the fourth-order
model of the inverted pendulum shown in Figure 5 which is
in many papers reduced to a second order system in order to
verify the stability of NCSs. 	e pendulum mass is denoted
byg and the cart mass ish; the length of the pendulum rod
is i. 	e open loop system is unstable. 	e states are de
ned

as �1 = �, �2 = �̇, �3 = j, and �4 = ̇j. 	e model is given by

ẋ (�) = [[[[[[[
0 1 0 00 0 −gkh 00 0 0 10 0 (h + g) khi 0

]]]]]]]
x (�) + [[[[[[[

01h0−1hi
]]]]]]]
P (�) ,

y (�) = [�j] = [1 0 0 00 0 1 0] x (�) .
(56)

	e parameters used are h = 2 kg, g = 0.1 kg, and i =0.5m.	en the linear model becomes

�̇ (�) = [[[[
0 1.000 0 020.601 0 0 00 0 0 1−0.4905 0 0 0]]]]� (�) + [[[[

0−100.5]]]]P (�) . (57)

Using the LQR Matlab function with Q = I and R = 1, the
controller is given by

KLQR = [52.1238 11.5850 1.000 2.7252] . (58)

Using the LMI method the MADB is 0.0978 s and our
method gives 0.0978 s using 	eorem 2 and Corollary 5. We
noted that there is a good agreement between our method
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Figure 4: 	e response of the system in Example 7 with 0.8695 s
delay.
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Figure 5: 	e inverted pendulum on a cart.

and the LMI method because � is small enough to make the

nite di�erence approximation hold. 	e system response
with 0.0978 s time delay and with � = 0 and j = 0.1
is shown in Figure 6 which shows the system is stable.
Many examples have been studied to compare the results
obtained using the method proposed in this paper with the
results obtained using the LMI method [7] and the fourth-
order Pade approximation method. 	e calculation results
are summarized in Table 1 along with the simulation based
MADB.

Remarks. From Table 1, it can be seen that the proposed
new method can give values of MADB similar to the values
obtained using the LMI method and the other methods;
however, the method proposed in this paper has a much
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Table 1: 	e MADB (seconds) using the proposed method with 1st, 2nd, and 3rd order 
nite di�erence approximation for the delay term,
the LMI method, the fourth-order Pade approximation method, and the simulation based method.

	e 
nite di�erence method
	e LMI Pade approximation Simulation based

1st order 2nd order 3rd order

1 0.8695 0.8427 1.1321 0.8696 1.1672 1.180

2 0.1000 0.0995 0.1421 0.1000 0.1475 0.149

3 0.0100 0.0099 0.0149 0.0100 0.0156 0.0157

4 0.1428 0.1385 0.1808 0.1429 0.1855 0.1860

5 0.8217 0.8489 0.9085 0.8217 0.9091 0.9140

6 0.5000 0.4816 0.6303 0.5000 0.6474 0.6510

7 0.9940 0.9940 0.9960 0.9940 0.9960 0.9970

8 0.0856 0.0854 0.1192 0.0856 0.1230 0.1230

9 0.0906 0.0919 0.1251 0.0909 0.1284 0.1285

10 0.0416 0.0400 0.0496 0.0416 0.0505 0.0505
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Figure 6: 	e response of the system in Example 9 with 0.0978 s
delay.

simpler procedure, and it should have no di�culties for prac-
tical design engineers to accept this approach. Clearly, the
MADB with the 
rst-order 
nite di�erence approximation is
comparable with the LMI method. Furthermore, we found
good agreement between the third-order 
nite di�erence
approximation and the fourth-order Pade approximation.
	e simulation based results for the MADB show that the
estimated MADB through the proposed method su�ciently
achieves the system stability. A simple controller design
method has been developed by the authors based on the
method presented in this paper. In the controller design
method a stabilizing controller can be derived for a given
network time delay. In all the case studies or examples,
only linear system examples are given. 	e method is lim-
ited to linear systems only. 	e authors are now working
on extending the methods to nonlinear systems, such as,
multiconverter and inverter system and engine and electrical
power generation systems [32, 33].

	e application of the 
nite di�erence approximation for
representing the time delay is not new but we found in this
paper that using higher order approximations can su�ciently
represent the time delay linear system. From Table 1 it can
be concluded that using the 
rst order approximation the
estimated MADB is comparable with the other two methods.
	is is because the derivation of the linear model from the
nonlinear model is based on neglecting the higher order
derivative terms. In some cases we need to use the higher
derivative terms for the time delay in order to achieve more
accurate results for the MADB. 	e current research is to
derive su�cient conditions for applying the method in order
to 
nd the tolerance of the estimated MADB.

4. Concluding Remarks

	e main contribution of the paper is to have derived a
new method for estimating the maximum time delay in
NCSs. 	e most attractive feature of the new method is
that it is a simple approach and easy to be applied, which
can be easily interpreted to design engineers in industrial
sectors. 	e results obtained in this method are compared
with those obtained through the methods introduced in the
literature. 	e method has demonstrated its merits in using
less computation time due to its simple structure and giving
less conservative results while showing good agreement with
other methods. 	e method is limited to linear systems
only and the work for extending the method for a class of
nonlinear systems is on-going.
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