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Abstract— In this paper, we present the dynamics of the
simple pendulum by using the fractional-order derivatives.
Equations of motion are proposed for cases without input and
external forcing. We use the fractional-order Euler-Lagrange
equations to obtain the fractional-order dynamic equation of the
simple pendulum. We perform equilibria analysis, indicate the
conditions where stability dynamics can be observed for both
integer and fractional-order models. Finally, phase diagrams
have been plotted to visualize the effect of the fractional-order
derivatives.

Index Terms— Simple pendulum model, nonlinear systems,
fractional-order dynamics, fractional-order Euler-Lagrangian,
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I. INTRODUCTION

Fractional calculus is a generalization of classical dif-

ferentiation and integration to arbitrary (non-integer) order.

In recent years fractional calculus has gained significant

attention as one of the topics that can be applied to a variety

of engineering fields [1]. Many studies and researches in

controls have concentrated on using fractional calculus for

modeling systems or designing controllers showing that the

fractional-order differential equations are, at least, as stable

as their integer-order counterparts [2].

Fractional calculus has gained a lot of importance and poten-

tial applications in several areas of science and engineering,

such as fluid mechanics, viscoelasticity, biology, physics and

engineering.

Fractional dynamics and fractional variational principles has

been used as an efficient tool in modeling complex physical

systems. The advantage of fractional calculus over classical

integer-order calculus is its non-local and memory properties.

It is well known that the integer-order differential operator is

a local operator but the fractional-order differential operator

is non-local. This means that the next state of a system

depends not only upon its current state but also upon all of

its historical states. This more realistic interpretation explains

why fractional calculus has become more and more popular.

Recently, the existence, uniqueness and dissipativity for a

class of nonlinear dynamical systems including systems with

fractional damping have been investigated [3]. A numerical

integration method has been applied to a nonlinear pendulum

with fractional damping as well as to a nonlinear pendulum

suspended on an extensible string [3]. The formulation of
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the fractional-order Euler-Lagrange problem has recently

drawn the attention of many authors in their works [4], [5].

The fractional variational principles and the fractional Euler-

Lagrange were obtained in [6], the fractional constrained

Lagrangian and Hamiltonian were analyzed in [7], [8].

The classical fields with fractional-order derivatives were

investigated by using the fractional Lagrangian formulation

and the fractional Euler-Lagrange equations were obtained

in [9].

Fractional Lagrangian of the two-electric pendulum has been

studied in [10] and its numerical analysis has been carried

out. Recently the fractional Euler-Lagrange equations for the

fractional Bateman-Feshbach-Tikochinsky oscillator, which

is a non-conservative dissipative system has been studied in

[11].

Another aspect which requires a passing mention is how

evolutionary and swarm algorithms and other computational

intelligence paradigms can be improved with the help of

fractional calculus. All of the swarm algorithms and their

variants use position and velocity update equations. If a

fractional version of velocity can be used instead of the

standard integer-order versions, there is a scope for arriving

at insightful results and improved algorithms. This is because

there is an inherent long-range memory in fractional-order

differentiation [12]. This kind of velocity update can take

care of previous positions of the particle and influence the

present velocity based on the past history. Thus, instead

of only relying on the past best position of the particle,

the fractional differentiation operator can offer a weighted

version of the past history of the position of the particle in

swarm based search and optimization algorithms [12]. The

long-term memory is an important characteristic of fractional

differentiation and is also a prominent difference between

fractional differentiation and integer-order differentiation.

In this paper, we study fractional-order simple pendulum

model. The motion of material objects is not always in two

or three dimensions; it rather depends on restraint conditions

in relativistic mechanics. Researchers have extended integer

space into fractional space as the dimension of space plays

an important role in areas such as quantum field theory and

Casimir effect. Even more interestingly, the dimension of

the real world was measured experimentally and found to be

3±10−6. This is in accordance with general relativity, which

states that gravitational fields are curvatures in space-time,

instead of being entities in a flat space-time [13], [14]. With

the above motivation and based on the nonlinear ordinary

differential equations of the simple pendulum, we study



and analyze a fractional-order model which describes the

temporal dynamics of the angular position and the angular

velocity.

This paper is organized as follows: In section II, the basic

definition and preliminaries of fractional calculus are briefly

introduced. In section III, we present the integer-order sim-

ple pendulum model. Section IV is about the concept of

fractional-order simple pendulum model, stability analysis,

and simulation examples. The phase plane analysis with

various initial conditions and fractional-order derivatives is

presented in order to analyze the stability of the angular

position and the angular velocity. The discussion of our

numerical simulations is provided in section V. Concluding

remarks are given in section VI.

II. PRELIMINARY

A. Definition of fractional derivatives

In this paper, we use the Grünwald-Letnikov derivative [2].

The latter is defined by the fractional differentiation-order α
of function f(t) with respect to t and the terminal value 0 :

0D
α
t f(t)=

dα f(t)

d tα
= lim

t→0
h−α

[ t

n
]∑

j=0

(−1)j

(
α

j

)
f(t− jh), (1)

with n ∈ IN and α ∈ IR+, [�] means the integer part.

In the rest of the paper, we use an operator 0D
α
t to represent

the Grünwald-Letnikov derivative with zero initial value

history.

B. Numerical solution of fractional-order differential equa-

tions

For numerical simulation of the fractional-order systems,

the Grünwald-Letnikov method [15], [16] based on the

Adams-Bashforth-Moulton type predictor-corrector scheme

[17] has been proposed and widely used.

The formula for the explicit numerical approximation of the

αth derivative at the points kh (see also [15], [16], [18]) is

given by

(k−Lm/h)D
α
khf(t) ≈ h−α

k∑

j=0

(−1)j

(
α

j

)
f(tk − j), (2)

where Lm is the memory length, tk = kh, h is the time step

of the calculation and (−1)j

(
α

j

)
are binomial coefficients

c
(α)
j (j = 0, 1, · · · ) which can be computed as

c
(α)
0 = 1, c

(α)
j =

(
1−

1 + α

j

)
c
(α)
j−1. (3)

Numerical solution of the fractional-order differential equa-

tion

Dα
t y(t) = f(y(t), t), (4)

can be expressed as [16]

y(tk) = f(y(tk), tk)h
α −

k∑

j=1

c
(α)
j f(tk − j). (5)

Equation (5) is nonlinear with respect to finding y(tk) and

can be solved using any suitable method for such equations.

C. Fractional-order systems

The fractional-order linear time-invariant system can be

represented by the following state-space model{
0D

α
t x(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
(6)

where x(t) ∈ IRn is the state vector, u(t) ∈ IRm is the

control input vector and y(t) ∈ IRp is the measured output.

A ∈ IRn×m, B ∈ IRn×n, C ∈ IRp×n are constant real ma-

trices and α =
[
α1, α2, · · · , αn

]T
are the fractional-orders.

If α1 = α2 = · · · = αn system (6) is called a commensurate

order system; otherwise it is an non-commensurate order

system.

Generally, we consider the following non-commensurate

fractional-order nonlinear system in the form [16]{
0D

αi

t xi(t) = fi(x1(t), x2(t), · · · , xn(t), t)

xi(t) = ci, i = 1, 2, · · · , n,
(7)

where ci are initial conditions, or in its vector representation

D
α
x = f(x), (8)

where α =
[
α1, α2, · · · , αn

]T
for 0 < αi < 2, (i =

1, 2, · · · , n) and x ∈ IRn. The equilibrium points of system

(6) are calculated by solving the following equation

f(x) = 0, (9)

and we suppose that x∗ = (x∗

1, x
∗

2, · · · , x
∗

n) is an equilibrium

point of system (6).

D. Stability of fractional-order systems

It has been shown that linear fractional-order system (6)

is stable if the following condition is satisfied [19], [20] for

0<α61, and for 16α<2 [21] (also if the triplet A, B, C
is minimal)

|arg(eig(A))| > α
π

2
(10)

where eig(A) represents the eigenvalues of matrix A.

In the case of nonlinear fractional-order systems, the equilib-

rium points are asymptotically stable for α1 = α2 = · · · =
αn ≡ α if all the eigenvalues λi (i = 1, 2, · · · , n) of the

Jacobian matrix J = ∂f/∂x, where f =
[
f1, f2, · · · , fn

]T

evaluated at the equilibrium, satisfy the condition [22], [23]

|arg(eig(J))| = |arg(λi)| > α
π

2
, i = 1, 2 · · · , n. (11)

The problem of fractional non-commensurate order systems

can be solved in different ways according to the literature

(e.g. [19], [24], [25], [26]). When we consider the non-

commensurate fractional-order system α1 6= α2 6= · · · 6= αn

and suppose that m is the least common multiple (LCM) of

the denominators u′

is of α′

is, where αi = vi/ui, vi, ui ∈ ZZ+

for (i = 1, 2, · · · , n) and we set γ = 1/m, system (8) is

asymptotically stable if

|arg(λ)| > γ
π

2
, (12)

for all roots λ of the following equation

det(diag
([

λmα1 λmα2 · · ·λmαn

])
− J) = 0. (13)
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Fig. 2. Comparison of two numerical methods: Grünwald-Letnikov
method and Runge-Kutta (4,5) method.

A necessary stability condition for the fractional-order sys-

tems (8) to remain chaotic is keeping at least one eigenvalue

λ in the unstable region [22]. The number of saddle points

and eigenvalues for one-scroll, double-scroll and multi-scroll

attractors was exactly described in [23]. Suppose that the un-

stable eigenvalues of scroll saddle points are: λ = ρ±jβ. The

necessary condition to exhibit one scroll attractor of system

(8) is for the eigenvalues λ to remain in the unstable region

[23]. The condition for commensurate derivative orders is

α >
2

π
tan−1

(
|β|

ρ

)
. (14)

Otherwise, one of the equilibrium points becomes asymptot-

ically stable and attracts the nearby trajectories. According

to (13), this necessary condition is mathematically equivalent

to
π

2m
−min(|arg(λ)|) > 0. (15)

III. CLASSICAL MODEL OF SIMPLE PENDULUM

The simple pendulum consists of a massless string with

one end attached to a weight and the other end fixed. When

an initial push is given, the pendulum will swing back and

forth under the influence of gravity. A schematic of the

simple pendulum system is shown in Fig. 1. The analysis

of the simple pendulum is important in numerous areas of

maths and physics. It is an important example because its

equation of motion is nonlinear; perhaps it is one of the

most studied and analyzed nonlinear systems. The equation

of the free undamped simple pendulum motion is given by

the following known state space representation



θ̇(t) = ω(t)

ω̇(t) = −
g

l
sin θ(t)

(16)

where θ(t) is the angular position, ω(t) the angular velocity,

g the acceleration due to gravity and l is the length of the

pendulum.

Equation (16), although straightforward in appearance, is in

fact rather difficult to solve because of the nonlinearity of

the term sin θ(t).
The kinetic energy of the pendulum is given by

T =
1

2
mℓ2θ̇2, (17)

and choosing the zero potential energy point when θ = 0
(see Fig. 1), the gravitational potential energy is

U = mgℓ(1− cosθ). (18)

As a result, the entire Lagrangian function is

L =
1

2
mℓ2θ̇2 −mgℓ(1− cosθ), (19)

and the Euler-Langrange equation for θ is

∂L

∂θ
+

d

d t

(
∂L

∂θ̇

)
= 0, (20)

which is equivalent to

θ̈ +
g

ℓ
sin θ = 0. (21)

Let x =
[
x1 x2

]T
=
[
θ ω

]T
, then we can rewrite

system (16) into the following form



ẋ1(t) = x2(t)

ẋ2(t) = −
g

l
sinx1(t).

(22)

System (22) is equivalent to system (16). The equilibrium

points are given by

x2 = 0, sinx1 = 0

which leads to the equilibrium points E1 = (0[2π], 0) and

E2 = (π[2π], 0). Physically, these points correspond to

the pendulum resting exactly at the vertical up and down

positions. The Jacobian matrix of system (22) is

J =


 0 1

−
g

l
cosx∗

1 0


 (23)

for the equilibrium E∗ = (x∗

1, x
∗

2).

System (22) has two fixed points (equilibria) E1 = (0, 0) and

E2 = (π, 0) and their stability can be studied by computing

the corresponding eigenvalues. For the constant parameters

g = 9.81m/s2 and l = 0.8m, the equilibrium E1 has the

eigenvalues λ1,2 = ±3.5018j and E2 has the eigenvalues

λ1,2 = ±3.5018. Hence, the equilibrium point E1 is a center

point and the equilibrium E2 is a saddle point.

In the following section, we focus on theoretically and

numerically studying the stability analysis of the fractional-

order simple pendulum.

IV. FRACTIONAL-ORDER MODEL OF SIMPLE PENDULUM

The fractional-order form of the Lagrangian equation (19)

has the following form

LF =
1

2
mℓ2 [Dαθ]

2
−mgℓ(1− cosθ). (24)



Now, to obtain the Euler-Lagrange equation for the general-

ized coordinate θ we use

∂LF

∂θ
+Dα ∂LF

∂Dαθ
= 0, (25)

or equivalently as

Dα [Dαθ] +
g

ℓ
sin θ = 0. (26)

As α → 1, we obtain the classical Euler-Lagrange equation

(21).

Now consider the fractional-order simple pendulum system

described by the following fractional-order differential equa-

tions



Dα1x1(t) = x2(t),

Dα2x2(t) = −
g

l
sinx1(t),

0 < α < 1 (27)

where x1 reflects the temporal dynamics of the angular

position, x2 mimics the temporal dynamics of the angular

velocity, and α1 and α2 are the derivatives orders. The total

order of the system is α = (α1, α2).
Numerical solution of the fractional-order simple pendulum

system (27) is given as follows



x1(tk) = (x1(tk−1))h
α1−

k∑

j=1

c
(α1)
j x1(tk − j),

x2(tk) =
(
−
g

l
sin(x1(tk−1)

)
)hα2−

k∑

j=1

c
(α2)
j x2(tk − j),

(28)

for which Ts is the simulation time by setting N = [Ts/h],
k = 1, 2, · · · , N , and (x1(0), x2(0), x3(0)) are the initial

conditions. The binomial coefficients c
(αi)
j , ∀i are calculated

according to relation (3).

The phase plane analysis is a graphical method for studying

dynamic systems. The basic idea of this method is to

generate motion trajectories corresponding to various initial

conditions, and then to examine the qualitative features of the

trajectories. In such a way, information concerning stability

of the system can be obtained. In this section, we use the

tools of phase plane analysis to acquire insights on the effects

of fractional-order derivative with nonlinearities and compare

the motion trajectories of simple pendulum system between

fractional-order derivative and their integer-order counterpart

with different initial conditions and various fractional-order

derivatives.

For illustration, we can compare the proposed numerical

method, called the Grünwald-Letnikov method, with the

explicit Runge-Kutta method known as ode45 routine in

Matlab. As can be seen in Fig. 2, the proposed numerical

algorithm has approximately the same order of accuracy as

the Runge-Kutta algorithm for time step 0.0005 with constant

parameters g = 9.81m/s2, l = 0.8m and derivative orders

α1 = α2 = 1.

A. Commensurate order

Let us consider the commensurate order system (27) with

α1 = α2 = α̃ = 0.92 and the following system parameters

g = 9.81m/s2 and l = 0.8m. We should investigate the

stability of equilibrium point E1.

The stability of the equilibrium point E1 is of importance. If

it were stable, non zero states might be attracted towards

it. The second fixed point E2 is not hyperbolic, so no

conclusions can be drawn from the linear analysis. For the

constant parameters g = 9.81m/s2 and l = 0.8m, the

equilibrium points are the same as in the case of integer-

order system. The stability can be investigated according to

condition (11).

Case α1 = α2 = α̃ = 0.92: According to the stability

condition (11), where α̃ = 0.92, we have eigenvalue

α
π

2
< |arg(λ1,2)| = 1.5708,

for the equilibrium E1.

The characteristic equation of the linearized system (27)

evaluated at the equilibrium point E1 is

λ184 +
981

80
= 0, with (29)

π

2m
< min

i
(|arg(λi)|) = 0.0171, (30)

where m = 100 (LCM of orders denominator), then we

can confirm the asymptotical stability of system (27). The

numerical simulations support this result.

Case α1 = α2 = α = 0.98: The characteristic equation of

the linearized system (27) evaluated at the equilibrium point

E1 where α = 0.98 is

λ196 +
981

80
= 0, with

π

2m
< min

i
(|arg(λi)|) = 0.0160,

where m = 100 (LCM of orders denominator), then we

can confirm the asymptotical stability of system (27). The

numerical simulations support this result.

In Figs. 3, 4 and 5 are shown the phase plane diagram for sys-

tem (27) with initial conditions (x1(0), x2(0)) = (π/4, 0),
(x1(0), x2(0)) = (π/2, 0) and (x1(0), x2(0)) = (π/12, 6)
respectively. This shows that when α1 = α2 = α = 1
the system oscillates, and when α1 = α2 = α = 0.98 and

α1 = α2 = α̃ = 0.92 the system converges asymptotically

to the equilibrium point.

Case α1 = α2 = α = 0.9: The characteristic equation of

the linearized system (27) evaluated at the equilibrium point

E1 where α = 0.9 is

λ18 +
981

80
= 0, with

π

2m
< min

i
(|arg(λi)|) = 0.1745,

where m = 10 (LCM of orders denominator), then we

can confirm the asymptotical stability of system (27). The

numerical simulations support this result.

Case α1 = α2 = α̃ = 0.8: The characteristic equation of

the linearized system (27) evaluated at the equilibrium point

E1 where α̃ = 0.8 is

λ16 +
981

80
= 0, with

π

2m
< min

i
(|arg(λi)|) = 0.1964,

where m = 10 (LCM of orders denominator), then we

can confirm the asymptotical stability of system (27). The



numerical simulations support this result.

In Figs. 6, 7, 8 and 9 are shown the phase plane diagrams

for system (27) with initial conditions (x1(0), x2(0)) =
(π/4, 0), (x1(0), x2(0)) = (π/2, 0), (x1(0), x2(0)) =
(π/12, 6) and (x1(0), x2(0)) = (π/6, 1) respectively. This

shows that when α1 = α2 = α = 1 the system oscillates,

and when α1 = α2 = α = 0.9 and α1 = α2 = α̃ = 0.8 the

system converges asymptotically to the equilibrium point.

B. Non-commensurate order

When we assume the different orders of derivatives in the

fractional-order pendulum system (27), i.e. α1 6= α2, we

get a general non-commensurate order system. We should

investigate the stability of equilibrium point E1.

The stability of the equilibrium point E1 is of importance. If

it were stable, non zero states might be attracted towards

it. The second fixed point E2 is not hyperbolic, so no

conclusions can be drawn from the linear analysis. For the

constant parameters g = 9.81m/s2 and l = 0.8m, the

equilibrium points are the same as in the case of integer-

order system. The stability can be investigated according to

condition (13).

The characteristic equation of the linearized system (27)

evaluated at the equilibrium point E1 where α1 = 0.95 and

α2 = 0.85 is

λ180 +
981

80
= 0, with

π

2m
< min

i
(|arg(λi)|) = 0.0175,

where m = 100 (LCM of orders denominator), then we

can confirm the asymptotical stability of system (27). The

numerical simulations support this result.

In Figs. 10 and 11 are shown the phase plane diagrams for

system (27) with initial conditions (x1(0), x2(0)) = (π/4, 0)
and (x1(0), x2(0)) = (π/2, 0) respectively. This shows that

when α1 = α2 = α = 1 the system oscillates, and

when α1 = 0.95 and α2 = 0.85 the system converges

asymptotically to the equilibrium point.

V. DISCUSSIONS

The simulation results for the phase plane fractional-order

simple pendulum with constant parameters g = 9.81m/s2,

l = 0.8m and the commensurate and non-commensurate

fractional-order derivatives are shown in Figs. 3 − 11 with

various initial conditions. Under the assumption of null air

resistance or the absence of other forces and starting with

some arbitrary initial conditions, the pendulum oscillates

and progressively stops at the vertical with the fractional-

order derivative, and continues to swing indefinitely with the

integer-order derivative case.

The points (0[2π], 0) are stable equilibrium points. These

points become attractors for long times in the fractional-order

derivative case and the phase paths will spiral towards them.

Figs. 3 − 11 show that the fractional-order simple pendulum

system converges asymptotically to the equilibrium point.

This comes from the fact that the total mechanical energy

of the fractional-order pendulum system is progressively

dissipated, so that the pendulum comes to rest at a position

of minimal energy, until eventually the system settle down

to the equilibrium point. The local asymptotical stability

implies the convergence of mechanical energy to zero. We

have seen that the presence of a fractional differential-order

in a differential equation can lead to a notable increase

in the complexity of the observed behavior, and the solu-

tion continuously depends on all the previous states. We

observed that the fractional-order model without damping

term describes vanishing responses to zero when time tends

to infinity while the friction-free integer model generates

oscillating responses. This analysis might also bring an

insight to neglect the friction terms in non-integer models.

For accuracy tests, the energy is numerically determined and

compared with the accumulated energy dissipation. The en-

ergy of a mechanical system with fractional-order derivatives

like in the case of a viscoelastic medium [27] is not uniquely

defined by the equations of motion. The energy decreases

with respect to its original value in the fractional-order case.

In contrast with the classical integer-order dissipation model,

the energy does not decay monotonically. It is however possi-

ble to redefine the energy by adding a history-dependent part

in such a way that the new energy decreases monotonically

or is conserved.

In view of the numerical simulation applied we can seen

that the energy of the simple pendulum with the integer-

order derivative case does not decay monotonically due

to the implicit inertial and elastic effects. In the case of

fractional-order derivative, it is however possible to construct

a monotonically decaying energy. Such an energy is a history

functional, or, equivalently, it depends on internal states

variables which cannot be determined by the numerical

algorithm adopted in this paper.

By choosing a simple pendulum system with two degrees of

freedom for numerical analysis we are able to demonstrate

the interaction of fractional-order derivative with nonlinear

interactions. This paper also serves as a demonstration of

a method for integrating systems of ordinary differential

equations and fractional-order derivatives. This method uses

a recently developed Grünwald-Letnikov method [15] based

on the Adams-Bashforth-Moulton type predictor-corrector

scheme [17].

VI. CONCLUSION

In this paper, a fractional-order simple pendulum has been

presented. It has been shown that the presence of a fractional

differential-order in a differential equation can lead to a

notable increase in the complexity of the observed behavior,

and the solution continuously depends on all the previous

states. We observed that the fractional-order model without

damping term describes vanishing responses to zero when

time tends to infinity while the friction-free integer-order

model generates oscillating responses. This analysis might

bring an insight to neglect the friction terms in non-integer

models. The numerical simulations show that the angular

position and velocity converge to their equilibrium points.

However, experiments should be conducted to obtain more
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Fig. 5. Phase plane diagram for system (27) with initial conditions (x1(0), x2(0)) = (π/12, 6). This shows that when α1 = α2 = α = 1 the system
oscillates, and when α1 = α2 = α = 0.98 and α1 = α2 = α̃ = 0.92 the system converge asymptotically to the equilibrium point.
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Fig. 6. Phase plane diagram for system (27) with initial conditions
(x1(0), x2(0)) = (π/4, 0). This shows that when α1 = α2 = α = 1
the system oscillates, and when α1 = α2 = α̃ = 0.8 and α1 = α2 =
α = α = 0.9 the system converges asymptotically to the equilibrium
point.
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Fig. 7. Phase plane diagram for system (27) with initial conditions
(x1(0), x2(0)) = (π/2, 0). This shows that when α1 = α2 = α = 1
the system oscillates, and when α1 = α2 = α̃ = 0.8 and α1 = α2 =
α = α = 0.9 the system converges asymptotically to the equilibrium
point.

realistic results about whether fractional-order models are

more accurate than integer-order models. This analysis may

be useful for better understanding and control of such system.
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