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Stability and transient dynamics of thin liquid films flowing over locally heated surfaces
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The dynamics and linear stability of a liquid film flowing over a locally heated surface are studied using a

long-wave lubrication analysis. The temperature gradient at the leading edge of the heater induces a gradient in

surface tension that opposes the gravitationally driven flow and leads to the formation of a pronounced

capillary ridge. The resulting free-surface shapes are computed, and their stability to spanwise perturbations is

analyzed for a range of Marangoni numbers, substrate inclination angles, and temperature profiles. Instability

is predicted above a critical Marangoni number for a finite band of wave numbers separated from zero, which

is consistent with published results from experiment and direct numerical simulation. An energy analysis is

used to gain insight into the effect of inclination angle on the instability. Because the spatial nonuniformity of

the base state gives rise to nonnormal linearized operators that govern the evolution of perturbations, a

nonmodal, transient analysis is used to determine the maximum amplification of small perturbations to the film.

The structure of optimal perturbations of different wave numbers is computed to elucidate the regions of the

film that are most sensitive to perturbations, which provides insight into ways to stabilize the flow. The results

of this analysis are contrasted to those for noninertial coating flows over substrates with topographical features,

which exhibit similar capillary ridges but are strongly stable to perturbations.

DOI: 10.1103/PhysRevE.76.056306 PACS number�s�: 47.15.gm, 47.20.Dr, 47.55.dm, 47.55.nb

I. INTRODUCTION

Many industrial and technological applications involve

thin liquid films on heated surfaces �1,2�, including coating

and microfabrication processes �3,4�, microelectromechani-

cal systems �MEMS� �5�, and microfluidic devices in which

applied temperature gradients are used to control liquid mo-

tion �6,7�. Because surface tension is a function of tempera-

ture �8�, the presence of a temperature gradient at the free

surface results in a surface tension gradient, or Marangoni

stress. Such stresses can cause thermocapillary flows and in-

terfacial instabilities �9,10�, which have been studied exten-

sively for uniformly heated surfaces �11�. Much theoretical

work has also been focused on the effect of surface tension

gradients on the evolution of free-surface flows of thin liquid

films �2,12,13�, such as the long-wave instability for a liquid

film flowing down a uniformly heated plane �14�, rivulet

formation �15�, and related work that extends these analyses

�16–19�.
Thin films flowing over locally heated surfaces have also

been studied recently. Kabov �20,21� performed experimen-

tal and theoretical investigations of the regular, spanwise

rivulets that form due to hydrodynamic instabilities in films

falling down an inclined plane containing a rectangular

heater. It was shown that if the temperature increase at the

heater is sufficiently small, a stable, two-dimensional flow

with a capillary ridge, or “bump,” at the leading edge of the

heater is observed. As the heating increases the capillary

ridge increases in size, and instability develops in the form of

an array of longitudinal rivulets with a well-defined wave-

length. The instability can ultimately lead to film rupture and

dryout, which may restrict the use of liquid films on such

heated surfaces.

In a subsequent study, Frank and Kabov �22� measured
the temperature distribution at the free surface and studied

the effect of the Reynolds, Prandtl, Weber, and Biot numbers

on the critical Marangoni number �Mcrit� at instability onset.

They also used direct numerical simulation to solve the

coupled three-dimensional energy and Navier-Stokes equa-

tions. Above Mcrit the flow was found to be unstable for a

band of wave numbers separated from zero. This work dem-

onstrated that the rivulet instability occurs even for a Biot

number of zero and is thus distinct from the thermocapillary

instability of a film flowing over a uniformly heated plate

�15�. Similarities were found with the fingering instability in

a gravitationally driven fluid sheet spreading down an in-

clined plane �23�, which warrants further investigation.

There are two published theoretical studies of this insta-

bility �24,25�, but there are discrepancies of uncertain origin

in the results �22�. Skotheim et al. �24� performed a lubrica-

tion analysis of a film flowing over a surface with periodic

temperature increases �used to represent an infinite array of

heaters�. Convection terms were neglected in the momentum

and energy equations. They predicted a long-wave instability,

i.e., instability for wave numbers in an interval �0,q1�. The

flow was always unstable, but a critical Marangoni number

was found for the onset of instability by extrapolating the

heater periodicity to infinity. The predicted wavelength of the

instability was within 20% of experiment, but the critical

Marangoni number was about five times too large.

Kalliadasis et al. �25� studied the stability of a film flow-

ing over a surface with a Gaussian temperature profile using

an integral-boundary-layer approximation of the Navier-

Stokes and energy equations for long waves, which retained

the convective terms in the energy equation. A linear stability

analysis revealed the existence of both a discrete and a con-

tinuous spectrum. The continuous spectrum was always

stable, but the discrete spectrum was unstable beyond a criti-

cal Marangoni number for a band of wave numbers in the*jmdavis@ecs.umass.edu

PHYSICAL REVIEW E 76, 056306 �2007�

1539-3755/2007/76�5�/056306�14� ©2007 The American Physical Society056306-1

http://dx.doi.org/10.1103/PhysRevE.76.056306


interval �q1 ,q2�, with q1�0. The reason for these differences

in the qualitative nature of the instability �24,25� may be due

to the temperature profile, boundary conditions, or neglect of

the convective terms and requires further investigation.

In this work, a lubrication-based model is developed for a

liquid film flowing over a locally heated surface. The capil-

lary ridge that forms in response to the gradient in surface

tension at the upstream edge of the heater is reminiscent of

ridges that form in response to topographical variations of

the isothermal substrate in noninertial coating flows �26,27�.
In addition to exploring the differences between the predic-

tions of Skotheim et al. �24� and Kalliadasis et al. �25�, it is

therefore of interest to study the stability characteristics,

structure, and transient response of perturbations and com-

pare with results for topographical features. Furthermore, the

influence of substrate inclination angle, which can add a hy-

drostatic component to the pressure in the film, is assessed

through stability and energy analyses and compared to ex-

perimental results. Like noninertial flow over topographical

features, a stable, continuous spectrum is found that corre-

sponds to decaying capillary waves whose shape is modified

by the fluid ridge that forms due to the Marangoni flow in-

duced by the heater. Similarly, stable, discrete modes are also

found for perturbations of large wave numbers. For suffi-

ciently large Marangoni numbers, however, an unstable band

of discrete modes is found for a finite band of wave numbers

separated from zero, which corresponds to the rivulet forma-

tion observed experimentally. The use of appropriate dimen-

sionless variables recovers the experimental dependence of

the instability wavelength on the surface tension and reveals

the similarities with fingering instabilities in a spreading

fluid sheet �23,28�.
In Sec. II, a mathematical model is derived by reducing

the Navier-Stokes and energy equations using a long-wave

lubrication approximation. In Sec. III A, base profiles are

shown for various temperature profiles at the solid substrate.

The streamlines of the flow are presented in Sec. III B and

compared to those in other flows of thin films that exhibit

capillary ridges. Results from a linear stability analysis are

presented in Sec. IV A, including the influence of the tem-

perature profile and substrate inclination angle. Because the

spatial nonuniformity of the base state gives rise to nonnor-

mal linearized operators, a nonmodal, transient analysis is

used to determine the maximum amplification of small per-

turbations to the film. Results for the amplification ratio and

structure of optimal perturbations of different wave numbers

are presented in Secs. IV B and IV C. In Sec. IV D, an en-

ergy analysis is performed to explore the effect of the incli-

nation angle of the substrate on the linear stability of the base

profiles. A comparison of the results to experiment and re-

lated instabilities is presented in Sec. V. Conclusions are pre-

sented in Sec. VI.

II. MATHEMATICAL MODEL

Consider a liquid film flowing down a plane that is in-

clined at an angle � to the horizontal, as shown in Fig. 1. A

heater is embedded in the substrate and produces the tem-

perature field T̂0�x� at the plate surface, and the thickness of

the film far away from the heater is uniform at ĥ�. The co-

ordinate system is constructed with x̂ in the direction of flow

and ẑ normal to the substrate. The velocity �û�, pressure �p̂�,

and temperature �T̂� fields are governed by the Navier-Stokes

equation

û · �̂û =
− 1

�
�̂p̂ + ��̂2û + g , �1�

the continuity equation for an incompressible fluid,

�̂ · û = 0, �2�

and the energy equation,

T̂t + û · �̂T̂ = �th�̂
2T̂ , �3�

where � is the kinematic viscosity, � is the fluid density, and

�th is the thermal diffusivity. Dimensional variables are de-

noted with a hat symbol �·̂�.
At the plate surface, the no-slip and no-penetration

boundary conditions are enforced,

û�ẑ = 0� = 0 . �4�

The normal and tangential stress balances at the free surface

�ẑ= ĥ�x̂ , ŷ , t̂�� are

n · �̂ · n = ���̂s · n� , �5�

t · �̂ · n = − t · �̂s��� , �6�

where �̂����̂û+ ��̂û�t� is the viscous stress tensor for a

Newtonian fluid of viscosity � and � is the liquid-gas surface

tension. The heater is assumed to be a good conductor of

heat,

T̂�x̂, ŷ, ẑ = 0� = T̂0�x̂� . �7�

Balancing conduction through the film with convective heat

transfer to the surrounding gas at ẑ= ĥ yields

− kthn · �̂T̂i = H�T̂i − T̂�� , �8�

where kth is the thermal conductivity of the liquid and H

is the film heat transfer coefficient at the liquid-air interface.

The temperature field at the liquid-air interface is

(x)

FIG. 1. Schematic diagram of a thin liquid film flowing over a

heater. The Marangoni stress at the edge of the heater opposes the

gravitational flow, which leads to the formation of a capillary ridge.
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T̂i� T̂�ẑ= ĥ�, and T̂� is the temperature of the air and liquid

far away from the heater.

Equations �1�–�8� are reduced to a tractable model by in-

troducing appropriate dimensionless variables. In the ẑ direc-

tion, the constant film thickness away from the heater ĥ� is

the appropriate length scale. In the streamwise and spanwise

directions, the dynamic capillary length, lc= ĥ��3Ca�−1/3, is

used as the length scale, where Ca=�Uc /�0 is the capillary

number. This choice of a flow-dependent length scale based

on the balance of viscous and capillary forces �vs a charac-

teristic length of the temperature gradient� has the advantage

of placing a parameter in the boundary conditions �tempera-

ture profile� rather than in the governing partial differential

equation, which is analogous to the case of a thin liquid film

flowing over an isothermal substrate bearing topographical

features �29�. Here, �0���T̂= T̂�� is the surface tension at

the reference temperature T̂�. The pertinent velocity scale in

the streamwise direction is U=�gĥ�
2 sin � / �3��, which is ob-

tained by balancing viscous effects and gravity. This velocity

scale should be used in Ca to determine the length scale lc

used in the small lubrication parameter ĥ� / lc. In what fol-

lows, however, the velocity scale is chosen to be Uc

=�gĥ�
2 / �3��. While strictly appropriate only for a vertical

substrate, this choice of velocity scale makes the length lc

independent of inclination angle and therefore ensures that

the same temperature profile exists at the solid surface as �
varies, which allows the effect of inclination angle on the

film profile and stability to be isolated. The dimensionless

coordinates are thus x= x̂ / lc, y= ŷ / lc, and z= ẑ / ĥ�. This

analysis would also apply to the spin coating of liquid films

over differentially heated surfaces, with the body force term

and velocity scale changed accordingly �27�.
Introducing these scalings, Eq. �1� reduces at leading or-

der to

uzz = Px − 3, �9�

vzz = Py , �10�

and

Pz = − 3G cos � , �11�

where �u ,v ,w� are the dimensionless components of velocity

in the �x ,y ,z� directions, respectively. The dimensionless

group that characterizes the influence of hydrostatic pressure

is G cos �= �3�Uc /�0�1/3 cos �. Note that with the choice of

Uc as the characteristic velocity scale used to write the di-

mensionless equations �as opposed to U in the application of

the lubrication approximation to simplify the equations�, G

can be O�1� for very small � even if Ca0
1/3���U /�0�1/3 is

small. This simplification of the Navier-Stokes equation re-

quires ReCa0
1/3	1, where Re=Uĥ� /�, and Ca0

2/3	1.

At leading order, the boundary conditions in Eqs. �4�–�6�
simplify to

u�z = 0� = 0 , �12�

P�z = h� = − �
2h , �13�

and

�u/�z�z = h� = − 2M � Ti, �14�

where M=31/3�T�T / �2�0Ca0
2/3� is the Marangoni parameter

and Ti is the dimensionless temperature field at the interface

that is found from the energy equations. Again Ca0
2/3	1 is

assumed in these equations. Beginning with Eq. �13�, � and

u represent the x and y components of the dimensionless

gradient operator and velocity field, respectively, for the re-

mainder of this paper. In Eq. �14� a linear variation of surface

tension with temperature is assumed, ��T̂�=�0−�T�T̂− T̂��

where �T�0 and �T=−d� /dT̂.

For the energy balance, T̂ is nondimensionalized as T

= �T̂− T̂�� / � T̂, where �T̂ is the temperature increase at the

heater. Equation �3� reduces to

Tzz = 0, �15�

with the assumption that PeCa0
1/3	1, where Pe=Uĥ� /�th is

the Peclet number. Energy transport by convection in the

liquid is therefore neglected. Equation �7� becomes

T�x,y,z = 0� = T0�x� , �16�

and Eq. �17� reduces to

Tz
i + BiTi = 0, �17�

where Bi= ĥ�H /kth is the Biot number.

Integrating Eq. �15� and applying Eqs. �16� and �17�
yields an expression for the temperature of the liquid-gas

interface,

Ti�x� =
T0�x�

�1 + Bih�
. �18�

Recently reported three-dimensional numerical simulations

of this flow configuration have shown that the capillary ridge

is unstable to rivulet formation for Marangoni numbers

greater than a critical value, and the ridge is unstable even

for Bi=0 �22�. The wave number of the preferred mode was

found to be only slightly affected by variations of the Biot

number for Bi
0.1. This present study is therefore restricted

to the limit Bi→0, for which Eq. �18� simplifies to Ti�x�
=T0�x�. Attention is focused on the transient dynamics of

perturbations and the influence of substrate inclination angle

on the rivulet instability, in addition to probing the similari-

ties between the rivulet instability in flow over a heater and

the fingering instability that develops at the advancing front

of spreading films.

Integrating Eqs. �9�–�11� and using Eqs. �12�–�14�, the

velocity field is

u = 3�sin �ex + ���2h − G cos �h���h2 − �z − h�2�/2

− 2M � Tiz . �19�

Using the kinematic condition
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�h

�t
+ � · �

0

h

udz = 0 �20�

and Eq. �19�, an equation governing the evolution of the

interface shape is obtained,

�h

�t
+ � · ��sin �ex + ��

2h − G cos � � h�h3 − M � Tih2� = 0.

�21�

Substituting h�x ,y , t�=h0�x , t� into Eq. �21� yields an equa-

tion that can be used to calculate the two-dimensional film

profile for the base state,

�h0

�t
+

�

�x
��sin � + h0xxx − G cos �h0x�h0

3 − MTx
i h0

2� = 0.

�22�

Although the base state is steady, h0�x , t�=h0�x�, the time

dependence is retained in Eq. �22� to facilitate the numerical

computation of the steady film profile. Because there are no

temperature gradients far away from x=0, the film becomes

flat, and

h0�x → ± �� = 1. �23�

These boundary conditions are implemented numerically as

h0�x= ±L�=1 and h0x�x= ±L�=0, where 2L is the domain

length, which is increased until there is no effect of L on the

results.

Equation �22� was solved via the finite element method

using FEMLAB 3.1 for different values of M with a prescribed

temperature field T0�x� at the solid surface. A unit height

profile was chosen as the initial condition for Eq. �22�, and

the equation was evolved in time until a steady profile was

obtained. The accuracy of the method was assessed by ex-

amining the invariance of �−�
� �MTx

i /h0+ �1−h0
3�sin � /h0

3�dx

=0. This property is guaranteed from Eq. �22� using Eq. �23�,
and the value of this integral was always less than 10−9.

Other tests of accuracy included convergence after mesh re-

finement and variation of the integration interval. Typically,

about 1000 points were used for the computations, with local

refinement of the mesh around the regions with steep gradi-

ents in the temperature or free-surface shape.

The linearized equation that governs a small perturbation

to the film, h1�x ,y , t�, is obtained by expressing the film

thickness h�x ,y , t�=h0�x , t�+�h1�x , t�exp�iqy�, where �	1.

Substituting into Eq. �21� and collecting O��� terms yields

the linearized equation

�h1

�t
= �

i=0

i=4

Lih1
i , �24�

where

L0 = − �− 3h0x sin �/h0
2 + M�T0xh0�x + q2

G cos �h0
3 + q4h0

3� ,

L1 = − �3 sin �/h0 − 3h0
2h0x�q

2 + G cos �� + MT0xh0� ,

L2 = �2q2 + G cos ��h0
3,

L3 = − 3h0
2h0x,

L4 = − h0
3. �25�

The boundary conditions for Eq. �24� are that h1 is bounded

as x→ ±�. For the leading eigenvalue, the corresponding

eigenfunction is flat far from x=0 �h1x→0 as x→ ±��. This

system of equations when discretized in space using a fourth

order, centered finite difference scheme can be written in

vector form as

�h1

�t
= Ah1, �26�

where A is an autonomous matrix. Assuming exponential

time dependence for h1, h1=� exp��t�, yields the eigen-

value problem ��=A�. The eigenvalues ��q� of the matrix

A were found using the MATLAB 6.5 function eig for different

values of the wave number q.

III. UNPERTURBED FLOW

Base profiles are presented in Sec. III A, while the stream-

lines are discussed in Sec. III B. The plate is assumed verti-

cal ��=90° � unless otherwise stated.

A. Base states

Two qualitatively different models for temperature pro-

files at the solid substrate are used in this work. A semi-

infinite heater, which is similar to that used by Skotheim et

al. �24� and Frank et al. �22�, is modeled as

T0�x� = 0.5�1 + tanh�x�� . �27�

Shown in Fig. 2�a� are base profiles for different M obtained

by solving Eq. �22� with Eq. �27�. The streamwise flow due

to gravity is opposed by the thermocapillary stress 
=d� /dT at the upstream edge of the heater, which decreases

the streamwise velocity near the free surface. The film con-

sequently thickens locally to maintain a constant flow rate

�Q=�z=0
z=hudz�. When smoothed by capillary forces, this local

thickening is manifested in a pronounced capillary ridge near

the upstream edge of the heater. This ridge increases in am-

plitude as M increases and is susceptible to the formation of

periodic rivulets aligned with the flow beyond a critical value

of the Marangoni parameter, Mcrit.

A finite-length heater is more relevant for many applica-

tions. The corresponding temperature profile is

T0 = 0.5�tanh�x + 4� − tanh�0.5x − 4�� . �28�

Base profiles for a film flowing over a finite heater are shown

in Fig. 2�b�. Because dT0 /dx�0 at the upstream edge of the

heater, d� /dx�0, and a capillary ridge appears as for the

semi-infinite heater. At the downstream edge of the heater,

d� /dx�0, and there is a depression in the free surface. The

magnitude of the depression has a weaker dependence on M

than that of the ridge and was found to have a minimal in-

fluence on the stability results.
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B. Streamlines

For flow over topographical features of finite width, it was

shown by Davis and Troian �27� that the flow is strongly

stable to perturbations and that the streamlines showed no

circulation under the ridge. The result was contrasted to the

contact line motion of gravity driven films with an unstable

capillary ridge, beneath which the streamlines are closed.

When the capillary ridge was stabilized by hydrostatic pres-

sure, the circulation disappeared and open streamlines were

obtained.

For the present case of flow over a locally heated surface,

streamlines can be determined from the velocity profile

given by Eq. �19�. The stream function ��x ,z�, defined

through u=�� /�z, is

��x,z� =
3

2h0
3	h0z2 −

z3

3

 +

MT0x

2h0

�h0z2 − z3� , �29�

where there is implicit dependence on G through h0�x�. Us-

ing this equation and solving for the streamlines, it was

found that for M�2.97 �with G=0�, there are no closed

streamlines and therefore no fluid circulation, as shown in

Fig. 3�a�. From the linear stability analysis, it was found that

these base states are indeed strongly stable to perturbations,

as reported in the next section. This observation is consistent

with that discussed by Davis and Troian �27�. For larger

Marangoni numbers, closed streamlines were found, which

indicates fluid circulation under the ridge, but the ridge is

still stable to perturbations. For the Marangoni number at

which circulation begins, the velocity vector at the free sur-

face changes sign at some value of x. Hence for circulation,

u�z=h0�x��
0 near the leading edge of the heater, which

implies that M�3 sin � / �T0xh0
2�, which gives a criterion for

M at the onset of fluid circulation and thus closed stream-

lines. For larger M at which the ridge is unstable, significant

circulation appears beneath the ridge, as shown in Fig. 3�b�,
but the presence of closed streamlines is not directly linked

to instability for continuous films flowing over differentially

heated surfaces.

IV. STABILITY

The stability of the base states is explored using a modal

linear stability analysis. A nonmodal, transient analysis is

also used to determine the maximum amplification of pertur-

bations and the most sensitive regions of the film.

A. Modal analysis

In the work of Kalliadasis et al. �25�, both the discrete and

continuous spectra of the linear operator L were computed,

(a)

(b)

FIG. 2. Base profiles for different values of the Marangoni pa-

rameter M. �a� Semi-infinite heater. �b� Finite heater. The tempera-

ture profile at the solid substrate, T0�x�, is superimposed to show the

location of the capillary ridge relative to the heater.

(a)

(b)

FIG. 3. �a� Base state and open streamlines for M=2 and G

=0. �b� Base state and closed streamlines for M=25 and G=0,

which illustrates the circulating flow beneath the capillary ridge.
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though the corresponding eigenfunctions for the two spectra

were not shown. The continuous spectrum corresponds to

�stable� capillary waves that approach bounded oscillations

as x→ ±�. The shape, but not decay rate, of these modes is

modified by the presence of the fluid ridge. The discrete

spectrum corresponds to modes that localize at the capillary

ridge and decay as x→ ±�. These modes are responsible for

the observed rivulet instability. While Kalliadasis et al. �25�
used an integral momentum approach and retained convec-

tion in the energy equation, it is shown from the results pre-

sented here that the spectra �and the behavior of the eigen-

functions� are similar even for noninertial flows with energy

convection neglected and a different temperature profile pro-

vided that the same boundary conditions are used for the

perturbations.

For a flat film of unit thickness, the spectrum of eigen-

functions that approach bounded oscillations at the infinities

consists of Fourier modes, h1�exp��t+ i�x+ iqy�. In the

present case, T0x→0 and h0→1 as x→ ±�. Away from the

temperature gradient, the continuous modes will therefore

have a similar structure to those for a flat film. The locus of

the essential spectrum can be found by substituting

h1�x ,y , t�=exp��t+ i�x+ iqy� into Eq. �24� as x→ ±�, which

yields

� = − �q2 + �2�2 − �q2 + �2�G − 3i� . �30�

The mode with the smallest decay rate corresponds to �=0,

and the leading eigenvalue from the continuous spectrum is

therefore given by �=−q4−q2G. The corresponding eigen-

function approaches constant values away from the heater,

h1→c± as x→ ±�, and this mode is easily found with the

boundary conditions h1x, h1xxx→0 as x→ ±�.

The dispersion curves, ��q�, found from Eq. �26� are

shown in Fig. 4 for different values of the Marangoni num-

ber M for the semi-infinite heater for the computational do-

main x� �−L ,L�. In the study of Skotheim et al. �24�, peri-

odic boundary conditions were used for the linear stability

analysis, corresponding to an infinite array of temperature

increases. The effect of domain length on the dispersion

curves obtained by using periodic boundary conditions is

plotted in Fig. 4�a� for M=25. As the domain length in-

creases, most of the dispersion curve slowly converges to the

curve obtained by using the more appropriate boundary con-

ditions that h1 is bounded for x→ ±�, but the analysis with

periodic boundary conditions predicts instability for small

q ���q��0 for 0
q
q��. For h1 bounded as x→ ±�, insta-

bility is predicted for a finite band of q separated from zero,

��q��0 for 0�qc1�q�qc2, which is consistent with nu-

merical simulations of the full Navier-Stokes and energy

equations in three dimensions with applied perturbations of

various q �22� and with the results of Kalliadasis et al. �25�.
The effect of domain length on the dispersion curves for h1

bounded as x→ ±� was negligible after L=40.

Shown in Fig. 4�b� is the dispersion curve corresponding

to the largest eigenvalue for each q for M=25 and G=0 for

a finite-width heater. The leading eivenvalue from the con-

tinuous spectrum that was computed numerically was found

to agree with the predicted relation �=−q4, which provides

an additional check on the numerical methods. Like nonin-
ertial flows over topography �26,27�, discrete modes are

found above a large, threshold value of q �q̃crit=1.7 for a

semi-infinite heater and q̃crit=1.5 for a finite heater�, and

these modes are highly stable to perturbations due to damp-

ing by surface tension. Unlike flow over topography, how-

ever, the capillary ridge induced by the heater is unstable for

M�Mcrit, with Mcrit�19.9 for G=0 for both semi-infinite

and finite heaters. An additional band of �unstable� discrete

modes appears for q :0�qc1�q�qc2, where qc1 and qc2 are

the critical wave numbers that depend on M and G. From

Fig. 4�a�, it can be seen that beyond M=19.9, a small in-

crease in Marangoni number has a significant effect on the

dispersion curve. For M=25 and G=0, qc1=0.236, and qc2

=0.504, as seen in Fig. 4�b�. The same qualitative behavior is

observed for other choices of parameters that correspond to

unstable films, but this band of discrete modes does not exist

if the film is stable.

Shown in Fig. 5 are the shapes of selected leading eigen-

functions �0 from the linear stability analysis. For G=0 and

M=25, as shown in Fig. 5�a�, q=0.4 corresponds to an un-

stable wave number. The eigenfunction exhibits a pro-

nounced peak at the leading edge of the heater for q=0.4 and

decreases to zero away from the heater. For the leading con-

(a)

(b)

FIG. 4. �a� Dispersion curves for G=0 with varying M. Results

using periodic boundary conditions are included for comparison for

a domain x� �−L ,L�. �b� Dispersion curves for M=25 and G=0

corresponding to the discrete and continuous modes. Additional

�strongly stable� discrete modes are also found for q�1.7 for a

semi-infinite heater and q�1.5 for a finite heater.
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tinuous eigenfunctions corresponding to stable wave num-
bers, no significant peak is observed, and the eigenfunctions
attain constant values away from the heater. This behavior is
analogous to flow over topographical features �26,27�, which

is also formulated in an infinite domain. In the present case

the Marangoni stress is responsible for the capillary ridge,

whereas for flow over topography the capillary pressure from

the edges of the feature leads to the formation of a capillary

ridge. Similar to flow over topography �27�, open streamlines

were observed for the stable flows. The presence of closed

streamlines did not guarantee instability, however.

The structure of the discrete and continuous modes near

q=qc1 is shown in Fig. 5�b�. For q=qc1=0.236, the discrete

and leading continuous mode have the same shape for most

of the domain, and c−=0. The discrete mode decays very

slowly to zero as x→�, while the continuous mode attains

the constant value c+�0. For q=0.233�qc1, c−�0, but the

continuous mode is indistinguishable from the result for q

=0.236 near the heater and as x→� �not shown in plot�. A

discrete mode was not found for q=0.233, as the correspond-

ing structure exponentially blows up as x→�, as shown by

the q=0.233r curve in Fig. 5�b�, which was determined using

exponentially weighted eigenfunctions to filter away this un-

bounded growth �25�. For q=0.25�qc1, c−�0, but the con-

tinuous mode has nearly the same shape as for q=0.236 near

the heater and as x→�. The decay of the discrete mode for

q=0.25 as x→� is apparent. Similar behavior occurs for q

�qc2, as c− changes sign between qc1 and qc2. The discrete

mode decays much more rapidly when q is away from qc1 or

qc2, which is consistent with the observation of Kalliadasis

and Homsy �26� for flow over topography �at large q for

which the discrete modes exist�. As for flow over topogra-

phy, discrete modes also exist beyond a critical wave number

q̃c�1, but those modes are highly stable to perturbations.

For the semi-infinite heater the critical wave number is q̃c

=1.7, and for the finite heater q̃c=1.5. The continuous modes

are always stable because the instability does not affect the

film far from the heater, whereas some of the discrete modes

lead to instability, as was also observed by Kalliadasis et al.

�25�. Because the results for finite and semi-infinite heaters

are similar, results are presented only for finite heaters in

what follows.

1. Effect of temperature profile

Shown in Fig. 6 is the effect of the steepness of the tem-

perature increase at the heater on the film profile and disper-

sion curves. The temperature of the solid surface was mod-

eled as

T0�x� = 0.5�tanh�ax + d� − tanh�0.5x − 4�� . �31�

Varying d corresponds to varying the “width,” or streamwise

extent, of the heater. For d� �3,10�, the distance between the

capillary ridge and depression increases with d, as expected,

but d has no effect on the shape or amplitude of the capillary

ridge or the dispersion curves. As a is increased, the capillary

ridge becomes steeper and higher and shifts downstream, as

shown in Fig. 6�a�. The height of the ridge saturates for a

�5. The dispersion curves are also strongly affected by the

value of a, as shown in Fig. 6�b�. For M=25 and D=0, the

film is stable for the gradual temperature gradient corre-

sponding to a=0.5 but is unstable for larger a. The influence

of a on Mcrit is shown in Fig. 6�c�. The critical Marangoni

number decreases with a but remains constant for a�5,

which is the same value above which the capillary ridge is

unaffected by a.

2. Effect of substrate inclination angle

Shown in Fig. 7 is the effect of the substrate inclination

angle � on the largest eigenvalue from the linear stability

analysis for M=25. As � decreases, the hydrostatic compo-

nent of the pressure in the film �G cos �� increases, which

would tend to flatten the capillary ridge induced by the Ma-

rangoni stress at the heater. Because the component of grav-

ity parallel to the substrate, which drives the flow, is propor-

tional to sin � �U=�gĥ�
2 sin � / �3���, however, the driving

force decreases relative to the Marangoni stress. These two

considerations have a competing influence on the film shape,

and the capillary ridge increases in width and amplitude as �
decreases for small G. The ridge becomes flatter for larger G

and small �, for which the hydrostatic component of pressure

is more significant. This trend agrees with experimental

results �30�.

(a)

(b)

FIG. 5. �a� Leading eigenfunctions �0 for M=25 for a finite

heater normalized such that �x=−40
x=40 �02dx=1. �b� Structure of the

leading discrete and continuous modes for q�qc1 with M=25 and

G=0. The subscripts c and d refer to continuous and discrete

modes, respectively, while r denotes the structure that replaces the

discrete mode for q�qc1 upon crossing the continuous spectrum.
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For G
0.1 the variation of �max�maxq��� with � is

nonmonotonic. As � decreases from 90° and the ridge be-

comes larger, � increases. Beyond some threshold value of �,

� then decreases for each G, as shown in Fig. 7�a�. For G

�0.1, �max decreases monotonically with �. The film is

stable for �
15° for G=0.3, and �max→0 as �→0 for all

G, as a horizontal film is stable with respect to rivulet for-

mation because there is no flow, although the ridge may be

susceptible to a Rayleigh instability. Also, as � decreases, the

wave number �qmax� of the most unstable mode decreases,

which corresponds to a larger wavelength of the observed

instability. A plot of qmax vs � is shown in Fig. 7�b�. For

small G these results are in reasonable agreement with the

experimental result qmax� �sin ��1/2 �31�. These stability re-

sults are consistent with those for a liquid film spreading

along an inclined plane �23,28,32� because the governing

forces are the same. Although the origin of the capillary

ridge is different, the appropriate length scale lc is deter-

mined from a balance of viscous and capillary forces, and

gravity drives the flow.

B. Transient amplification: Nonmodal analysis

Thin liquid films with thermocapillary stresses give rise to

non-normal linear operators A when the base states are spa-

tially nonuniform �33–37�. In extreme cases, the transient

amplification of perturbations to the film might lead to insta-

bility in a flow predicted to be linearly stable or overwhelm

the modal growth at early times in a linearly unstable flow,

possibly resulting in a different instability wavelength than

predicted by modal analysis �38,39�. Even if the transient

growth is less significant, the nonmodal analysis provides

insight into the regions of the film that are most sensitive to

perturbations �which are evident from the structure of the

eigenfunctions only for normal systems�.
The solution to Eq. �26� is

h1�t� = exp�At�h1�t = 0� , �32�

where h1�t=0� is the initial perturbation applied to the base

state. The maximum amplification �max of an initial pertur-

bation over the time interval t is then given by

(a)

(b)

(c)

FIG. 6. Effect of the steepness parameter a on the �a� film pro-

file and �b� dispersion curves for M=25 and G=0. �c� Critical Ma-

rangoni number Mcrit vs a.

(a)

(b)

(degrees)

(degrees)

FIG. 7. �a� Effect of substrate inclination angle � �in degrees� on

the largest eigenvalue, �max, for various G. �b� Wave number qmax

corresponding to �max vs �. For small G the trend is well described

by the experimentally observed relation q�sin1/2�.
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�max�t� = sup
h1�t=0��0

�h1�t��

�h1�t = 0��
= �exp�tA��, ��0,t� ,

�33�

where �·� represents the l2 norm. The matrix A has the simi-

larity transform A=S�S−1, where S is the matrix whose col-

umns are the normalized eigenvectors �i of A in order of

growth rate and � is the diagonal matrix of the associated

eigenvalues �40�. It follows that

exp��t� 
 �exp�tA�� = �S exp�t��S−1� 
 �S��S−1�exp��t� ,

�34�

where � is the leading entry of �, ���11. If A is normal, S is

unitary, and �exp�tA� � =exp��t�∀ t. If A is non-normal, how-

ever, the eigenvectors are not orthogonal, and the norm of S

and S−1 can be very large. Perturbations could therefore be

amplified by several orders of magnitude and induce nonlin-

ear effects �39�. As t→� the first column of S and the first

row of S−1 exponentially dominate, and it follows from Eqs.

�33� and �34� that

lim
t→�

�max = ��0���̂0�exp��t� , �35�

where �̂0 is the leading eigenvector of the adjoint of A nor-

malized such that ��0 ,�̂0�=1.

The maximum amplification of perturbations to the film is

plotted in Fig. 8�a� for M=25 and in Fig. 8�b� for M=15.

Each point on these curves represents the maximum ampli-

fication of a different initial condition, which is optimal for

the time interval �0, t�. The slope of each curve as t→�

recovers the leading eigenvalue of A, which provides an ad-

ditional check on the accuracy of the computations. These

curves indicate that modal growth or decay �characterized by

the leading eigenvalue �� occurs after a brief transient pe-

riod, and the nonmodal, transient amplification is less than an

order of magnitude, which suggests that nonlinear effects are

not important in the initial development of the instability.

The transient growth for M=15, which is asymptotically

stable, is insufficient to induce nonlinear effects and instabil-

ity by a nonmodal mechanism. Indeed, several nonlinear

simulations of h�x ,y , t� vs t were performed for M�Mcrit

with imposed sinusoidal perturbations of various q, and rivu-

lets could not be initiated in these linearly stable films even

with a perturbation amplitude of one-half the unperturbed

film thickness. The transient amplification is larger than for

flow over topography �27� but considerably less than for

spreading films �32,34–36,41�. The secondary amplification

beginning at t�12 for q=0.20 in Fig. 8�a� is not seen in

transient dynamics of driven liquid films �34–36,41� or flow

over topographical features �27� and is explained below in

the context of the optimal perturbations to the film.

Shown in Fig. 9 is the maximum transient amplification

with the modal growth factored out, �= �exp�tA� �exp�−�t�,
vs L, where 2L is the domain length, for various q. The

variation of this purely nonmodal amplification with the do-

main length is accurately characterized by ��L1/2 for q=0

and q=0.6 but is independent of domain length for q=0.3 for

L�30. For q=0 and q=0.6, discrete modes are absent and

only stable, continuous modes exist, as shown in Fig. 4�b�.
For the continuous spectrum, the disturbances are global and

do not localize around the capillary ridge. Restricting the

size of the domain in computations of the transient amplifi-

cation therefore restricts the global extent of disturbances.

The dependence of � on L can thus be explained by the

arguments of Grigoriev �41� in the context of spreading liq-

(a)

(b)

ln
||e
x
p
(A
t)
||

ln
||e
x
p
(A
t)
||

FIG. 8. Maximum transient amplification of spanwise perturba-

tions for G=0 and �a� M=25 and �b� M=15.

FIG. 9. �a� Maximal nonmodal amplification, �
��exp�tA��exp�−�t�, for q=0, 0.3, and 0.6 as a function of the

domain size L for G=0 and M=25. The symbols correspond to �
�L1/2.
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uid films. From Eq. �35��= ��0 � ��̂0�. When discrete modes

are absent, �0 attains the constant values c± away from the

heater, so ��0 � = ���02dx�1/2�L1/2. The corresponding ad-

joint eigenvector �̂0 essentially has finite support, so ��̂0 �
=const for sufficiently large L, which results in ��L1/2, as

observed in Fig. 9. �These arguments are reversed and re-

stricted to q→0 for spreading films �41�.� For discrete

modes, however, the disturbances localize around the heater

and have finite support. Once the domain is sufficiently long

to allow these modes to decay as x→ ±� �which makes the

eigenvalues and eigenfunctions independent of L�, � is also

independent of L. This pronounced difference in the depen-

dence of � on L for stable vs unstable modes is not observed

for spreading films �36,41� because the leading eigenfunction

for each q is discrete.

C. Optimal perturbations

To determine the evolution of an optimal initial perturba-

tion into its final state after time t, the singular value decom-

position of exp�tA� is calculated according to �39�

exp�tA� = U�V†. �36�

The columns of the unitary matrix V are the complete set of

�orthogonal� initial states, and the columns of the unitary

matrix U are orthonormal basis vectors that span the range
space of final states. The diagonal matrix � contains ele-
ments �i that characterize the amplification of each corre-
sponding initial state during the specified time interval. The

vectors Vi form the columns of V, and the optimal perturba-

tion at a specified time, Vopt�V1, is the initial condition that

undergoes the maximum growth over the time interval t. This

maximum growth is denoted by the leading singular value,

�max�t���exp�tA�� and corresponds to one point in Fig. 8.

As t→�, Uopt asymptotes to the eigenfunction that describes

rivulet formation in the spanwise direction.

Shown in Figs. 10 and 11 are the optimal initial perturba-

tions and the evolved states for q=0.2 and q=0.4. The opti-

mal perturbations are located at the leading edge of the

heater and extend upstream such that they are convected by

the flow to the leading edge of the heater, or forward portion

of the capillary ridge, at which the thermocapillary stress

opposes the bulk flow. For q=0.2, which is asymptotically

stable, Vopt is located at the leading edge of the heater for

small t and extends a distance w�10lc upstream, as shown

in Fig. 10. Perturbations to this region of the film therefore

undergo the largest growth over short time intervals t
10.

For larger t, Vopt extends and migrates further upstream such

that it undergoes transient amplification when it is convected

to the heater later in the dynamics. This migration reflects the

(a)

(b)

FIG. 10. �a� Optimal initial disturbance Vopt and �b� correspond-

ing evolved state Uopt, after time t for a perturbation of wave num-

ber q=0.2 applied to the base state with G=0 and M=25.

(a)

(b)

FIG. 11. �a� Optimal initial disturbance Vopt and �b� correspond-

ing evolved state Uopt, after time t for a perturbation of wave num-

ber q=0.4 applied to the base state with G=0 and M=25.
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global nature of disturbances for stable q �characterized by

the continuous spectrum�. The evolved states Uopt�t� initially

localize at the heater but broaden to encompass the entire

film as t→�. By t=30, Uopt is indistinguishable from the

eigenfunction �0. The growth rate is largest as the perturba-

tion encounters the forward portion of the capillary ridge

above the heater, and the disappearance of the maximum in

Uopt at the leading edge of the heater indicates that a pertur-

bation to that region of the flow would have decayed by

t=30.

The structure of Vopt and Uopt for the unstable wave num-

ber q=0.4, which are plotted in Fig. 11, is significantly dif-

ferent. The optimal perturbation for t=1 has a sharp peak at

the leading edge of the heater and extends upstream about

w=15lc units. As t increases, Vopt broadens somewhat up-

stream but retains the strong peak at the leading edge of the

heater. For t�5, Vopt is constant, and its structure reveals

that perturbations applied to the portion of the film from

−20
x
0 are amplified most strongly, with the forward

portion of the capillary ridge the most sensitive region to

perturbations. These results suggest that the rivulet instability

might be suppressed by appropriate modulation of the flow

in this region of the film. For example, Frank �42� recently

found using three-dimensional simulations that the value of

Mcrit could by doubled by using a feedback control for the

temperature profile, and other mechanisms of modulating the

flow are also possible. The evolved state Uopt is focused at

the forward portion of the capillary ridge, or leading edge of

the heater. For t�5, Uopt is constant and indistinguishable

from the leading eigenfunction. This rapid asymptote to the

modal behavior corresponds to the small non-modal growth

found for unstable q in Fig. 9 and occurs because of the near

orthogonality between the �discrete� leading eigenfunction

and the stable, continuous modes.

In Fig. 8�a�, the transient curve for q=0.2 exhibits inter-

esting behavior at t�10.8. The evolved optimal perturbation

at t= t*=10.8, given by Uopt�t
*�=exp�t*A�Vopt�t

*� was com-

puted to confirm that this jump in the amplification ratio

occurs at the time when Uopt interacts with the capillary

ridge. The amplification of V1 and V2 is similar for 0
 t

�10.8. By t=10.8, U2 has been convected past the capillary

ridge, while U1 encounters the ridge and is amplified more

strongly, after which �1��2. This competing amplification

of V1�Vopt is responsible for the jump in the curve for q

=0.2 at t=10.8 in Fig. 8�a� and is observed for q near qc1 and

qc2, where the dispersion curve bifurcates into continuous

and discrete eigenmodes.

D. Energy analysis

Following Spaid and Homsy �28�, the exponential growth

rate � of perturbations can be interpreted as an energy pro-

duction rate Ė. The contributions of the individual terms in

the disturbance operator L to Ė can be isolated to infer the

influence of various physical mechanisms on the instability.

The terms in Eq. �24� make contributions Ėn to Ė, which can

be found from �28�

Ėn =
��0,Ln�0�

��0,�0�
, �37�

where �.,.� represents the inner product. Each Ln is a group of

terms in L listed in Table I along with its physical meaning.

These terms depend nonlinearly on the base flow solution,

h0�x�, and perturbation wave number q. Terms that make a

negative energy contribution are stabilizing, while terms cor-

responding to a positive Ėn are destabilizing. Noting that L

=�Ln, it follows directly from Eq. �37� that �Ėn=�.

TABLE I. Terms contributing to the energy production rate of perturbations to the film and their physical interpretation.

Term Expression Physical meaning

1 −�h0
3h1xxx�x Capillary flow in x direction induced by perturbation

curvature variation in x

2 q2�h0
3h1x�x Capillary flow in x direction due to streamwise change in

transverse perturbation curvature

3 −3�h0
2h1 sin ��x Flow in x direction due to gravity

4 −�3h0
2h0xxxh1�x Capillary flow in x direction driven by the base-state

capillary pressure gradient acting on the perturbation

5 q2h0
3h1xx Capillary flow in y direction induced by perturbation

curvature in x

6 −q4h0
3h1 Capillary flow in y direction induced by perturbation

curvature in y

7 2M�T0xh0h1�x Thermocapillary flow in x direction due to streamwise

temperature variations

8 G�h0
3h1x cos ��x Flow in x direction due to hydrostatic pressure of

perturbation

9 3G�h0
2h0xh1 cos ��x Flow in x direction due to hydrostatic pressure of

base-state acting on perturbation

10 −q2G cos �h0
3h1 Flow in y direction due to hydrostatic pressure and

perturbation thickness variation
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Shown in Fig. 12�a� is Ėn for q=qmax vs � with M=25 and
G=0.3. For a vertical substrate with �=90°, the two strongly
destabilizing terms are term 3, the streamwise flow from
gravity induced by the variation in the film thickness from
the perturbation, and term 4, the streamwise flow from the
capillary pressure gradient of the base state acting on the
perturbation. The largest stabilizing influence is from term 7,

the streamwise Marangoni flow from the change in film

thickness induced by the perturbation. Term 1, the stream-

wise capillary flow induced by the streamwise perturbation

curvature and term 2, the streamwise capillary flow induced

by the streamwise change in the transverse curvature of the

perturbation, are also stabilizing. All terms corresponding to

flow in the transverse y direction induced by a perturbation

do not make significant contributions to Ė for Bi=0, al-

though they can provide the dominant contributions to the

instability for Bi�0 �24�.
As � decreases, the magnitude of terms 1–4 and 7 de-

creases. The streamwise component of gravity decreases

with sin �, so term 3 is less destabilizing. The shape of the

ridge changes as hydrostatic pressure modifies the base state,

and terms 1, 2, 4, and 7 decrease in magnitude. Term 9, the

streamwise flow due to the influence of the base-state hydro-

static pressure on the perturbation, becomes more destabiliz-

ing. Term 8, the streamwise flow from the hydrostatic pres-

sure of the perturbation becomes more stabilizing, and the

film is stable for �
15° even though a ridge still exists.

Shown in Fig. 12�b� is Ėn vs q for a film stabilized by

hydrostatic pressure. For q
0.35, terms 3, 4, and 9 are de-

stabilizing, but terms 1, 7, and 8 compensate and result in a

stable film. For larger q, the transverse capillary flow from

terms 6 and 10 dominates and is strongly stabilizing. These

terms correspond to the decay of capillary waves on a flat

film with additional stabilization from hydrostatic pressure.

V. DISCUSSION

This analysis predicts that the wavelength of the instabil-

ity is �max= �2� /qmax�lc��0
1/3, which is in good agreement

with the result �max��0
0.365 reported by Frank and Kabov

�22�. If the plate is inclined at angle � from the horizontal,

the instability wavelength has been observed in experiments

to grow considerably as � is decreased, �max� �sin ��−1/2. As

shown in Fig. 7�b�, this relation is consistent with the theo-

retical predictions for 30° 
�
90° and small G. In addi-

tion, the flow is predicted to be unstable above a critical

Marangoni number for a finite band of wave numbers sepa-

rated from zero, which agrees with the results of Frank and

Kabov �22�. The marginal stability curves predicted by the

lubrication model also agree qualitatively with those reported

by Frank and Kabov �22�, although differences in the tem-

perature profile at the solid surface and the values of the

dimensionless parameters preclude a quantitative compari-

son.

This lubrication model is similar to that used by Skotheim

et al. �24�, but utilizes different scalings �lc vs length scale of

the temperature gradient� and retains the hydrostatic pressure

terms. More significantly, the present analysis requires that

disturbances to the film be bounded �but oscillatory� as x

→ ±� to be consistent with the Fourier modes that comprise

the continuous spectrum for the flat regions of the film away

from the heater, while Skotheim et al. �24� employed peri-

odic boundary conditions for both the base state and linear

stability analysis. The predictions of the model presented

here agree qualitatively with those of Kalliadasis et al. �25�,
who used a qualitatively different temperature profile, devel-

oped an integral momentum approach, retained convection in

the energy equation, and used a large value of the Biot num-

ber �Bi=1� in their analysis. This agreement results from the

use of the same boundary conditions that h1 is bounded as

x→ ±� for the linear stability analysis. In particular, a con-

tinuous and discrete spectrum were found, although the two

critical wave numbers qc1 and qc2 are specific to the present

analysis. Kalliadasis et al. �25� also found �stable� discrete

modes for M�Mcrit.

The prediction for �max is similar to that found for the

capillary ridge that forms in a gravity-driven fluid sheet

spreading down an inclined plane �23�, �max� ĥ��3Ca�−1/3

��0
1/3. These predictions are similar because the streamwise

length scale, lc, that is relevant to the capillary ridge is found

from a balance of viscous and capillary forces. The origin of

the ridge is different, as it is not induced by a thermocapil-

lary flow from nonuniform heating but as a response of the

free surface to the pressure field near the contact line in the

spreading film. Once the ridge has formed, however, the mo-

bility differences from perturbed regions near the front of the

ridge are destabilizing for both problems. For flow over the

heater, the streamwise capillary flow induced by the base-

(a)

(b)

(degrees)

FIG. 12. Energy analysis results. �a� Ėn for q=qmax vs � �in

degrees� for G=0.3 and M=25. �b� Ėn vs q for G=0.3, M=21, and

�=30°.
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state capillary-pressure gradient acting on the perturbation is

also strongly destabilizing.

This flow over a locally heated surface is similar to non-

inertial flows over topography �26,27�, in which the topo-

graphical feature induces a capillary ridge. The capillary

pressure gradient from the �fixed� substrate topography pro-

duces a restoring flow that suppresses transverse perturba-

tions to the ridge, and those flows were found to be strongly

stable to perturbations. The thermocapillary stress from the

heater has a similar stabilizing influence on perturbations.

This thermocapillary stress, however, also leads to the for-

mation of the ridge, and once the ridge becomes sufficiently

large it is destabilized by mobility differences in the per-

turbed film and the interaction of perturbations with the

streamwise capillary pressure gradient due to the curvature

of the �deformable� capillary ridge.

VI. CONCLUSION

The stability of a liquid film flowing over a locally heated

surface was considered using a lubrication analysis. The ther-

mocapillary stress at the heater leads to the formation of a

pronounced capillary ridge, which was found to be unstable

to spanwise perturbations above a critical Marangoni number

for a finite band of wave numbers separated from zero. These

results agree with published experiments and direct numeri-

cal simulations �22�. This rivulet instability, which occurs

even for vanishing Biot number, is due to mobility differ-

ences in the perturbed ridge and the effect of the capillary

pressure gradient on perturbations and is distinct from the

classical thermocapillary instability at finite Biot number.

Because the instability is linked to the flow in the capillary

ridge, its wavelength was found to scale with the dynamic

capillary length, as for the fingering instability of an isother-

mal capillary ridge in a film spreading down an inclinded

plane �23�. The wavelength of the instability increases as the

plate becomes more horizontal, in agreement with experi-

mental results �31�. The decrease in inclination angle has a

nonmonotonic effect on the growth rate of perturbations for

small values of the hydrostatic parameter G but has a mono-

tonic stabilizing influence for larger G, which was explored

through an energy analysis.

The linear stability problem was formulated to allow for

disturbances that are bounded �but do not necessarily decay�
at the infinities. The operator that governs the linearized sys-

tem has both a discrete and an essential spectrum, which is

consistent with results from an integral momentum analysis

by Kalliadasis et al. �25�. The essential spectrum consists of

eigenfunctions that approach bounded oscillations at the in-

finities. Although their shape is modified by the capillary

ridge near the heater, their corresponding spectrum is de-

scribed by the dispersion relation of a flat film, and these

modes are always stable. The discrete spectrum exists above

a critical Marangoni number for a finite band of wave num-

bers separated from zero, and these modes are linked to the

rivulet instability. Highly stable discrete modes are also

found above a �large� threshold value of the wave number,

which is consistent with the stable, noninertial flows over

topographical features �26,27�. Differences in the boundary

conditions for the stability analysis were found primarily re-

sponsible for qualitative differences between published re-

sults based on lubrication �24� and integral boundary-layer

�25� models.

Because the linearized disturbance operator is nonnormal,

a transient, nonmodal analysis was used to study the short-

time dynamics of perturbations. The transient amplification

of perturbations was found to be essentially negligible for

unstable wave numbers because the �unstable� discrete

eigenfunction is nearly orthogonal to the �stable� continuous

modes. Weak transient amplification was found for stable

wave numbers, and its dependence on the domain length was

captured by analyzing the shape of the leading eigenfunc-

tions of the disturbance operator and its adjoint. The struc-

ture of optimal perturbations was computed to elucidate the

regions of the film that are most sensitive to perturbations,

which suggests ways to stabilize the film by appropriately

modulating the flow in these regions.
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