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Abstract: This paper presents a stability analysis for droop-based islanded AC microgrids via an
autonomous shooting method based on bifurcation theory. Shooting methods have been used for the
periodic steady-state analysis of electrical systems with harmonic or unbalanced components with
a fixed fundamental frequency; however, these methods cannot be directly used for the analysis of
microgrids because, due to the their nature, the microgrids frequency has small variations depending
on their operative point. In this way, a new system transformation is introduced in this work to
change the droop-controlled microgrid mathematical model from an non-autonomous system into
an autonomous system. By removing the explicit time dependency, the steady-state solution can
be obtained with a shooting methods and the stability of the system calculated. Three case studies
are presented, where unbalances and nonlinearities are included, for stability analysis based on
bifurcation analysis; the bifurcations indicate qualitative changes in the dynamics of the system,
thus delimiting the operating zones of nonlinear systems, which is important for practical designs.
The model transformation is validated through time-domain simulation comparisons, and it is
demonstrated through the bifurcation analysis that the instability of the microgrid is caused by
supercritical Neimark–Sacker bifurcations, and the dynamical system phase portraits are presented.

Keywords: stability; droop control; AC microgrid; autonomous shooting method; Neimark–Sacker
bifurcation

1. Introduction

The adaptability and resilience of a microgrid (MG) are two of the desired features
due to the multiple operational scenarios that the system can meet [1]. Because of this,
the control requirements and strategies to perform local balancing and to maximize their
benefits have led the MGs to fulfill a wide range of functionalities, such as power flow
control, voltage and frequency regulation, among others [2–4]. In this way, the choice of
control structure is important for the stable operation of microgrids, which is achieved by
means of different control levels, also known as hierarchical controls [2]. MG controls are
usually divided into three levels of control structure, primary control, secondary control,
and tertiary control. Generally, they have different control objectives and timescales.
The primary control level is responsible for performing the grid-forming or grid-feeding
function. For the islanded case, grid-forming controls, for example the droop control,
are required to regulate the frequency and voltage of the microgrid [5]; however, these
controls usually require the introduction of a secondary control to eliminate the steady-
state errors [3]. On the other hand, the tertiary control is used to decide the operating
point of each distributed generation unit (DG), i.e., energy management systems (EMS) [4],
depending on the grid requirements and available energy. Therefore, the primary and
secondary controls in microgrids are continually optimized by using upper control layers,
such that, the operational objectives are continuously achieved in a reliable manner [3,6].
This means that, in the design stage, the microgrid has to be tested not only for one set
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of control characteristics, but for operational regions, which will set boundaries for the
optimizations and the system operation.

Conventional stability analyses in microgrids are based on eigen-analysis [7]. In
these analyses, the steady-state solution of the system represented by a set of autonomous
ordinary differential equations, i.e., ẋ = f(x), is simply to solve f(x) = 0, then, the stability
of the system is obtained by linearizing around the computed equilibrium points; average
models fall within this type of systems. Alternatively, fast-time domain methods, also
known as shooting methods [8], have been used in the literature for electrical systems
harmonic analysis and unbalanced systems, including the detailed modeling of the close-
loop controls and nonlinear elements. In these methods, the solution can be represented
as a two-point boundary-value problem, assuming that the periodic steady-state solution
has a fundamental period T, such that the xT = x0 is satisfied in steady state [9–12]. In [9],
the modeling and analysis of an adjustable speed driver (ASD) is performed, where the
state-space formulation of the ASD explicitly includes the switching process in the diode
rectifier and the inverter; in this work, the periodic steady-state computation is performed
via the discrete exponential expansion method. The steady-state computation of a fixed-
speed wind turbine is performed in [10]; the authors present the detailed modeling of the
wind turbine, and the periodic steady-state calculation is performed using the numerical
differentiation method for different operational conditions. Additionally, the results are
compared against the brute force approach to show the advantages of the shooting method.
In [11], the periodic steady-state solution of an electric system with unified power-flow
controllers (UPFCs) is presented. The steady-state solution is computed using the numerical
differentiation method and a harmonic analysis of the system is performed. Recently
in [12], the authors perform a harmonic assessment of an islanded microgrid using different
shooting methods, furthermore, the shooting methods are compared in terms of their
computational efficiency. The results obtained with the shooting methods are compared
against simulations performed in the professional software PSCAD.

Note that, to explore both stable and unstable system solutions given by the afore-
mentioned methods, a suitable framework is the bifurcation analysis. A bifurcation is
a qualitative change in the dynamics of the system, under the variation of one or more
parameters on which the system depends [13]. The application of the bifurcation theory
has been performed for studies such as, voltage collapse [14], flexible AC transmission
system devices [15], sub-synchronous resonances [16], among others [17]. Furthermore,
the analysis of microgrids with different controls using the bifurcation theory has been
presented in recent works [18–26]. The stability analysis of a synchronverter-dominated
microgrid based on bifurcation theory was presented in [18]; in this work, the system is
modeled in DQ frame and an eigenvalue analysis is performed considering three differ-
ent bifurcation paramenters, additionally, the results show that the modification of the
reactive power coefficient provokes a Hopf bifurcation in the system. In [19], the local
stability of droop-controlled inverter-based microgrids with dynamic loads was studied; a
two-machine test system is modeled and implemented in AUTO, which is a professional
software used for computing equilibrium branches and bifurcation points. In [20], the
computation of stability regions in an islanded droop-controlled microgrid is performed
through a bifurcation analysis software called MATONT; the system is modeled in DQ
reference frame, and different load types are considered. It is found in this work that the
power controllers and loads have a major influence in the bifurcations. An stability analysis
for converter-based DC microgrids with constant power loads is assessed in [21]; in this
work, a linearized small-signal model is used to compute the stability behavior in the
system against different changes further finding Hopf bifurcations. In [22], a bifurcation
analysis of a microgrid with constant power loads is performed; for this work, a reduced
order model is considered and the system stability is analyzed for different load powers, the
results are compared against simulations using the complete microgrid system, showing
that the control gains affect the stability of the system and that Hopf bifurcations appear
in some cases. In [23], a continuation method is used to identify Hopf bifurcations in an
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islanded microgrid considering distributed energy resources and electric vehicle charging
stations; for this purpose, a load increase is selected as bifurcation parameter and the
system is linearized at each equilibrium point. The unstable points are obtained and the
Hopf bifurcation points verified via time-domain simulations. A generalized model is
proposed in [24], this model is given by a block diagram approach used for modeling
the microgrid, then the system initialization is obtained via a load flow method and the
eigenvalues are computed, bifurcation analyses and phase diagrams are presented showing
the Hopf bifurcations under different cases. Two saddle-node bifurcation point algorithms
for islanded microgrids are presented in [25], these approaches use the power flow method
as base to obtain the feasible and non-feasible operational regions after an increase of load
in the system, then, the proposed algorithms are used to search between these regions
the saddle-node bifurcation; to verify the algorithms, four case studies are implemented
and comparisons among traditional methods presented. Recently in [26], the bifurcation
analysis was used to predict the parameter stability margins with and without secondary
control in islanded droop-controlled microgrids; in this work, the system is modeled in
the DQ reference frame and an eigenvalue analysis is performed considering different
parameters. The authors showed that the MG stability is sensitive to several parameters
such as droop gains, proportional/integral PI controller coefficients, among others, and that
the inverter-based MG may lose its stability through a Hopf or saddle-node bifurcation.

Note that in the aforementioned works for microgrids, only the fundamental frequency
is considered and the MGs are modeled in the DQ reference frame or the system model
is reduced, therefore unbalances in the system and harmonic components are overlooked.
In practice, the operation of a microgrid includes unbalances and harmonic components,
for this reason, fundamental frequency methods cannot always be used to compute the
steady-state solution in a reliable way, and there is a need for more detailed algorithms.
As mentioned before, the shooting methods can be used for electrical systems harmonic
analysis and unbalanced systems; however, since these methods calculate the periodic
steady-state solution, they require a known fundamental period, i.e., a fixed system fre-
quency. In this way, these methods cannot be directly used for the analysis of MGs because,
due to the their operative nature, the MGs frequency has small variations depending on
their operative point.

In order to cope with this issue, in this work the MG mathematical model can is
transformed from a non-autonomous system into an autonomous system. By removing the
explicit time dependency, the steady-state solution can be obtained with a shooting method
and the stability of the system calculated such that the shooting methods can compute
the steady-state solution even with variable and unknown frequency. In this way, in this
contribution, by including a mathematical system transformation, a shooting method is
used to perform the bifurcation analysis, which allows the consideration of the system
nonlinear dynamics, unbalances, and the harmonic content. With these explanations, the
main contributions of this paper are summarized as follows:

• Introducing a model transformation for droop-controlled MGs, such that the original
non-autonomous system model becomes an autonomous system, removing in this
way the explicit time dependency.

• The use of the discrete exponential expansion method for the computation of the
periodic steady-state solution in autonomous systems.

• The bifurcation analysis of the droop-controlled MG is presented under three-case
studies: (1) droop characteristic variation for fundamental frequency; (2) unbalanced
load variation for fundamental frequency; and (3) droop characteristic variation
including the converters commutation process.

• A stability boundary map is created using the proposed approach, and phase portraits
are presented showing the torus attractors made by the Neimark–Sacker bifurcations.

The paper is organized as follows: Section 2 describes the periodic steady-state solu-
tion formulation for autonomous systems, where also the discrete exponential expansion
method is presented. Section 3 introduces the primary droop control and presents the
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procedure for the system transformation from a non-autonomous to an autonomous sys-
tem. Section 4 describes the microgrid used as the test system, and the validation of the
transformed system with and without commutations is performed. Section 5 outlines the
case studies and presents results obtained. Section 6 presents a discussion. Finally, Section 7
provides the conclusions of this work.

2. Periodic Steady-State Solution Formulation for Autonomous Systems

In general, the mathematical model of a controlled microgrid can be given by the
following ordinary differential equation set,

ẋ = f(t, x) (1)

where x is the state vector of n elements and t is the time.
A way to compute the steady-state solution of a controlled system represented by

a set of ordinary differential equations such as (1), is to find a state vector x0 such that
x0 = xT , where T is the fundamental period of the system, x0 is the state vector at t = t0
and xT=x(t0 + T, t0; x0).

This problem can be addressed through fast-time-domain methods [8,27]; however,
for microgrids without frequency compensation controls, these methods cannot be directly
used because the fundamental period of the system is unknown, and changing with the
operation of the system. Nonetheless, if a periodic system do not explicitly depend on the
time, i.e., an autonomous system, this problem can be overcome even if the system period
is unknown, by using autonomous shooting methods. The formulation of these methods is
presented as follows.

2.1. Autonomous Systems

The mathematical model of an autonomous systems is given by the following equation
set [13],

ẋ = f(x) (2)

note that the state function f is not time dependent as in (1). If the system is periodic,
its solution can be represented as a two-point boundary-value problem with the period
determined along with the states, as shown below,

x(T, ν)− ν = 0 (3)

where ν is the state vector in steady-state and x(T, ν) is the solution after one full cycle
T. In order to compute the values of ν and T, a correction is accomplished through the
Newton–Raphson method.

Let it be
δν = ν− ν0 δT = T − T0 (4)

such that Equation (3) becomes,

x(T0 + δT, ν0 + δν)− (ν0 + δν) = 0 (5)

Therefore, to compute the corrections, (5) is expanded in a Taylor series and only the
linear terms are kept as follows:[

∂x
∂ν

(T0, ν0)− I
]

δν +
∂x
∂T

(T0, ν0)δT = ν0 − x(T0, ν0) (6)

where ∂x/∂ν is an n × n matrix, I is the n × n identity matrix, and ∂x/∂T is an n × 1
vector. Observe that (6) constitutes a system of n equations but n + 1 unknowns, thus, an
extra equation is needed. On the other hand, an autonomous system periodic solution
is invariant to linear shifts in the time origin, i.e., if x(t) is a solution, then x(t + t0) is
also a solution for any arbitrary t0, this means that the phase is arbitrary. In this case, to
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remove the arbitrariness, an orthogonality phase condition equation [13] is used, which
sets a requirement for the correction δν to be normal to the vector field, and it completes
the system (6), that is, (

∂x
∂T

(T0, ν0)

)′
δν = 0 (7)

Using this condition equation, the following system of n + 1 equations is obtained: ∂x
∂ν (T0, ν0)− I

(
∂x
∂T (T0, ν0)

)
(

∂x
∂T (T0, ν0)

)′
0

[ δν
δT

]
=

[
ν0 − x(T0, ν0)

0

]
(8)

after determining the corrections, a convergence criterion is checked. If the criterion is not
satisfied, the initial guess is updated as (T0 + δT, ν0 + δν) and the procedure is repeated.

Note in (8), that the matrix ∂x
∂ν evaluated at (T0, ν0) have to be computed in order to find

the corrections. For this purpose, several numerical methods have been presented in the
literature, where each method differs on how the approximation is performed. In this work,
the discrete exponential expansion method is used since it presents a good convergence
rate and the best computational time performance from the other methods [12].

2.2. Discrete Exponential Expansion Method

The discrete exponential expansion (DEE) method was proposed in [28]. It follows an
identification procedure step-by-step based on a recursive formulation, that requires the
integration of only one full cycle for the computation of the transition matrix. This method
approximates the matrix ∂x

∂ν as,

∂x
∂ν

(T0, ν0) =
N−1

∏
i=0

eJN−i∆tN−i (9)

where the Jacobian Ji is given by,

Ji =
∂f(t, x)

∂ν

∣∣∣∣
t=(ti+ti−1)/2,x=(x(ti)+x(ti−1))/2

(10)

where ∆ti is defined as ti − ti−1, N is the number if intervals in a period T, and ti represents
the i-th element of the time vector from t to t + T. Once the matrix ∂x

∂ν evaluated at (T0, ν0)
is computed, the corrections δν and δT from (8) can be determined and the procedure
repeated until the desired convergence error. It should be noticed that the eigenvalues
of the Jacobian are the Floquet multipliers [13]; therefore, the stability of the computed
solution can be used to obtain the stability of the periodic solution of the system [29], i.e., if
the Floquet multipliers are inside the unit circle in the complex plane Z the system is stable,
otherwise unstable.

Keep in mind that this method can only be used for periodic autonomous systems
with the form of (2), therefore, for the microgrid problem there is still a need for a system
transformation, this is presented below.

3. Droop Control System Transformation

The schematic of the conventional droop control incorporated in the AC DG units is
shown in Figure 1.
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Figure 1. Droop control block diagram.

In this control, the active and reactive power contribution of the DG unit depends on
the frequency/active power (P− ω) and voltage/reactive power (Q − V) droop character-
istic curves, respectively [6,30],

ω = ω∗ − KpP (11)

|V| = |V∗| − KqQ (12)

where ω∗ is the nominal angular frequency of the system, |V∗| is the voltage amplitude
reference, Kp and Kq are the P − ω and Q − V droop coefficients, respectively, and P and
Q are the output active and reactive power, respectively. Additionally, this control includes
an inner current control loop and an outer voltage control loop, which define the control
signals for operating each DG unit with a given voltage amplitude and frequency.

Note in Figure 1 the explicit time dependency in this control can be found in the
integration block from the droop control for computing θ, which is given by,

θ = ωt =
∫

ω =
∫
(ω∗ − KpP) (13)

This means that the computation of θ has to be performed in a different way in order to
avoid the system time dependency. If the control is analyzed, it can seen that θ is required
for performing the DQ-abc and abc-DQ transformations, (14) and (15).

TabcDQ =
2
3


cos(θ) cos(θ − 2π

3 ) cos(θ + 2π
3 )

−sin(θ) −sin(θ − 2π
3 ) −sin(θ + 2π

3 )

1
2

1
2

1
2

 (14)

TDQabc =
2
3


cos(θ) −sin(θ) 1

cos(θ − 2π
3 ) −sin(θ − 2π

3 ) 1

cos(θ + 2π
3 ) −sin(θ + 2π

3 ) 1

 (15)
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Even more, inspecting the transformation equations, it can be seen that θ is always
used for computing sine or cosine, with or without a phase shift. Therefore, it is possible to
numerically compute cos(θ) and sin(θ) without the time dependency. It is known that,

d
dt

cos(ωt) = −sin(ωt)ω (16)

d
dt

sin(ωt) = cos(ωt)ω (17)

If sine and cosine are represented by a numerical variable, the previous equations turn
into,

d
dt

C = −Sω (18)

d
dt

S = Cω (19)

where ω is given by (11) from the droop control. Then, the phase shifting needed in
some terms of the DQ-abc and abc-DQ transformations can be computed by trigonometric
equivalents, such as,

sin(ωt + b) = sin(b)cos(ωt) + cos(b)sin(ωt) (20)

cos(ωt + b) = cos(b)cos(ωt)− sin(b)sin(ωt) (21)

where the term cos(ωt) and sin(ωt) will be substituted by the terms C and S, respectively.
Therefore, with these changes, the DQ-abc and abc-DQ transformations become (22) and
(23); note that the explicit time dependency has been removed from the droop control,
becoming an autonomous system.

TabcDQ−aut =
2
3


C sin( 2π

3 )S + cos( 2π
3 )C cos( 2π

3 )C− sin( 2π
3 )S

−S −(cos( 2π
3 )S− sin( 2π

3 )C) −(sin( 2π
3 )C + cos( 2π

3 )S)

1
2

1
2

1
2

 (22)

TDQabc−aut =
2
3


C −S 1

sin( 2π
3 )S + cos( 2π

3 )C −(cos( 2π
3 )S− sin( 2π

3 )C) 1

cos( 2π
3 )C− sin( 2π

3 )S −(sin( 2π
3 )C + cos( 2π

3 )S) 1

 (23)

For the implementation of the control including the transformation, the control block
diagram changes as shown in Figure 2. As seen in this block diagram, only the active
power computation is modified, such that the output of the active power block is not ωt
but cos(ωt) and sin(ωt), which are used for the other parts in the control.

Note that with this transformation, the explicit time dependency in the terms cos(ωt)
and sin(ωt) is avoided, and therefore the C and S terms help to turn the mathematical
system model into the general autonomous form shown in (2). Then, as presented before,
with this transformation the autonomous fast-time domain method can be used to compute
the periodic steady-state solution and the stability of the system, even with variable and
unknown frequency, for a detailed MG model which can include unbalances, nonlinear
dynamics, and the commutation process.
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Figure 2. Droop control block diagram, autonomous system.

4. Microgrid Test System and Model Validation

Figure 3 shows the test system used in this work. It consists of two distributed
generation (DG) units interfaced with voltage source converters (VSC) including a LC filter,
connected through feeders to a load.

Control

DG1

DC/AC

DC 

Source

Control

DG2

DC/AC

DC 

Source

LC filter

Load

LC filter

Rf

Rf

Lf

Lf

Lfeeder

Lfeeder

Rfeeder

Rfeeder

Cf

Cf

Figure 3. Single line diagram of the test case microgrid.

The primary control of each DG unit is based on the conventional droop control
scheme. Table 1 summarizes the nominal parameters selected for the case study as well as
the parameters of the inner and the outer control loops at the primary control level. Please
note that, for all DG units in this work, for both PI controllers in each loop (current and
voltage) the parameters are the same. Furthermore, since the computation of the nominal
control parameters is out of the scope of the paper, they were taken from [31].
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Table 1. Parameters of the case study microgrid and control.

Parameter Symbol Value

Nominal voltage VRMS
L−L 400 V

Nominal frequency f ∗ 50 Hz
Nominal DC voltage VDC 1500 V
Filter resistance R f 0.1 Ω
Filter inductance L f 1.8 mH
Filter capacitance C f 27 µF
Feeder resistance R f eeder 0.1 Ω
Feeder inductance L f eeder 1.8 mH
P−ω droop coefficient Kp 3 × 10−5

Q−V droop coefficient Kq 4 × 10−4

Voltage loop proportional gain kpc 20
Voltage loop integral gain kic 50
Current loop proportional gain kpvo 2.4 × 10−2

Current loop integral gain kivo 4.5545
Frec. rest. proportional gain kpw 0.02
Frec. rest. integral gain kiw 4
Voltage rest. proportional gain kpv 0.2
Voltage rest. integral gain kiv 4
Switching frequency fc 10 kHz

Test System Model Validation

In this subsection, the autonomous test system which includes the transformation
presented in Section 3 is validated by comparing it with the original non-autonomous test
system. For this comparison, a load of 100 kW is included via a resistance model; the rest
of the system parameters are as showed in Table 1.

In Figure 4, the comparison of the autonomous test system against the non-autonomous
test system is presented. In (a), the comparison of the DG1 output current signals for fun-
damental frequency is shown; in (b), the comparison of the DG1 output current signals for
the commutated model is shown; and in (c), the comparison of the active power injected
to the load for the commutated case is shown. Note that the simulation results from both
autonomous and non-autonomous systems are practically the same for both transient and
steady-state; to corroborate this, the mean squared error (MSE) value is calculated for the
signals obtained as follows,

MSE =
1
n

n

∑
i=1

(Yi − Ŷi)
2 (24)

where n is the number of elements, Y is the original signal, and Ŷ is the new signal.
For the fundamental frequency approach, the mean squared error comparing the

currents shown in Figure 4a is 3.09 × 10−25. For the commutated approach, the mean
squared error comparing the currents shown in Figure 4b is 1.21 × 10−23. As expected,
the transformation kept the information of the complete original model, even when a high
frequency commutation process is enabled. From the results obtained in the comparison,
the model including the system transformation presented in Section 3 is validated.
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Figure 4. Comparison of the autonomous test system against the non-autonomous test system. In
(a), the comparison of the DG1 output current signals for fundamental frequency is shown; in (b), the
comparison of the DG1 output current signals for the commutated model is shown; and in (c), the
comparison of the active power injected to the load for the commutated case is shown.

5. Bifurcation Assessment Based on the Autonomous Shooting Method

In this section, three case studies are presented for analyzing the stability of the system
under different conditions: (1) a variation of the droop characteristics in the DG1 control
in fundamental frequency; (2) unbalancing the system in fundamental frequency; and
(3) a variation of the droop characteristics in the DG1 control considering the converters
commutation process. For each scenario, the periodic steady-state solution is computed
using the shooting method, and the stability information is given by the system Jacobian,
which is computed during the solution of the shooting method. Furthermore, for interested
readers, supplementary results from the case studies are presented in the Appendix A,
where the DGs controlled voltage, injected active power, and system frequency are shown.

5.1. Droop Characteristic Variation

In Figure 5, the Floquet multipliers (the eigenvalues of the Jacobian) due to the droop
characteristics variation in the DG1 control is shown. As it can be seen in this figure, it is
found that the system becomes unstable via a pair of complex Floquet multipliers leaving
the unit circle away from the real axis, which means this system has a Neimark–Sacker
bifurcation [13]. The Neimark–Sacker bifurcation essentially introduces a new frequency
with the first one in the bifurcating solution. This solution may be periodic or two-period
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quasiperiodic, depending on the relationship between the newly introduced frequency and
the frequency of the periodic solution that existed before. The Neimark–Sacker bifurcation
can be subcritical or supercritical, a branch of stable quasiperiodic solutions is created if the
bifurcation is supercritical, and a branch of unstable quasiperiodic solutions is destroyed if
the bifurcation is subcritical, i.e., a catastrophic bifurcation [13].
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Figure 5. Floquet multipliers result from the variation Kq = 0.002, Kp = [3× 10−5 : 0.0025].

In order to know which bifurcation it is in this case, the system is simulated using
the solution given by the shooting method in the point of instability (when the Floquet
multipliers fall outside the unit circle), and the resulting phase portrait is shown in Figure 6.
Note how the solution oscillates without collapsing the system, this is because in the
Neimark–Sacker bifurcation a torus attractor is formed and the solution oscillates around
it, which means that a supercritical Neimark–Sacker bifurcation occurred.

Figure 6. Phase portrait between DG1 currents phase A and B. Neimark–Sacker supercritical bifurca-
tion forming a torus attractor.

Stability Boundary Map

Another asset of the proposed approach using the shooting method is that, if two or
more bifurcation parameters are selected, the stability analysis can be repeated for a matrix
of values and stability boundary maps can be created for specific bifurcation variables,



Energies 2022, 15, 2120 12 of 18

delimiting the system operating zones. To show this, the droop characteristics Kp and Kq in
DG1 are taken as bifurcation variables. Figure 7 shows an operational boundary map, and
as explained in Section 2.2, if the absolute Floquet multiplier value becomes bigger than 1,
the system is unstable, otherwise, stable. For this case, the possible combinations of Kq and
Kp that keep the system stable are presented.

Figure 7. Stability boundary map with Kp and Kq as bifurcation variables (Dark blue stable, otherwise
unstable).

5.2. Load Unbalance Variation

In this case study, a load variation is made only in the phase C such that the system
becomes unbalanced. The steady-state solution is obtained using the autonomous shooting
method and the stability computed. The Floquet multipliers obtained from the phase C
resistance variation are shown in Figure 8; as can be seen in this Figure, the system do not
become unstable due to the unbalance in the load, however the Floquet multipliers slowly
move toward the outside of the unit circle.
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Figure 8. Floquet multipliers result from the variation RphaseC = [1.6 : 10].
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5.3. Droop Characteristic Variation with the Converters Commutation Process Enabled

In this case, the same variation in the droop characteristics as in the subsection A is
performed, the only difference is that the converters commutation process is enabled. It is
worth mentioning that in order to avoid convergence problems of the shooting method and
numerical oscillations, the switching functions are modeled using an hyperbolic tangent
approach introduced in [32].

In Figure 9, the Floquet multipliers due to the droop characteristics variation in the
DG1 control is shown. It is found again that the system becomes unstable via a pair of
complex Floquet multipliers, which means this system has a Neimark–Sacker bifurcation;
however, in this case the system becomes unstable before (Kp = 8.3× 10−4) as compared
with the fundamental frequency case. On the other hand, it can be seen that the Floquet
multipliers trajectory dynamics are completely different from the previous case.
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Figure 9. Floquet multipliers and system frequency result from the variation Kq = 0.002,
Kp = [3× 10−5 : 8.3× 10−4].

These differences show that by considering the commutation in the DG units, the
dynamics of the system change considerably, further affecting not only the overall system
power quality but the system stability against changes in the control and the grid parame-
ters. Since in practice the harmonic phenomena is always present in power-electronic-based
power systems, it is clear that the consideration of the harmonic content is necessary during
design and stability analyses.

As in the first case, in order to know which type of Neimark–Sacker bifurcation it is,
the system simulation using the unstable solution found with the autonomous shooting
method is required. Figure 10 shows the resulting phase portrait from the simulation. Note
in this Figure that the solution forms a torus, as in the first case, which means that the
instability is given by a supercritical Neimark–Sacker bifurcation; however, observe that
both phase portraits from the first case and this case are not similar, this is because, as
discussed before from the Floquet multipliers results, the system dynamics before and after
enabling the commutation process in the DG units are different and the unstable solution
has a different dynamic, showing again the need to consider detailed system models for
the system assessment.
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Figure 10. Phase portrait between DG1 currents phase A and B. Neimark–Sacker supercritical
bifurcation forming a torus attractor.

6. Discussions

The obtained results showed the reliability of the proposed transformation and the
usefulness of the shooting method for the computation of the periodic steady-state solution
of droop-controlled MGs with variable and unknown frequency. It is important to highlight
the advantages of the autonomous shooting method, since it allowed the consideration
of the detailed controlled microgrid for both fundamental frequency and enabling the
power electronic devices commutation, furthermore, it also allows nonlinear components
and unbalances in the system, which cannot be considered in the conventional small-
signal stability approaches. On the other hand, the disadvantage of this method is that
the computing time could be restrictive for multiple calculations, i.e., for computing
stability maps, even though parallel computing techniques can be included to improve
the computing time. Nevertheless, the method presented in this work, including the
necessary system transformation, is a reliable and flexible alternative for detailed islanded
microgrids stability analyzes. Furthermore, it was shown during the stability analysis that
the dynamics of the MG change considerably if the commutation of the power electronic
devices is considered. Therefore, the need for the use of detailed models during the design
stage and stability analysis is highlighted.

7. Conclusions

A detailed microgrid system, considering multiple aspects such as, nonlinearities,
unbalances and closed-loop controls was used as case study in order to perform stability
analyzes based on an autonomous shooting method. Since the microgrid is mathematically
represented by a non-autonomous system with variable frequency, a system transformation
was introduced which allowed the use of an autonomous shooting method. The transfor-
mation was validated through simulation comparisons in both fundamental frequency and
enabling the converters commutation.

The presented results revealed the suitability of the proposed transformation, and the
reliability of the autonomous shooting method for computing the steady-state solution
and stability of the system. In the case studies, the bifurcation analyzes showed that the
microgrid becomes unstable due to a Neimark–Sacker bifurcation, furthermore, with the
phase diagrams assessment it was concluded that the bifurcation was more specifically a
supercritical Neimark–Sacker bifurcation, which means that a torus attractor is formed and
the system solution oscillates around it.
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Appendix A

In this Appendix, supplementary results from the case studies are shown. In particular,
the DGs controlled voltage, the active power injected by the DGs, and the system frequency.

Appendix A.1. Case 1: Droop Characteristic Variation

Using the obtained controlled-MG model, a time-domain simulation is performed and
the results from five cycles are presented in Figure A1. In particular, the DGs controlled
voltage and the active power injected by the DGs are shown. Furthermore, the system
frequency during the whole Kp variation is presented as well. It is worth mentioning that
for this simulation, the initial state-vector used was the unstable solution computed via the
autonomous shooting method for the Case 1.
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Figure A1. Time-domain simulation of five full-cycles of the computed unstable solution in Case 1,
before the system collapses. Additionally, the system frequency during the whole Kp variation.

Appendix A.2. Case 2: Load Unbalance Variation

Using the obtained controlled-MG model, a time-domain simulation is performed and
the results from five cycles are presented in Figure A2. In particular, the DGs controlled
voltage and the active power injected by the DGs are shown. Furthermore, the system
frequency during the whole phase C load variation is presented as well.
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Figure A2. Time-domain simulation of five full-cycles of the computed solution in Case 2. Addition-
ally, the system frequency during the whole phase C load variation.

Appendix A.3. Case 2: Droop Characteristic Variation with the Converters Commutation Process
Enabled

Using the obtained controlled-MG model, a time-domain simulation is performed and
the results from five cycles are presented in Figure A3. In particular, the DGs controlled
voltage and the active power injected by the DGs are shown. Furthermore, the system
frequency during the whole Kp variation is presented as well. It is worth mentioning that
for this simulation, the initial state-vector used was the unstable solution computed via the
autonomous shooting method for the Case 3.
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Figure A3. Time-domain simulation of five full-cycles of the computed unstable solution in Case 3,
before the system collapses. Additionally, the system frequency during the whole Kp variation.
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