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Abstract

With Hebbian learning ‘who fires together wires together’, well-known problems arise. Hebbian plasticity

can cause unstable network dynamics and overwrite stored memories. Unstable dynamics can partly

be addressed with homeostatic plasticity mechanisms. Unfortunately, the time constants of homeostatic

mechanisms required in network models are much shorter than those measured experimentally.

We propose that homeostatic time constants can be slow if plasticity is gated. We investigate how

gating plasticity influences network stability and memories in plastic balanced spiking networks of neurons

with dendrites. We compare how different factors such as excitability, learning rate, and inhibition lift

the requirements for homeostatic time constants. We investigate how dendritic versus perisomatic gating

allows for different amounts of weight changes in stable networks. We suggest that the compartmentalisation

of pyramidal cells enables dendritic synaptic changes while maintaining stability. We show that spatially

restricted plasticity improves stability. Finally, we compare how different gates protect memories.

Significance statement

How does the brain maintain stable neural activity in the presence of synaptic changes? This question has been
studied extensively in the past, but we argue that one crucial aspect is missing in previous studies. While all
theoretical work has assumed plasticity to be on all the time, plasticity is in fact heavily gated. In this light, we
must reconsider the theories on stability and homeostasis of neural activity. In particular, theoretical studies
show that neural networks undergoing plasticity require fast compensatory homeostatic mechanisms to be stable.
However, experimentally measured homeostatic processes operate on much slower time scales. We studied how
the gating of plasticity can improve network stability and thereby reduce the discrepancy in the homeostatic
time constant between models and experiments.

1 Introduction
Hebbian plasticity is considered to be the neural hallmark for learning and memory. It enables the formation of
cell assemblies as it strengthens connections between cells with correlated activity. On the downside, correlations
between cells are increased even further with Hebbian plasticity. Theoretically, such a positive feedback loop
leads to undesired unstable runaway activity (Abbott and Nelson, 2000). Cortical cells, however, fire at low rates
in an asynchronous irregular manner. It is therefore unclear how neural activity in the functioning brain remains
stable despite Hebbian plasticity. To resolve this dilemma, it has been suggested that homeostatic processes
keep the network activity stable (Turrigiano and Nelson, 2004). Homeostatic processes, such as homeostatic
scaling (Turrigiano et al., 1998; Turrigiano, 2017; Desai et al., 2002; Goel and Lee, 2007; Keck et al., 2013; Maffei
and Turrigiano, 2008) or inhibitory plasticity (Woodin and Maffei, 2010; Goel and Lee, 2007; Kuhlman et al.,
2013; Keck et al., 2011; Chen et al., 2011; Vogels et al., 2011; van Versendaal and Levelt, 2016; Li et al., 2014),
counteract increases in the network activity, but it has been proposed that they might be insufficient to keep
the network activity stable for the following reason: these processes operate on a timescale of hours or days
(Keck et al., 2017; Kaneko et al., 2008a; Greenhill et al., 2015; Kaneko et al., 2008b; Watt and Desai, 2010), but
theoretical models require homeostatic mechanisms that act on the same timescale as Hebbian plasticity or faster
(Zenke et al., 2013; Zenke et al., 2017; Toyoizumi et al., 2014; Litwin-Kumar et al., 2016; Miller and MacKay,
1994; van Rossum et al., 2000). Zenke et al., 2017, therefore, proposed that there must be a fast compensatory
mechanism. Such a mechanism could modulate plasticity itself (Naumann and Sprekeler, 2020). Models requiring
fast mechanisms typically assume that plasticity is continuously happening (e.g. Litwin-Kumar et al., 2016; Zenke
et al., 2013). In contrast, in the brain plasticity is highly regulated by different neuromodulators (Couey et al.,
2007; Bissière et al., 2003; Lin et al., 2003; Pawlak et al., 2010; Seol et al., 2007; Zhang et al., 2009; Brzosko
et al., 2015), astrocytes (Valtcheva and Venance, 2016), and inhibitory interneurons (Artinian and Lacaille, 2018;
Kuhlman et al., 2013; Letzkus et al., 2011). These different regulators of plasticity can slow down, speed up,
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Figure 1: Balanced spiking neural network with 2-compartment pyramidal cells. a: The network
consisted of 1000 recurrently connected 2-compartment pyramidal cells (triangle and stick), and 250 recurrently
connected inhibitory cells (circle). Both the excitatory and the inhibitory population receive external Poisson
inputs (black arrows). b: Somatic (black) and dendritic (red) voltage traces from one example pyramidal cell. c:
Raster plot of excitatory cell activity in the network. d: Example currents from one example pyramidal cell. It
receives large E (magenta) and I (cyan) currents which cancel on average (black). e: Distribution of excitatory
firing rates. f: distribution of excitatory interspike intervals. g: Distribution of coefficient of variation (CV)
of the interspike intervals. e-g indicate that the network is in a balanced state. h: Raster plots of excitatory
network activity in a network without plasticity (left), with plasticity and a homeostatic time constant ⌧ =30ms,
and with plasticity and a homeostatic time constant ⌧ =10ms.

gate, or flip plasticity. They differ in their temporal and spatial precision and hence enable rigorous plasticity
control. We, therefore, explore how different regulators or gates affect plasticity and stability. Specifically, we
study using computational modelling whether gating of plasticity can lower the requirements for time constants
of homeostatic plasticity to values that are more in line with experimentally observed homeostatic processes
without strongly impairing plasticity of synaptic connections.

2 Results

2.1 Balanced spiking neural network with 2-compartment pyramidal cells.

To study how different modulators of plasticity affect stability and plasticity, we built a balanced recurrent
network of 1000 excitatory pyramidal cells (E) and 250 inhibitory cells (I, Fig. 1). To explore perisomatic and
dendritic gating separately, we modelled the pyramidal cells with two compartments, one for the soma and one for
the dendrite (Fig. 1a,b, Naud and Sprekeler, 2018). The somatic compartment represents the perisomatic region,
i.e. the soma and the proximal basal and apical dendrites, which contains the perisomatic synapses. The dendritic
compartment represents the distal apical dendrites, which we will refer to as the dendrite, which contains the
dendritic synapses. Both populations receive Poisson spike trains as external inputs. Before implementing
plasticity in our model, we made sure that the network is in the asynchronous irregular regime (Fig. 1 c,e,f,g),
due to a balance between excitation and inhibition. That is, strong excitatory recurrent inputs were balanced by
strong inhibitory feedback (inhibition-stabilized regime, Tsodyks et al., 1997). On the single-cell level, this is
reflected in large excitatory and inhibitory currents, which cancel each other on average (Fig. 1d).
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Figure 2: Gating plasticity loosens the requirements for fast homeostatic processes. a-d: Explosion
factor as a function of homeostatic time constant ⌧ and the respective gate. a: learning rate, b: excitability,
c: spiking threshold, d: inhibition. e: comparison of the critical homeostatic time constant ⌧crit for different
gates, plotted as a function of baseline dendritic weight change to allow for comparison. f-g: Illustration of
the explosion factor. The star indicates the maximum firing rate of each simulation that was taken for the
measurement of the explosion factor. The grey area denotes the reference firing rate at the beginning of the
simulation, which was taken to calculate the explosion factor. f: Example network simulation, where the firing
rate does not explode (with explosion factor 1.05). g: Example network simulation, where the firing rate explodes
(with explosion factor 3.16). h: Distribution of explosion factors. Inset: zoom into the x-axis.

To test the effect of plasticity in our network, we added a standard triplet STDP rule (Pfister and Gerstner,
2006; Clopath et al., 2010; Bono et al., 2017) to the excitatory connections. As this form of plasticity is Hebbian,
it can lead to an explosion of activity in recurrent networks (Keck et al., 2017; Abbott and Nelson, 2000).
To keep the activity of the network in the balanced state despite ongoing plasticity, we included homeostatic
plasticity (Keck et al., 2017; Abbott and Nelson, 2000). Following previous work (Bienenstock et al., 1982;
Pfister and Gerstner, 2006; Clopath et al., 2010; Zenke et al., 2013), the homeostatic process in our network
monitored the postsynaptic firing rate and adjusted long-term depression (LTD) to keep the neurons at their
target firing rate. The time constant ⌧ of this homeostatic process is critical for stability as it determines how
quickly the homeostatic process reacts to changes in firing rate. If ⌧ is too large, the homeostatic plasticity
cannot compensate for the correlation-based weight changes and the network activity explodes (Fig. 1h middle).
When ⌧ is sufficiently small, the homeostatic plasticity maintains stability (Fig. 1h right). The time constants
required for stability in models are orders of magnitude smaller than those of homeostatic processes in the brain.
Therefore, we explored in our model whether gating plasticity can allow for larger homeostatic time constants,
to reconcile stability constraints with experimental data (Zenke et al., 2017; Turrigiano et al., 1998).

2.2 Gating plasticity loosens the requirements for fast homeostatic processes.

We next explored how different forms of plasticity modulation affect the required homeostatic time constant in our
model. One gate we explored was the excitability of individual neurons to model the fact that neuromodulation
can change the size or the duration of excitatory postsynaptic potentials (EPSPs) (Rasmusson, 2000). In our
two-compartment leaky-integrate-and-fire neuron model, we modelled excitability as a factor � multiplied to the
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excitatory synaptic currents (Eq. 1,2, the superscript d indicates the dendritic variable). A second gate was
inhibition. We modelled its modulation by changing the inhibitory conductance gI (Eq. 12). The somatic and
dendritic voltage (Vs and Vd respectively) was therefore modelled as

Cs
dVs

dt
= �gl(Vs � El)� �gEVs � gI(Vs � EI) + �(gs

1

1 + exp(�Vd�Ed
Dd

)
+ !s) (1)

Cd
dVd

dt
= �gdl (Vd � El)� �dgdEVd � gd

I (Vd � EI) + gd
1

1 + exp(�Vd�Ed
Dd

)
+ cdK(t) + !d (2)

where Cs/d is the somatic/dendritic capacitance, gI/E is the inhibitory/excitatory conductance (index d indicates
the dendritic variables), El/EI is the reversal potential of the leak/the inhibitory synapses (note that the reversal
potential for the excitatory synapses is 0 mV and hence omitted), gs is the coupling from the dendrite to
the soma, 1

1+exp(�Vd�Ed
Dd

)
is a nonlinear term for the dendritic calcium dynamics (see Methods), !s/d is the

somatic/dendritic adaptation variable, K the kernel for the back-propagating action potential current with
amplitude cd (Naud and Sprekeler, 2018). � ensures that the somato-dendritic coupling and adaptation are the
same as in the model of Naud and Sprekeler, 2018 (see Methods).

A third gate we explored was the spiking threshold v✓. When the somatic membrane potential Vs reaches a
threshold v✓, the neuron fires a spike. Spike times tf are therefore defined as tf : Vs(tf ) > v✓. These three gates
modulate plasticity indirectly by modulating the activity of the network. A fourth gate was learning rate, which
modulates the synaptic weight changes directly, and was modelled as a factor ⌘ in the weight update. Formally,
the perisomatic synaptic weight wij and dendritic synaptic weight wd

ij from neuron j to neuron i changed as:

dwij

dt
=⌘w0A

+z+j (t)z
slow
i (t� ✏)Si(t)

� ⌘w0A
�
i (t)z

�
i (t)Sj(t) (3)

dwd
ij

dt
=⌘dw0A

+z+j (t)z
slow
i (t� ✏)Si(t)

+ (⌘dw0(�A�
i (t)z

�
i (t) +ACa(vd > ✓Ca))� ↵)Sj(t) (4)

where w0 is the initial weight, A+/� is the amount of potentiation/depression constants for the triplet rule, ACa

is the potentiation constant for the Ca2+ spike-dependent potentiation, Si/j is the post-/presynaptic spike train,
z+j is the presynaptic trace, z�i is the postsynaptic trace, zslowi is the postsynaptic trace with slow time constant.
t� ✏ denotes that the value of the trace is taken before the action potential, which happened at time t. vd is the
dendritic membrane potential. ✓Ca is the threshold for Ca2+ spike-dependent plasticity (the term vd > ✓Ca takes
values 1 or 0 depending on whether vd is above the threshold ✓Ca) and ↵ is transmitter-induced depression.

To quantify how gating affects stability, we defined the explosion factor as the maximum firing rate in the
simulation normalised by the firing rate at the beginning of the simulation, which indicates whether the network
is stable (explosion factor close to 1, Fig. 2f) or explodes (explosion factor > 1.5, Fig. 2g). The threshold of 1.5
for a network to be defined as exploding was based on the bimodal distribution of explosion factors (Fig. 2h).

We started by varying learning rate in both the perisomatic and the dendritic compartment (Fig. 2a).
Expectedly, we found that with a low learning rate and a large homeostatic time constant ⌧ , the network was
stable (the black region in Fig. 2a). For higher learning rates, the network activity exploded already at low
values of ⌧ . This is expected as a higher learning rate increases the rate of synaptic change, which compromises
the stability of the network. We defined the largest ⌧ at which the network was still stable as the critical

homeostatic time constant ⌧crit (Fig. 2a). A decrease in learning rate increased this critical time constant ⌧crit.
Similarly, a decrease in excitability also increased the ⌧crit (Fig. 2b). An increase in the spiking threshold
has a similar effect as it makes the cells less likely to spike, i.e. less excitable. In these cases, ⌧crit decreases,
because increasing excitability increases the overall activity in the network, which in turn increases the amount
of plasticity. An increase in inhibition on the contrary had the opposite effect on the critical time constant ⌧crit
(Fig. 2d). Increasing inhibitory inputs decreases firing rates in the network which improves network stability.
Therefore, homeostatic mechanisms for network stability can be slower when excitability and learning rate are
downregulated or when inhibition is upregulated.

Although these effects were to be expected, qualitatively, our computational model allowed us to compare
them quantitatively. We next characterised the different gates by comparing their effects on ⌧crit. To compare
gates despite their different scales, we defined a common variable. That is, we plotted ⌧crit as a function of the
total dendritic weight change happening in a stable network (with a ⌧ of 5 ms, see Methods, Fig. 2d). This
analysis revealed that excitability and learning rate affect the critical time constant ⌧crit in a different way than
inhibition. ⌧crit increases supralinearly as a function of the baseline dendritic weight change for the excitability
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Figure 3: Learning in dendrites helps mitigate the plasticity-stability dilemma. a-c: Distribution of
critical homeostatic time constants for gating in the dendritic (red) and in the perisomatic (black) synapses for
(a) a two-fold increase in the learning rate, (b) a 15% increase in excitability and (c) a 30% decrease in inhibition.
d-f: Distribution of dendritic weight changes for gating in the dendritic (red) and in the perisomatic (black)
synapses for (d) a two-fold increase in the learning rate, (e) a 15% increase in excitability and (f) a 30% decrease
in inhibition. The rectangles represent the interquartile range (IQR) between first and third quartiles. The thick
horizontal lines represent the medians. The whiskers indicate the lowest and highest values within 1.5xIQR from
the first and third quartiles, respectively. The circles denote outliers. All p-values were obtained by using the
two-sample student’s t-test.

and learning rate gates, whereas it increases sublinearly for the inhibition gate. The actual dendritic weight
change also decreases as a function of the critical homeostatic time constant (Suppl. Fig. S1). To conclude, all
gates can improve network stability and lower the requirements for the time constant of homeostatic mechanisms.
However, excitability and learning rate have a larger modulating gain than inhibition.

2.3 Learning in dendrites facilitates synaptic changes while maintaining network

stability.

The increase in the critical time constant by gating comes at the cost of the lack of plasticity (measured as the
total dendritic weight change, Suppl. Fig. S1). However, pyramidal neurons consist of a soma and a complex
ramified structure of dendrites. Interestingly, the majority of excitatory synapses are located on dendrites,
electrotonically distant from the soma. Inspired by these observations, we hypothesised that the anatomy of
pyramidal cells could enable both plasticity of dendritic synapses and stable somatic activity at the same time.
We, therefore, increased the learning rate and the excitability separately for the perisomatic and the dendritic
synapses and compared their impact on ⌧crit.

We found that increasing plasticity (by increasing learning rate or excitability or decreasing inhibition) in the
dendrite compromised the critical time constant ⌧crit less than in the perisomatic compartment (Fig. 3). ⌧crit
was significantly larger for a two-fold increase in the learning rate in the dendrite than for the same increase in
the learning rate in the perisomatic compartment (Fig. 3a). Moreover, modulating learning rate only in the
dendrite allowed for significantly higher dendritic weight changes at a larger critical time constant (Fig. 3d).
Increasing excitability by 15% in the dendrite led to a significantly larger ⌧crit than increasing excitability by
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Figure 4: Spatially precise gating of plasticity enables learning while keeping network activity

stable. a: Distribution of critical homeostatic time constants for a two-fold increase in the learning rate in a
subpopulation of excitatory cells (green) and in the entire network (black). b: Distribution of critical homeostatic
time constants for a 15% increase in excitability in a subpopulation of excitatory cells (green) and in the entire
network (black). c: Distribution of critical homeostatic time constants for a 20% decrease in inhibition in
a subpopulation of excitatory cells (green) and in the entire network (black). The rectangles represent the
interquartile range (IQR) between first and third quartiles. The thick horizontal lines represent the medians. The
whiskers indicate the lowest and highest values within 1.5xIQR from the first and third quartiles, respectively.
The circles denote outliers. p-values were obtained by using the two-sample student’s t-test.

15% in the perisomatic compartment (Fig. 3b), while there was no difference in dendritic plasticity between the
two conditions (Fig. 3e). Similarly, a 30% decrease in dendritic inhibition maintained a significantly larger ⌧crit
than the same decrease in perisomatic inhibition (Fig. 3c), while there was no difference in dendritic plasticity
(Fig. 3f). Note that we chose a two-fold increase in the learning rate, a 15% increase in excitability, and a 30%
decrease in inhibition as these changes lower ⌧crit by more than 50% (maximum explored values in Fig. 2e).

We hypothesised that gating is more effective in the dendrite because of the electrotonic separation of soma
and dendrite. To test this hypothesis, we increased the coupling between soma and dendrite. We found that an
increase in coupling reduced the critical homeostatic time constant (Suppl. Fig. S2a), in line with our hypothesis.
Another property that is special about the dendrite is the dendritic nonlinearity, which induces potentiation of
dendritic synapses. Removing the nonlinearity from the model reduced dendritic synaptic weight changes and
hence increased the stability of the network (Suppl. Fig. S2b). The combination of synaptic potentiation in the
presence of a dendritic nonlinearity and the separation of soma and dendrite hence enables both dendritic weight
changes and stable network dynamics.

To further illustrate the effect of a dendritic compartment, we show that critical homeostatic time constants
strongly decrease when opening the perisomatic gates in a network of single-compartment neurons (consisting of
only a perisomatic compartment, Suppl. Fig. S7).

In summary, by opening the gates for plasticity exclusively in the dendrite, the network can afford slower
homeostatic mechanisms, higher network stability, while allowing the same or a higher amount of plasticity as
when the gate is open at the perisomatic region.

2.4 Spatially precise gating of plasticity enables learning while keeping network

activity stable.

Neuromodulators were typically thought of as global and diffuse (Schwarz et al., 2015). However, neuromodulatory
projections could in principle precisely target specific cell types and subpopulations, depending on their projective
field and the receptor channels expressed in their targets. Specific neuromodulation (Totah et al., 2018) could
enable plasticity locally when learning requires synaptic adjustments only in a subset of neurons. To test how
local gating of plasticity affects the critical time constant ⌧crit, we opened the gate for plasticity in only a
subpopulation (one-fourth of the neurons) in the network and compared it to opening plasticity in the entire
network.

We found that spatially confined plasticity had a much lower impact on the critical time constant than
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global plasticity. Here, we varied the gates in both the perisomatic and the dendritic compartment. An increase
in the learning rate, an increase in excitability, or a decrease of inhibition lowered the critical time constant
substantially (Fig. 4 a-c black). Opening these gates in only one-fourth of the neurons lowered the time constant
significantly less than opening the gates in the entire network (Fig. 4 a-c green). Therefore, spatially confined
gating of plasticity has advantages for network stability beyond enabling precise control.

2.5 Protection of memories by gating plasticity.

In addition to the impact on the stability of network activity, plasticity interferes with the stability of memories.
In a plastic network, neural activity patterns lead to synaptic changes, which could overwrite memories that
were previously stored in the synaptic connections. Especially when resources are limited, forming new memories
can come at the expense of old ones. By gating plasticity, memories can in principle be protected. For example,
trivially, by switching off plasticity, old memories are protected. Interestingly, the gates we considered here
are not simple all-or-nothing gates but can be continuously modulated. We, therefore, investigated how their
modulation affects the maintenance and encoding of memories. Note that we do not use spatially localised
gating here.

Before gating plasticity, we first tested how a memory interferes with a previously stored memory in a
plastic network. We added inhibitory plasticity (Vogels et al., 2011) to ensure network stability during memory
formation and heterosynaptic depression to introduce synaptic competition (see Methods). First, we showed
pattern P1 to the network (Fig. 5a). That is, a subpopulation of 100 excitatory neurons received excitatory
Poisson input (100 Poisson spike trains with a firing rate of 20 Hz). Afterwards, neurons activated by P1 formed
a neural ensemble E1 by increasing their connectivity (Fig. 5a top left). Then, we showed a pattern P2 to the
network. P2 is similar to P1 and hence activated a group of neurons E2 that overlapped with the previously
formed ensemble. Neurons activated by P2 increased their connectivity. Because the patterns overlapped,
synapses were increased at the expense of connections from the old memory (Fig. 5a bottom). Therefore, the
new memory interfered with the old memory (Fig. 5 top right). We defined the difference between the mean
connection strength of the P1 neurons after memory formation of P1 and the mean connection strength of the
P1 neurons at the end of the simulation - after P2 has been learned - as the breakdown of the memory.

To test the effect of gating on the protection of memories, we applied the different gates after the first memory
is formed. Reducing learning rate to 0 after the first memory is formed trivially protects the memory from being
overwritten by the second pattern (Fig. 5b), as this blocked further weight changes. It is less clear how a change
in excitability or inhibition affect the storage of the memory. Unlike the learning rate, we cannot modulate
excitability or inhibition to their extremes without silencing neural activity. On the one hand, because they
decrease neural firing rates, these gates could protect memories by reducing weight changes. On the other hand,
by decreasing firing rates, they could also increase LTD as experimentally, low firing rates promote more LTD
than LTP (Dudek and Bear, 1992; Sjöström et al., 2001).

We found that a reduction in excitability could indeed protect the memory (Fig. 5c) without permanently
silencing the network (Suppl. Fig. S3c). With lower excitability, the stimulated neural ensemble, E2, fired at
a lower rate (compare E2 in Suppl. Figs. S3g and S3e), and weights within E2, including those projecting
to the overlapping ensemble, O, potentiated less (compare Fig. 5c bottom with Fig. 5a bottom). The new
ensemble, E2, hence competed to a lesser extent with the old memory, leading to less memory decay due to
heterosynaptic depression. Note that protecting the old memory hence comes at the cost of storing an equally
sized representation of P2.

Similar to reduced excitability, increased inhibition could also protect the memory (Fig. 5c) as it reduced
firing rates in the network (Suppl. Fig. S3d,h). Notably, the inhibitory plasticity in the network additionally
protected the previously formed memory, as it led to increased inhibition of the old memory ensemble E1 (Suppl.
Fig. S3i). This further reduced potentiation of synapses from the new ensemble, E2, to the overlapping ensemble,
O. We repeated the simulations with an asymmetric inhibitory plasticity rule to show that the results do not
depend on the shape of the inhibitory plasticity window (Suppl. Fig. S4).

Because decreased excitability and increased inhibition lower the firing rate of the network, we asked whether
this low firing rate induces LTD and hence counteracts the protection of the old memory ensemble. We found that
there was no increased LTD within the old memory ensemble due to low firing rates. First, the non-overlapping
population of the old ensemble fired at a very low rate (E1-O in Suppl. Fig. S3g,h). There was hence little
depression from the non-overlapping population to the overlapping one, as depression happens upon presynaptic
spiking. Second, the memory breakdown was weaker at lower excitability and higher inhibition, i.e. at lower
firing rates (Fig. 5f,g). The old memory was hence mostly at risk due to heterosynaptic depression. In line
with this, the memory breakdown correlated with the maximum mean strength of synaptic connections to the
overlapping ensemble O during pattern P2 (Suppl. Fig. S3j-l).

The specificity of the protective effect depends on which gating mechanism is used. For the learning rate,
the effect is specific at the synaptic level. For excitability and inhibition, the effect is specific at the cell level.
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Figure 5: Protection of memories by gating plasticity. a-d: After 10 seconds, we show pattern 1 (P1, grey)
to the network for 3 seconds. After a gap of 7 seconds, we show pattern 2 (P2, green) to the network for 5 seconds.
Top panels: excitatory weight matrix at two time points of the simulation. Bottom panel: mean synaptic weight
from ensemble 1 (E1) to the overlapping region (grey) and from ensemble 2 (E2) to the overlapping region over
time as an indication of the strength of the memory of P1 and P2, respectively. a: no gating. b: after P1 is
learned, the learning rate is set to 0 (denoted by purple background). c: after P1 is learned, excitability is
reduced by 50% (denoted by blue background). d: after P1 is learned, inhibition is doubled (denoted by green
background). e-g: breakdown of the memory (see a) as a function of learning rate (e), excitability (f), and
inhibition (g).
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Excitability, inhibition, and learning rate can be modulated at the compartmental level and introduce further
specificity there.

When we continuously modulated the gates, we found that the breakdown of the memory increased nonlinearly
with both increasing excitability (Fig. 5f) and decreasing inhibition (Fig. 5g), and increased linearly with learning
rate (Fig. 5e).

To conclude, all gates can protect memories. Learning rate can be modulated independent of network activity
and hence act as a switch for plasticity. Although excitability and inhibition do not modulate plasticity separately,
they can both protect memories by reducing activity and weight changes without silencing network activity.

3 Discussion
We explored the effect of different gating mechanisms on the stability of neural networks. Using a balanced
spiking neural network with 2-compartment pyramidal cells, we showed how gating of plasticity loosens the
requirements for fast homeostatic processes. We found that excitability, learning rate, and inhibition affect the
critical time constant in different ways. Interestingly, the network was more tolerant towards weight changes,
when plasticity gates were opened in the dendrite versus the perisomatic region. Plasticity in dendrites thereby
could facilitate learning without compromising the stability of the network. . We also showed that spatially
precise gating of plasticity lifts the critical time constant and thereby could locally enable learning while keeping
network activity stable. Finally, gating plasticity can protect memories from being overwritten in addition to
keeping the network activity stable.

Examples for the different modulators

Plasticity is highly modulated and gated (Bear and Singer, 1986; Pedrosa and Clopath, 2017; Couey et al., 2007;
Bissière et al., 2003; Lin et al., 2003; Pawlak et al., 2010; Seol et al., 2007; Zhang et al., 2009; Brzosko et al.,
2015). In this paper, we explored different such modulations of plasticity. First, inhibitory cell types, which
target perisomatic and apical dendrites of excitatory cells, can modulate plasticity. It has been shown that
disinhibition - the inhibition of inhibitory cells - promotes learning (Letzkus et al., 2011; Kuhlman et al., 2013;
Clopath et al., 2016). Dendritic inhibition can influence plasticity directly by affecting depolarizing events in the
dendrite, such as back-propagating action potentials and calcium spikes (Larkum et al., 1999; Wilmes et al.,
2016). Perisomatic inhibition can modulate plasticity indirectly by decreasing the firing rate of the neuron, as
synaptic weight changes depend on neural activity. The modulation of plasticity via inhibition can be both
1) fast, because interneurons can be switched on and off quickly, and 2) local, because they can be precisely
targeted by cholinergic (Woody and Gruen, 1987; Metherate et al., 1992; Xiang et al., 1998; Froemke et al., 2007;
Froemke et al., 2013) and noradrenergic neuromodulation (Kuo and Trussell, 2011; Martins and Froemke, 2015).

In addition, neuromodulators influence plasticity by regulating neural excitability (acetylcholine and no-
radrenaline (Xiang et al., 1998; Rasmusson, 2000; Joshi et al., 2016)). For example, acetylcholine binds to
muscarinic receptors, which activate a cascade that leads to a decreased permeability of potassium channels
(Rasmusson, 2000). This prolongs the duration of EPSPs and thereby increases excitability.

A similar form of neuromodulation is achieved by presynaptic inhibition. A recent theoretical study showed
that presynaptic inhibition can act as a fast modulator of plasticity to stabilize network activity (Naumann and
Sprekeler, 2020). They showed that presynaptic inhibition is an attractive control mechanism as it depends on
network activity and therefore provides a gain control loop. Similar to excitability in our model, the analysis in
Naumann and Sprekeler, 2020 shows a supralinear relationship between presynaptic inhibition strength and the
critical homeostatic time constant (Fig. 2).

Finally, because many forms of plasticity are NMDAR-dependent (Dudek and Bear, 1992), a modulation of
NMDA channels could affect plasticity directly. NMDA channel permeability can be modulated by D-serine,
the origin of which is debated (Wolosker et al., 2016), although it was initially thought to be synthesised by
astrocytes (Wolosker et al., 2016; Henneberger et al., 2010). Such a direct modulation of plasticity would
correspond to modulation of learning rate in our model. A different form of learning rate modulation could
be achieved by dendritic inhibition, which is precisely timed to not affect the integration of EPSPs from the
dendrite to the soma (Wilmes et al., 2016).

Localised gating could also be achieved by the interplay of multiple mechanisms or network effects. For
example, non-specific gating together with the specific feedforward input could lead to specific activity-dependent
gating (by a coincidence mechanism).

Hence, plasticity is highly gated and modulated. Depending on the form of modulation, the effect on plasticity
can be precisely timed and spatially confined.
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Predictions from the model

We showed that larger synaptic changes are tolerated in dendrites than in the perisomatic region for the same
critical time constant (Fig. 3). Therefore, our model predicts that more weight changes should be seen in
dendrites. The weaker the dendrite and the soma are coupled, the larger becomes the advantage of the separate
dendritic compartment. Hence, we predict that neurons with electrotonically more separate dendrites can
undergo more dendritic plasticity.

If plasticity is gated in space and time, i.e. synaptic changes are only locally permitted in limited periods of
time, then we would observe that the total amount of synaptic change is not constant, but varies in time and
space. The amount of synaptic change averaged over longer periods of time may be constant. When taking
averages over shorter periods, we predict that the amount of synaptic change varies significantly over time.

Our model shows that the gates differ in their impact on the critical homeostatic time constant (Fig. 2e).
We found that, for inhibition, the critical time constant decreases sublinearly as a function of the resulting
increased dendritic weight change. For excitability and learning rate, however, the critical time constant decreases
supralinearly. Our model, therefore, predicts that gating plasticity with inhibition allows for a larger critical
time constant than gating plasticity with excitability or learning rate. We predict that when inhibition and
excitability are separately modulated in an experiment, that the network will lose stability earlier with a change
in excitability than with a change in inhibition.

We found that the gates also differ in their ability to protect memories (Fig. 5e-g). Learning rate is the
only gate which can completely switch off plasticity to protect the memory. The memory breakdown increased
supralinearly with a change in inhibition or excitability, whereas it increased linearly with a change in learning
rate. Our model hence predicts that memories break down earlier when inhibition or excitability are modulated
than with modulation of learning rate.

Homeostatic mechanisms and fast compensatory processes

The homeostatic mechanisms which cause the dilemma reported by Zenke et al., 2017 and our paper act on
long time scales (hours to days) on the synaptic strengths, as e.g. the BCM sliding threshold and synaptic
scaling. They ensure that synaptic weights do not grow unlimited. They can be considered homeostatic because
they achieve a certain set point that is stable on average over long time scales. They are feedback controllers,
which sense a recent average of the firing rate and adjust weights accordingly. To stabilise Hebbian plasticity,
homeostatic mechanisms typically need to be as fast as or faster than the destabilising Hebbian plasticity (Zenke
et al., 2017). Therefore, as Zenke et al., 2017 point out, there must be other fast compensatory mechanisms in
addition to those slow homeostatic mechanisms. Modelling studies used e.g. inhibitory plasticity with a fast
timescale, or heterosynaptic or transmitter-induced plasticity to keep the models stable (Zenke et al., 2015;
Litwin-Kumar et al., 2016). Inhibitory plasticity may have a stabilising role (Sprekeler, 2017), but the time scale
of inhibitory plasticity appears to be rather slow in comparison to excitatory plasticity (Froemke et al., 2007).
Presynaptic inhibition (Naumann and Sprekeler, 2020) or intrinsic plasticity processes that act on the order of
minutes (van Welie et al., 2004; Misonou et al., 2004) are good candidates for fast compensatory mechanisms. For
any such mechanism, it is however important that it does not destroy the signal or prevent plasticity altogether.
To achieve both stability and plasticity, it is important that weight changes can occur. The homeostatic set
point of weights should be achieved on average over longer time scales, while allowing temporal deviations from
the setpoint (Zenke et al., 2017). The gates, we study here, especially excitability, spike threshold and inhibition
could be the target of fast compensatory mechanisms. The point of our study, however, is that plasticity is not
always switched on, which is often disregarded in modelling studies. If opening the gates for plasticity is required
for synaptic change, networks become much more stable.

Storing overlapping memories

We showed that all gates protect memories from being overwritten by overlapping neural activity patterns. If
the overlapping activity pattern is a new experience that is deemed important enough to be stored in memory,
such that the gate for plasticity is opened, the problem of overwriting reappears. Then, further mechanisms
are needed to decide whether a memory should be updated to incorporate new features, or whether the new
experience is different enough from the memory to be considered a different memory (pattern separation).
Sensory discrimination tasks, which reward the successful discrimination of stimuli, show that cells change their
selectivity such that the task-relevant stimuli are better represented (Khan et al., 2018; Goltstein et al., 2013;
Poort et al., 2015). Therefore, the available pool of neurons or the selectivity of the neurons could change to
allow for an equally-sized representation of both stimuli.
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Limitations

Our model provides a comparison between different gating mechanisms. The precise values for the critical
homeostatic time constant depend on parameter choices (Suppl. Fig. S6). We simulated a balanced spiking
network undergoing spontaneous activity to allow for the comparison of the different plasticity gates. A network
which is externally stimulated may have additional requirements for the homeostatic time constant.

In our model, we used one form of homeostatic plasticity, which adjusts LTD based on the postsynaptic firing
rate. There are, however, different forms of homeostatic plasticity such as inhibitory plasticity (Woodin and
Maffei, 2010) and synaptic scaling (Turrigiano et al., 1998). Inhibitory plasticity also requires fast homeostatic
mechanisms when plasticity is not gated (Zenke et al., 2017; Litwin-Kumar et al., 2016). With synaptic scaling
as a homeostatic mechanism in our network (Suppl. Fig. S5), gating plasticity increases stability. We, therefore,
expect that the gates studied here will similarly lift the requirements for the time scale of inhibitory plasticity and
synaptic scaling. It will be interesting to explore the effects of the inhibitory gate on a homeostatic mechanism,
which depends on inhibitory plasticity.

Conclusion

In summary, our study using balanced spiking neural networks with 2-compartment pyramidal cells shows how
different forms of gating plasticity increase the stability of neural networks in the presence of plasticity. Our
results suggest an important role for dendrites as they can undergo synaptic plasticity with minor effects on
network stability. Our results also imply that gating should be locally restricted, supporting the recent finding
that neuromodulation may be more specific than initially thought (Totah et al., 2018). Finally, diverse gating
mechanisms can protect memories, even if they affect network activity, such as excitability or inhibition.

4 Materials and Methods

Balanced network

We built a recurrent neural network model with NE =1000 excitatory (E) and NI =250 inhibitory (I) cells. Both
E and I cells received excitatory inputs from a pool of 1000 Poisson processes with a firing rate of 2 Hz and with
a connection probability of p=10%. The E cells receive these inputs onto their perisomatic compartment. All
neurons were randomly connected. Excitatory cells receive excitatory and inhibitory synapses on both their
perisomatic and their dendritic compartment. The connection probability is 10% for all connections except from
excitatory cells to excitatory cell’s perisomatic compartment. The connection probability for those connections
is 9% to account for the fact that the cells also receive inputs on their dendrites in the two-compartment model.
The connection strength of the synapses is chosen such that the network is balanced (see Table 4).

2-compartment pyramidal cell model

For the excitatory population, we used a 2-compartment integrate and fire pyramidal cell model with spike-
triggered adaptation, adapted from the model by Naud and Sprekeler, 2018 which was originally fitted to data
from layer 5 pyramidal cells. It has two coupled membrane equations, one for the soma (Vs, Eq. 1), one for the
dendrite (Vd, Eq. 2), modelled as (for clarity we repeat the equations from the main text):

Cs
dVs

dt
= �gl(Vs � El)� �gEVs � gI(Vs � EI) + �(gs

1

1 + exp(�Vd�Ed
Dd

)
+ !s) (1)

Cd
dVd

dt
= �gdl (Vd � El)� �dgdEVd � gdI (Vd � EI) + gd

1

1 + exp(�Vd�Ed
Dd

)
+ cdK(t) + !d (2)

where Cs/d is the somatic/dendritic capacitance, gI/E is the inhibitory/excitatory conductance (index d
indicates the dendritic variables), El and El are the reversal potentials of the leak and the inhibitory synapses,
respectively (note that the reversal potential of the excitatory synapses is 0 mV and, therefore, omitted), � is
excitability, !d/s is the somatic/dendritic adaptation variable. When the soma spikes, the dendrite receives
a back-propagating action potential after a delay of 0.5 ms, which is modelled as a 2 ms long current pulse
(defined by rectangular kernel K(t)) with amplitude cd = 2600pA. With t̂s as the time of the last somatic spike,
K(t) is defined as

K(t) =
n 1 if t̂s + 0.5ms  t  t̂+ 2.5ms

0 otherwise.

The dendrite has a nonlinear (sigmoidal) term 1

1+exp(�Vd�Ed
Dd

)
corresponding to the activation of dendritic

calcium channels. Ed determines the voltage at which the threshold will be reached and Dd determines the
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slope of the nonlinear function. The nonlinear dynamics are controlled locally by gd and are also transmitted to
the soma with a coupling factor gs, such that the soma bursts. The factor � ensures that the somato-dendritic
coupling and adaptation are the same as in the model of Naud and Sprekeler, 2018, where the somatic capacitance
was 370 pF (we used Cs=200pF). The somatic adaptation variable is modelled as

d!s

dt
= �!s/⌧ s! + bs!Si(t) (5)

where bs! is the strength of spike-triggered adaptation and ⌧ s! is the recovery time scale. The dendritic adaptation
variable is written as

⌧d!
d!d

dt
= �!d + ad!(Vd � El) (6)

where ad! is the strength of subthreshold adaptation and ⌧d! is the recovery time scale.
For the inhibitory population, we used a single-compartment leaky integrate-and-fire neuron model, which

membrane potential V evolves according to:

Cs
dV

dt
= �gl(V � El)� gEV � gI(V � EI) (7)

For all neurons, excitatory and inhibitory conductances, gE and gI respectively, are increased by the synaptic
weight wiE/wiI , depending on their type i upon a spike event in a presynaptic excitatory or inhibitory neuron
with spike train Sj(t), and decay exponentially with time constants ⌧E and ⌧I , respectively:

dgE
dt

= �gE
⌧E

+
X

k

wijSj(t) (8)

dgI
dt

= �gI
⌧I

+
X

k

wijSj(t). (9)

Both excitatory and inhibitory neurons had a refractory period of 8.3 ms (chosen according to the network model
from Zenke et al., 2013. Initial membrane potentials for Vs and V were sampled from a Gaussian distribution
with µ = -70mV and � = 10mV to prevent that all neurons spike at the same time at the beginning of a
simulation. Vd was set to -70mV initially.

Plasticity

Synapses from neuron j targeting the perisomatic compartment of neuron i change their synaptic weight wij

according to the triplet rule (Pfister and Gerstner, 2006). For clarity we repeat the same equation as in the
main text:

dwij

dt
=⌘w0A

+z+j (t)z
slow
i (t� ✏)Si(t)

� ⌘w0A
�
i (t)z

�
i (t)Sj(t) (3)

where w0 is the initial weight, A+/� is the amplitude of potentiation/depression (the depression one is time
dependent, see below), Si/j is the post-/presynaptic spike train, z+j is the presynaptic trace, z�i is the postsynaptic
trace, zslowi is the postsynaptic trace with a slower time constant. ✏ denotes a small fraction of time such that
t� ✏ indicates that the value of the trace is taken before the time point of the action potential t. Parameters
were chosen as in (Zenke et al., 2013).

Synapses from neuron j to neuron i targeting the dendritic compartment change their synaptic weight wd
ij

according to the same triplet rule with the back-propagating action potential (bAP) as the postsynaptic spike
and an additional Ca-spike-dependent potentiation at the time of a presynaptic spike.

dwd
ij

dt
=⌘dw0A

+z+j (t)z
slow
i (t� ✏)SbAP

i (t)

+ (⌘dw0(�A�
i (t)z

�
i (t) +ACa(vd > ✓Ca))� ↵)Sj(t) (4)

Here, the timing of the back-propagating action potential in the dendrite is used to update the post-synaptic traces
z�i and zslowi and SbAP

i (t) is the postsynaptic train of back-propagating action potentials. A back-propagating
action potential is detected if three conditions are met: (1) the dendritic membrane potential vd exceeds a
threshold of -50 mV, and (2) there was a somatic spike within the last 3 ms, and (3) there was no backpropagating
action potential within the last 5.8 ms (to account for the refractory period). Synapses are potentiated by a
constant amount ACa when the presynaptic cell fires and the postsynaptic dendritic membrane potential vd
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exceeds a threshold ✓Ca of -40mV. The term vd > ✓Ca takes a value of 1 when the threshold is crossed and is
0 otherwise. Synapses are depressed by a constant amount ↵ for each presynaptic spike (transmitter-induced
plasticity).

The pre- and postsynaptic traces are defined as:

dz+j
dt

= �
z+j
⌧+

+ Sj(t) (10)

dz�i
dt

= � z�i
⌧�

+ Si(t) (11)

dzslow
i

dt
= � zslow

i

⌧ slow + Si(t) (12)

where ⌧+, ⌧�, and ⌧ slow are the time constants with which the traces decay. Both perisomatic and dendritic
excitatory synapses are limited by a maximum synaptic weight wmax = 10 nS.

Homeostatic Plasticity

The depression amplitude A�
i for all synapses onto neuron i is a function of a moving average of neuron i’s

activity s̄i:

A�
i (t) =

A+⌧+⌧ slow

⌧�
s̄2i (13)

where  is the target firing rate, A+, ⌧+, ⌧� and ⌧ slow are variables from the triplet STDP rule and s̄i is the
low-pass filtered spike train:

⌧
ds̄i
dt

= �s̄i + Si(t) (14)

with ⌧ defining the time constant of the homeostatic plasticity.

Synaptic Scaling

In Suppl. Fig. S5, instead of a sliding depression amplitude (Bienenstock et al., 1982), we used synaptic scaling
as a homeostatic mechanism, implemented by the term �(� s̄i) in the following weight update equations. As
before s̄i is the moving average of neuron i’s activity,  is the target firing rate. For perisomatic synapses,
weights change according to:

dwij

dt
=⌘w0A

+z+j (t)z
slow
i (t� ✏)Si(t)

+ (�⌘w0A
�
i z

�
i (t) + �(� s̄i))Sj(t) (15)

where
� =

A+⌧+⌧ slow

⌧�
(16)

Equivalently, for the dendritic synapses, weights change according to:

dwd
ij

dt
=⌘dw0A

+z+j (t)z
slow
i (t� ✏)SbAP

i (t)

+ (⌘dw0(�A�
i z

�
i (t) +ACa(vd > ✓Ca))� ↵+ �(� s̄i))Sj(t) (17)

A�
i was fixed to 2.7e-3.

Explosion factor

We quantify the stability with the explosion factor EF. We calculate it as follows:

EF =
rmax

rbaseline
(18)

where rmax is the maximum population firing rate within the duration of the simulation and rbaseline is the
population firing rate averaged over the first 50 ms of the simulation. Therefore, an explosion factor close to 1
indicates that the network activity is stable. The distribution of explosion factors was bimodal with a sharp
peak close to 1 and a broader distribution of larger EFs (Fig. 2h). We defined a threshold separating those two
modes, which defines whether the network is stable or explodes:

network is
n stable if EF  1.5

unstable if EF > 1.5.
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Critical time constant ⌧crit

For each value of the gate, we calculated the maximum ⌧ for which the network was stable. It additionally had
to be smaller than the minimum ⌧ for which the network was unstable.

Baseline dendritic weight change

For each gating value, we calculated the sum of all weight changes in the dendrite in a 200 s simulation with a ⌧
of 5 ms.

Statistical analyses

To test for significance in Fig. 3 and Fig. 4, we used the two-sample student’s t-test.

Simulation

For Fig. 1, we simulated the network for 10s without plasticity. Simulations to calculate the explosion factor (for
Figs. 2-4) were run for 200 seconds. We simulated an initial warm-up phase for 3 ⌧ seconds without plasticity to
calculate the average population firing rate for the balanced network. We used the average population firing
rate of the last 2 seconds of the warm-up phase to set the target firing rate  in our model. We then switch
on plasticity. All simulations were run at a timestep of 0.1 ms. For the plots in Figs. 1-3, each condition was
simulated with 10 different seeds.

Memory network (Fig. 5)

We used the described network and added plasticity on inhibitory to excitatory synapses and a competition
mechanism for postsynaptic weights.

Inhibitory Plasticity Synapses from inhibitory neuron j to excitatory neuron i change their weight wI
ij

according to Vogels et al., 2011

dwI
ij

dt
=⌘IzIj (t)Si(t)

+ (⌘IzIi (t)� ↵I)Sj(t) (19)

where ⌘I is the inhibitory learning rate, zIj (t)/zIi (t) is the pre/post-synaptic trace, Sj(t)/Si(t) is the pre/post-
synaptic spike train, and ↵I = 2⌧iSTDP determines the amount of transmitter-induced depression Vogels et al.,
2013. Plastic inhibitory weights are limited by a maximum weight wI

max = 100nS. The pre/post-synaptic traces
zIj (t)/z

I
i (t) are written as

dzIj
dt

= �
zIj

⌧iSTDP
+ Sj(t) (20)

dzIi
dt

= � zIi
⌧iSTDP

+ Si(t). (21)

For Suppl. Fig. S4, we explored a different form of inhibitory plasticity with an asymmetric learning rule:

dwI
ij

dt
=⌘IAI

+z
I
j (t)Si(t)

+ ⌘I(�AI
�z

I
i (t)� ↵I)Sj(t) (22)

where AI
+ = 2 and AI

� = 0.5.

Heterosynaptic depression If the sum of postsynaptic weights in the perisomatic compartment or the
dendrite exceeds a maximum 1.5pNEw0 (hard bound), all perisomatic/dendritic synaptic weights are scaled
down equally by the average synaptic weight change of the postsynaptic compartment in the current time step,
that is the total perisomatic/dendritic weight change divided by the number of incoming perisomatic/dendritic
synapses.
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Stimulation protocol We first simulated the non-plastic network for 5 s to calculate the steady state
population firing rate. We then introduced plasticity with a target firing rate  of the measured population
firing rate and simulated the network with plasticity for another 5 s. Then, we activated pattern P1 for 3 s,
which was realised by an external input of 100 Poisson spike trains with a firing rate of 20 Hz to neurons with
indices 400 to 499 (ensemble E1). Afterwards, we changed the gating variable under investigation (except in Fig.
5a, where we did not apply any gating). After a stimulation pause of 7 s, we activated pattern P2 for 5 s, which
was realised by an external input of 100 Poisson spike trains with a firing rate of 30 Hz to neurons with indices
450 to 549 (ensemble E2). We continued the simulation for further 10 s without stimulation.

Single-compartment network

For Suppl. Fig. S7, we simulated a network of the same size, where excitatory cells were single-compartment
neurons. The somatic membrane equation was the same as for the two-compartment neurons with gs = 0 (no
coupling to the dendrite). All parameters were the same as in the original network, with two exceptions, as
we placed all synapses on the perisomatic compartment. First, the connection probability from excitatory to
excitatory cells was increased to pEE = 0.19 to account for the additional synapses that were previously placed
on the dendrite. Second, in addition to the inhibitory synapses the soma already contained in the original
simulation, it contained inhibitory synapses with the connection strength of inhibitory synapses on the dendrite
in the original model wd

EI = 4.0nS with a probability of 0.1.

Parameters

Table 1: Parameters of the network.

Parameter Value
NE 1000
NI 250
NPoisson 1000
�Poisson 2 Hz
p 0.1
wEP 1.6 nS
wIP 1.6 nS
wEE 1.8 nS
wd

EE 1.8 nS
wIE 4.0 nS
wII 6.0 nS
wEI 8.0 nS
wd

EI 4.0 nS
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Table 2: Parameters of the neuron model.

Parameter Value
gl 10.0 nS
gdl

170
7 nS

El(leak) -70 mV
EI(Inhibitory) -80 mV
vtheta -50.0 mV
vItheta -50 mV
⌧m 20 ms
⌧ Im 10 ms
Cs 200 pF
Cd 170 pF
cd 2600 pA
ad! -13 nS
bs! -200 pA
⌧ s! 100 ms
⌧d! 30 ms
⌧ s 16 ms
⌧d 7 ms
gs 1300 pA
gd 1200 pA
Ed -38 mV
Dd 6 mV
� 0.54

Table 3: Parameters of the plasticity.

Parameter Value
A+ 6.5e-3
ACa 7.2e-2
↵ 1e-4
✓bAP -50 mV
✓Ca -40 mV
⌧+ 16.8 ms
⌧� 33.7 ms
⌧ slow 114 ms
wmax 10 nS
⌧iSTDP 20 ms
wI

max 100 nS
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S 1. Dendritic weight changes as a function of ⌧crit in the network simulations shown in Fig.
2e where learning rate (a), excitability (b), inhibition (c), and spike threshold (d) were varied.

The different colours represent the 10 different seeds used for the simulations.
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S 2. Effect of dendrite-to-soma coupling and the dendritic nonlinearity. a,b: Effect of the

dendrite-to-soma coupling, determined by gs, i.e. how much the dendritic nonlinearity affects

the soma. a: Distribution of critical homeostatic time constants for a dendro-somatic coupling

of 1300 pA (default) versus 1600pA. b: Distribution of dendritic weight changes for a dendro-

somatic coupling of 1300 pA (default) versus 1600pA. c-d: Effect of the dendritic nonlinearity.

c: Distribution of critical homeostatic time constants for a network with nonlinear dendrites and

a network with linear dendrites. d: Distribution of dendritic weight changes for a network with

nonlinear dendrites and a network with linear dendrites. The rectangles represent the interquartile

range (IQR) between first and third quartiles. The thick horizontal lines represent the medians.

The whiskers indicate the lowest and highest values within 1.5xIQR from the first and third

quartiles, respectively. The circles denote outliers. p-values were obtained by using the two-

sample student’s t-test.
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S 3. Additional plots for the memory network. a-d: Raster plots for the simulation without

gating (a), with gated learning rate (b), with gated excitability (c) and with gated inhibition (d)

as in Fig. 5. e-h: Firing rates over time of different subpopulations: E1: memory ensemble E1

(x 2 E1), E2: memory ensemble E2 (x 2 E1), O: overlapping ensemble O (x 2 (E1\E2), all:

all excitatory neurons in the network, E1-O: ensemble E1 excluding the overlapping ensemble

O (x 2 (E1 \ O)), E2-O: ensemble 2 excluding the overlapping ensemble (x 2 (E2 \ O)). i:

Connection strengths over time from the inhibitory population to ensemble E1 (black) and from

the inhibitory population to all other cells in the ungated network. j-l: Memory breakdown as a

function of the maximum during pattern P2 of the mean strength of synaptic connections from all

excitatory cells to the overlapping ensemble O for a network with gated learning rate (j), gated

excitability (k) and gated inhibition (l).
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S 4. Protection of memories by gating plasticity in a network with asymmetric inhibitory
plasticity. a-d: After 10 seconds, we show pattern 1 (P1, grey) to the network for 3 seconds.

After a gap of 7 seconds, we show pattern 2 (P2, green) to the network for 5 seconds. Top

panels: excitatory weight matrix at two time points of the simulation. Bottom panel: mean

synaptic weight from ensemble 1 (E1) to the overlapping region (grey) and from ensemble 2

(E2) to the overlapping region over time as an indication of the strength of the memory of P1

and P2, respectively. a: no gating. b: after P1 is learned, the learning rate is set to 0 (denoted

by purple background). c: after P1 is learned, excitability is reduced by 50% (denoted by blue

background). d: after P1 is learned, inhibition is doubled (denoted by green background).
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S 5. The network with synaptic scaling as a homeostatic mechanism. Raster plots of a

network with synaptic scaling as a homeostatic mechanism. a: no gate applied, synaptic scaling

with a homeostatic time constant of 10s. b-e: synaptic scaling with a homeostatic time constant

of 50s. b: no gate applied. c: reduced learning rate (reduced by 40%). d: reduced excitability

(reduced by 10%). d: increased inhibition (increased by 10%).
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S 6. Dependence of the critical homeostatic time constant on parameters. a: The network

was simulated with two different membrane time constants. For each condition, the network was

simulated 10 times with different seeds. The distribution of critical homeostatic time constants

is plotted for the network with a membrane time constant of 20ms, and for the network with

a membrane time constant of 22ms. b: The network was simulated with different numbers of

excitatory Poisson inputs. Both the excitatory and the inhibitory cells receive these inputs. The

distribution of critical homeostatic time constants is shown for the network with 1000 Poisson

inputs, and for the network with 900 Poisson inputs. The rectangles represent the interquartile

range (IQR) between first and third quartiles. The thick horizontal lines represent the medians.

The whiskers indicate the lowest and highest values within 1.5xIQR from the first and third

quartiles, respectively. The circles denote outliers. p-values were obtained with the two-sample

student’s t-test.
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S 7. Comparison of gating plasticity in the dendrites in a network with two-compartment
neurons to gating plasticity in the perisomatic compartment in a network with single-
compartment neurons. a-b: Distribution of critical homeostatic time constants for gating in the

dendritic (red) and in the perisomatic (black) synapses for (a) a two-fold increase in the learn-

ing rate, and (b) a 15% increase in excitability. c-d: Distribution of dendritic weight changes

for gating in the dendritic (red) and in the perisomatic (black) synapses for (c) a two-fold in-

crease in the learning rate, and (d) a 15% increase in excitability. The rectangles represent the

interquartile range (IQR) between first and third quartiles. The thick horizontal lines represent

the medians. The whiskers indicate the lowest and highest values within 1.5xIQR from the first

and third quartiles, respectively. The circles denote outliers. All p-values were obtained by using

the two-sample student’s t-test.
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