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Stability, causality, and Lorentz and CPT violation
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Stability and causality are investigated for quantum field theories incorporating Lorentz andCPT violation.
Explicit calculations in the quadratic sector of a general renormalizable Lagrangian for a massive fermion
reveal that no difficulty arises for low energies if the parameters controlling the breaking are small, but for high
energies either energy positivity or microcausality is violated in some observer frame. However, this can be
avoided if the Lagrangian is the sub-Planck limit of a nonlocal theory with spontaneous Lorentz andCPT
violation. Our analysis supports the stability and causality of the Lorentz- andCPT-violating standard-model
extension that would emerge at low energies from spontaneous breaking in a realistic string theory.
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I. INTRODUCTION

Common folklore holds that the low-energy limit of an
fundamental theory at the Planck scale is necessarily a l
relativistic quantum field theory. If so, this would make
difficult to identify experiments showing directly any stru
tural deviations from usual field theory occurring at t
Planck scale, such as might perhaps be expected in s
theories. However, this folklore is invalid if the fundamen
theory violates one or more of the basic tenets of relativi
field theories. Remnant effects from the Planck scale m
then be detectable at low energies, thereby providing v
able experimental information about nature at the smal
scales.

Lorentz symmetry, stability, and causality are examp
of features normally expected to hold in physical quant
field theories. In relativistic field theories, stability and ca
sality are closely intertwined with Lorentz invariance. F
example, stability includes the need for energy positivity
Fock states of arbitrary momenta, while causality is imp
mented microscopically by the requirement that observa
commute at spacelike separations@1#. Moreover, both energy
positivity and microcausality are expected to hold in all o
server inertial frames.

Although Lorentz symmetry is well established expe
mentally, it lacks the essential status of stability and cau
ity. It would be difficult to make meaningful experiment
predictions in a theory without either stability or causali
but a stable and causal theory without Lorentz symme
could in principle still be acceptable. It is therefore wort
while to consider the possibility that Lorentz symmet
might be violated and to examine the extent to which t
violation conflicts with other fundamental properties of fie
theory. In particular, it would be of interest to establish t
existence of a class of theories that incorporate Lorentz
lation but that nonetheless maintain both stability and c
sality.

Lorentz symmetry is also one of the key ingredients in
CPT theorem@2#. This states under certain technical con
tions that CPT is an exact symmetry of local relativisti
quantum field theories. It is therefore to be expected t
investigations of theories with Lorentz violation include
subset of cases in whichCPT is also broken.
0556-2821/2001/63~6!/065008~19!/$15.00 63 0650
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The present work is motivated by the development o
the past decade of a framework allowing for Lorentz a
CPT violation within realistic models. The basic idea is th
spontaneous Lorentz violation could occur in an underly
Lorentz-covariant theory at the Planck scale@3#. Under cer-
tain circumstances, this would be accompanied byCPT vio-
lation. This mechanism appears theoretically viable and
motivated in part by the demonstration that spontaneous L
entz andCPT violation can occur in the context of strin
theories with otherwise Lorentz-covariant dynamic
Lorentz- andCPT-violating effects could therefore provid
a unique low-energy signature for qualitatively new phys
from the Planck scale.

At presently accessible energy scales, these ideas lead
phenomenology for Lorentz andCPT violation at the level
of the standard model and quantum electrodynamics~QED!
@4#. A general standard-model extension has been develo
that provides a quantitative microscopic framework for Lo
entz andCPT violation @5#. It preserves the usual SU(3
3SU(2)3U(1) gauge structure and is power-countin
renormalizable. Energy and momentum are conserved,
conventional canonical methods for quantization apply. T
origin of the Lorentz violation in spontaneous symme
breaking implies that the standard-model extension is co
riant under observer Lorentz transformations: rotations
boosts of an observer’s inertial frame leave the physics
affected. The apparent Lorentz violations in the theory
associated with particle Lorentz transformations, which
rotations or boosts of the localized fields in a fixed obser
inertial frame.

Since the standard-model extension is formulated at
level of the known elementary particles, it provides a qua
titative basis on which to analyze a wide variety of Loren
and CPT tests. In the QED context, investigations to da
include tests in Penning traps@6–9#, studies of photon bire-
fringence and radiative effects@5,10,11#, clock-comparison
tests @12–16#, experiments with spin-polarized matte
@17,18#, hydrogen and antihydrogen spectroscopy@19,20#,
and studies of muons@21,22#. In the broader context of the
standard-model extension, studies of neutral-meson sys
@23–25#, baryogenesis@26#, cosmic rays@27,28#, and neutri-
nos @5,27,29# have been performed. Present experimen
sensitivities are sufficient to detect Planck-suppressed
©2001 The American Physical Society08-1



d
d

on
h
d
ar
o

ar
lis
n
to
ar
rg
e
an
v
a

ar
in

o

fe
a
en
nd
e
io
th

of
nt
th

rm
b

ul
er
r
e
b
n
it

ic
e
la
b

io
on
o

ie
er
ry
l i
itio
n

ex

hi-
the
the

av-
rd
tion.
er-

to
-
or-
ion
de-

ble
us
en-
e
.
are
m
tion
ry
es.
the

y is
nd

ro-
this
in

iz-

es
e
pa-
-
or-

V. ALAN KOSTELECKÝ AND RALF LEHNERT PHYSICAL REVIEW D 63 065008
fects. Moreover, the next generation of tests is expecte
improve these results, in some cases by one or more or
of magnitude.

Given the substantial progress on the experimental fr
it is of interest to study the regime of validity within whic
the standard-model extension can be applied directly an
develop a methodology for handling the corrections that
expected at high energies. Initiating this program is one
the goals of the present work. The point is that the stand
model extension contains the low-energy limit of any rea
tic fundamental theory incorporating spontaneous Lore
andCPT violation, and on general grounds it is expected
have a range of validity comparable to that of the stand
model at sub-Planck energies. However, as Planck ene
are approached, nonrenormalizable operators negligibl
low energies should acquire importance. Since stability
causality are deeply related to Lorentz symmetry at the le
of renormalizable quantum field theory, imposing them
requirements at high scales in the context of the stand
model extension might be expected to yield interesting
sights into the structure of the nonrenormalizable terms.

The present work contains an investigation of the role
stability and causality in Lorentz- andCPT-violating theo-
ries, with particular emphasis on notions relevant to the
mion sector of the standard-model extension. We appro
the subject by studying the quadratic fermion part of a g
eral renormalizable Lagrangian with explicit Lorentz- a
CPT-breaking terms. It is the single-fermion limit of th
free-matter sector in the general standard-model extens
As a necessary part of the analysis, we develop further
results of Ref.@5# on the relativistic quantum mechanics
this theory and perform the corresponding free-field qua
zation. These results provide a complete quantization of
free-fermion sector of the Lorentz- andCPT-violating QED
extension, including details such as the explicit general fo
of the one-particle dispersion relation. Interactions can
handled in the usual perturbative manner@5#.

One of our goals is to establish the nature of the diffic
ties facing theories with explicit Lorentz violation, howev
small. We find violations of stability or causality occur fo
momenta outside a scale determined by the size of the
plicit breaking terms. Although the scale in question may
large, consistency problems are typically present for a
conventional quantum field theory of fermions with explic
Lorentz violation@30#.

Another goal is to understand the mechanism by wh
spontaneous Lorentz breaking in string theory could ov
come these difficulties. By itself, spontaneous Lorentz vio
tion is an important ingredient. However, avoiding the pro
lems with stability and causality seems to require in addit
its transcendental suppression at high energies in the
particle dispersion relations, through the appearance of n
renormalizable terms that are unimportant at low energ
Interestingly, this requirement naturally leads to field int
actions of a type related to those found in string field theo

The analysis in this work leaves unaddressed severa
teresting theoretical issues associated with the trans
from a fundamental theory with spontaneous Lorentz a
CPT violation at the Planck scale to the standard-model
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tension. These include the development of the observed
erarchy of scales in nature, the role of fluctuations about
tensor expectation values generating the extra terms in
standard-model extension, the explicit incorporation of gr
ity, and implications of nonminimality in the usual standa
model such as supersymmetry and gauge-group unifica
Although important in the development of a complete und
standing, these issues lie beyond the present scope.

The results developed in this work provide both a guide
the regime of validity of theories with explicit Lorentz vio
lation and insight into the nature of the expected nonren
malizable corrections to the standard-model extens
emerging as the Planck scale is approached. The twin
mands of stability and causality lead from a renormaliza
field theory to a nonlocal theory incorporating spontaneo
Lorentz breaking. This supports the idea that the experim
tal observation of Lorentz violation would provide uniqu
evidence for the nonlocality of nature at the Planck scale

The outline of this paper is as follows. Some basics
provided in Sec. II. Section III studies relativistic quantu
mechanics in a class of convenient inertial frames. Sec
IV performs the canonical quantization of the field theo
and investigates stability and causality in arbitrary fram
The issue of how the associated problems are resolved in
context of spontaneous Lorentz andCPT breaking in a fun-
damental theory is discussed in Sec. V. Finally, a summar
provided in Sec. VI. Throughout, we adopt the notations a
conventions of Ref.@5#.

II. SOME BASICS

In this section, we provide background material and int
duce some basic information used in later sections of
work. Some of this material is discussed in more detail
Ref. @5#.

A general form for the quadratic sector of a renormal
able Lorentz- andCPT-violating Lagrangian describing a
single massive spin-1

2 Dirac fermion is@5#

L5
1

2
i c̄Gn ]Jnc2c̄Mc, ~1!

where

Gn
ªgn1cmngm1dmng5gm1en1 i f ng51

1

2
glmnslm

~2!

and

Mªm1amgm1bmg5gm1
1

2
Hmnsmn . ~3!

In the above equations, the gamma matric
1,g5 , gm, g5gm, smn have conventional properties. In th
context of the standard-model and QED extensions, the
rametersam , bm , cmn , . . . ,Hmn are determined by expecta
tion values of Lorentz tensors arising from spontaneous L
entz breaking in a more fundamental theory.
8-2
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STABILITY, CAUSALITY, AND LORENTZ AND CPT . . . PHYSICAL REVIEW D 63 065008
For definiteness, it is assumed throughout this work t
the massm of the fermion is nonzero. Our methods can
many cases be directly extended to the massless situa
although the distinctions between finite- and zero-mass
resentations of the Lorentz group introduce some additio
complications that lie beyond our present scope. In any c
for most applications in the context of the fermionic sector
the standard-model extension, a nonzero mass is approp
One possible exception is the study of neutrinos, includ
neutrino oscillations. If neutrinos have mass then the res
below can be applied, with minor modifications for Majora
fermions as necessary. If one or more neutrinos are mass
then more care may be required.

Hermiticity of the Lagrangian~1! implies that the coeffi-
cients for Lorentz violation are all real. Moreover,cmn and
dmn can be taken as traceless,glmn antisymmetric in its first
two indices, andHmn antisymmetric. All the parameters vio
late particle Lorentz invariance, whileam , bm , em , f m , glmn

also breakCPT. The coefficients in Eq.~2! are dimension-
less, while those in Eq.~3! have dimensions of mass. Th
reader is warned that field redefinitions may eliminate so
of these coefficients without altering the physics@5#. For
example, introducing a nonzero coefficientam in a single-
fermion theory such as Eq.~1! has no observable conse
quences. However,am-type coefficients can lead to physic
effects in more general multifermion theories, including t
standard-model extension. For completeness, we expli
keep all terms in Eq.~1! in the present work.

The Lagrangian~1! is independent of the coordinate sy
tem. Observations made by any two inertial observers ca
related by coordinate transformations, called observer L
entz transformations. Since Eq.~1! is a scalar under thes
transformations, the theory exhibits observer Lorentz sy
metry. However, in Eq.~1! observer coordinate transforma
tions differ profoundly from boosts and rotations of particl
or localized fields within a fixed inertial frame. The latt
transformations, called particle Lorentz transformatio
leave invariant the coefficientsam , bm , . . . ,Hmn and so can
modify the physics@31#. The particle Lorentz symmetry i
therefore broken.

At the level of the present discussion, the observer L
entz symmetry of the theory~1! is a consequence of choo
ing a Lagrangian invariant under Lorentz coordinate tra
formations. More general classes of theories with expl
Lorentz violation could in principle be considered. For e
ample, the Lagrangian might be taken to transform nontr
ally under the observer Lorentz group, or perhaps as a sc
under some non-Lorentz coordinate transformation. Ho
ever, these possibilities represent radical departures f
conventional physics and lack motivation. In contrast,
explicit Lorentz-violating terms in the Lagrangian~1! could
arise from a more fundamental theory with a Lagrang
invariant under both observer and particle Lorentz symm
try, provided the interactions in the theory are such as
cause spontaneous Lorentz breaking. If so, then the co
cientsam , bm , . . . ,Hmn for Lorentz andCPT violation are
related to vacuum expectation values of Lorentz tensor fie
in the underlying theory, and Eq.~1! becomes a low-energ
approximation to this theory in the Lorentz-breakin
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vacuum. The Lagrangian~1! therefore serves as a single
fermion model for the potentially realistic situation in whic
the standard-model extension emerges as the low-en
limit of spontaneous Lorentz violation in a fundamen
theory at the Planck scale.

The distinction between observer and particle Lore
transformations implies a dual role for Lorentz symmetry
studying stability and causality of Eq.~1!. Thus, if a theory is
to be stable and causal, then in a specified observer fram
implications of energy positivity and microcausality shou
hold for fields of different momenta related through partic
Lorentz transformations, while energy positivity and micr
causality should hold in arbitrary inertial frames related
observer Lorentz transformations. In later sections,
emerges that these two roles can be distinct. For examp
theory with spacelike 4-momentum for some one-parti
states may maintain energy positivity under particle Lore
transformations in a fixed frame, but it will violate this re
quirement in certain other frames obtained by suitable
server Lorentz transformations.

Since the various coefficients for Lorentz violation in E
~1! carry Minkowski indices, they vary with the observer
appropriate representations of the noncompact Lorentz gr
SO~3,1! and are in this sense unbounded. For some purpo
it is useful to introduce a special class of inertial frames
which the coefficients for Lorentz andCPT violation repre-
sent only a small perturbation relative to the ordinary Dir
case. We call a member of this class of frames aconcordant
frame. If Lorentz andCPT violation does indeed occur in
nature, then on experimental grounds it must be true that
inertial frame in which the Earth moves nonrelativistica
can serve as a concordant frame. The point is that no de
tures from Lorentz andCPT symmetry have been observe
to date, so any Lorentz andCPT violation in an Earth-based
laboratory must be minuscule, with the coefficients appe
ing in Eq.~2! much smaller than 1 and those in Eq.~3! much
smaller thanm.

In the present scenario, the Lorentz- andCPT-violating
effects are regarded as originating in a more fundame
theory at some large scaleM P . It is plausible thatM P is the
Planck scale, since this is the natural scale for an underly
theory including gravity, and in what follows we refer to it a
such. In any case, it is expected that observable effects
low-energy theory with scalem that arise from a fundamen
tal theory with scaleM P would be suppressed by som
power of the ratiom/M P . It is therefore likely that the orde
of magnitude of the coefficients appearing in Eq.~2! is no
greater thanm/M P , while that of the coefficients in Eq.~3!
is no greater thanm2/M P .

In conventional special relativity, all inertial frames a
equivalent in the sense that high-energy physics in one fra
is in one-to-one correspondence with high-energy physic
any other frame. However, this equivalence fails in t
present context. The coefficients for Lorentz andCPT vio-
lation experienced by a high-energy particle in one frame
differ substantially from those experienced by a high-ene
particle in a second frame because the particle Lorentz s
metry is broken. In particular, this means that stateme
8-3
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V. ALAN KOSTELECKÝ AND RALF LEHNERT PHYSICAL REVIEW D 63 065008
restricting attention to Lorentz- andCPT-violating effects at
high energies may be observer dependent.

Given this ambiguity in the conventional notion of hig
energy, it is useful to introduce a more precise definition.
purposes of the present work, the terminology of high a
low energies relative to the scale of the underlying theory
always taken to refer to a concordant frame as defined ab
From an experimental point of view, this terminology is se
sible because by observation a laboratory frame moves
relativistically with respect to a concordant frame. The ph
ics of high energies is therefore similar in both frames.

III. RELATIVISTIC QUANTUM MECHANICS

In this section, we study the Lagrangian~1! in the context
of relativistic quantum mechanics. The corresponding H
mitian Hamiltonian is derived, and the associated dispers
relation is obtained. We discuss properties of the eig
spinors and determine the general solution of the equat
of motion. Throughout this section, we work exclusively in
concordant frame as defined in Sec. II.

A. Hamiltonian

The construction of the relativistic quantum Hamiltoni
H from the LagrangianL of Eq. ~1! requires care becauseL
contains time-derivative terms in addition to the usual o
In the concordant frame and a large class of associated
server frames, this difficulty can be resolved by a spin
redefinition chosen to eliminate the time-derivative co
plings @6#. Writing c5Ax, we require the non-singular ma
trix A to be spacetime independent and to satisfy

A†g0G0A5I , ~4!

where I is the 434 unit matrix. With this choice,L@x#
contains no time derivatives outside the usual te
1
2 ix̄g0]J0x. This spinor redefinition amounts to a change
basis in spinor space, and as such it leaves unchange
physics. Note that its explicit form depends on the choice
inertial frame.

It can be shown thatA exists if and only if all the eigen-
values ofg0G0 are positive. First, recall that an equivalen
relation of the formA†XA5Y between Hermitian matrice
X,Y is called a congruence@32#. In the present case, sinc
both I andg0G0 are Hermitian,A exists if and only ifg0G0

is congruent toI. Next, recall Sylvester’s law of inertia
which implies that under a congruence the number of p
tive eigenvalues of a Hermitian matrix is invariant. SinceI
has all positive eigenvalues, the claimed result holds.

It follows that A always exists in the concordant fram
Define a matrixe0 such that the zero component of Eq.~2!
can be written in the formG05g0(I 1e0). Since the compo-
nents ofe0 are small compared to 1 in the concordant fra
by definition, the eigenvalues ofg0G05I 1e0 are indeed
positive andA therefore exists.

In Appendix A, we obtain an upper bound on the size
the coefficients for Lorentz andCPT breaking such thatA
can exist. The bound is expressed in terms of a quantityd0,
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defined as the largest absolute value of certain coefficie
for Lorentz andCPT violation:

d05max
mn

$ucm0u,udm0u,ue0u,u f 0u,ugmn0u%. ~5!

We prove thatd0,1/480 suffices for the spinor redefinitio
to exist. The numerical value of this bound is far larger th
the maximum size ofd0 likely to be allowed on experimenta
grounds, showing that the spinor redefinition indeed ex
for the realistic situation. Although it is sufficient for ou
purposes, this bound is not sharp. A determination of
sharp bound would be of interest. We conjecture it is
order 1.

Once the spinor redefinition has been performed,
Euler-Lagrange equations generate a modified Dirac eq
tion in terms of the new spinorx. It can be written as

~ i ]02H !x50, ~6!

where the Hamiltonian

H52A†g0~ iG j] j2M !A ~7!

is Hermitian, as desired. Explicit forms for this Hamiltonia
can be found in Ref.@12#.

B. Dispersion relation

As usual, a solution to Eq.~6! is a superposition of plane
waves of the form

x~x!5e2 ilmxm
w~lW !. ~8!

Here, the 4-spinorw(lW ) must obey

~l02H !w~lW !50, ~9!

whereH is now understood to be inl-momentum space, an
lm must satisfy the dispersion relation

det~l02H !50. ~10!

An alternative equivalent form for the dispersion relation

det~Gmlm2M !50, ~11!

since the non-singular matricesg0, A, and A† relating the
two forms of the Dirac equations contribute only over
multiplicative factors to the determinant.

To obtain an explicit expression for the dispersion re
tion, we write the matrixGmlm2M as

Gmlm2M5S1 iPg51Vmgm1Amg5gm1Tmnsmn ,
~12!

where we have introduced
8-4
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S5emlm2m, P5 f mlm ,

Vm5lm1cmnln2am, Am5dmnln2bm,

Tmn5
1

2
gmnrlr2

1

2
Hmn. ~13!

Expansion of the determinant of this matrix yields

054~VmAn2AmVn2VmVn1AmAn1PTmn2ST̃mn

1TmaT n
a 1T̃maT̃ n

a !21~V22A22S22P2!2

24~V22A2!216~emnabAaVb!2, ~14!

whereT̃mn5 1
2 emnabTab denotes the dual tensor.

The dispersion relation~14! can be viewed as a quarti
equation forl0(lW ). In principle, it permits the explicit deter
mination of the exact eigenenergies of a particle with giv
3-momentum in the presence of Lorentz andCPT violation.
Various approximate solutions can also be obtained. For
ample, in certain applications only the leading-order corr
tions to the conventional eigenenergies are of interest. H
ever, we caution the reader that these cannot necessari
obtained by keeping only leading contributions to the co
ficients of the momentum in the dispersion relation and so
ing for the energies, as is argued in some of the publis
literature@33#.

Many of the relevant properties of the dispersion relat
can be established without an explicit algebraic solution.
example, sinceH is Hermitian all four roots of the dispersio
relation must be real. It follows from Eq.~11! that the roots
are independent of the spinor redefinition~4!, as expected
This equation also implies that the dispersion relation is
server Lorentz invariant and hence thatlm must be an ob-
server Lorentz 4-vector.

In general, the fourfold degeneracy of the magnitudes
the roots of Eq.~11! is lifted, a feature different from the
conventional Dirac case. Since the Lorentz andCPT viola-
tion is small in the concordant frame, one still anticipa
two positive rootsl1(a)

0 (lW ), a51,2, and two negative root

l2(a)
0 (lW ). In Appendix B, we obtain a bound on the size

the coefficients for Lorentz andCPT violation such that this
anticipation is correct. The bound is in terms of a quantityd,
defined as

d5max
m,n, j

$uamu,ubmu,mucm j u,mudm j u,

muej u,mu f j u,mugmn j u,uHmnu%, ~15!

where the Greek indices range from 0 to 3 and the La
index ranges from 1 to 3, as usual. We find that ford
,m/124 the dispersion relation has two positive and t
negative solutions, as usual. This bound is independent o
spinor redefinition. Its numerical value is much larger th
experimental observations are likely to allow, showing th
the presence of Lorentz andCPT violation in nature would
indeed leave unaffected the counting of positive- a
negative-energy solutions. Although more than adequate
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our purposes, this bound is not sharp, and it would be
interest to determine the sharp bound. We anticipate it is
order 1.

Another important feature of the dispersion relation is t
correspondence

l2(1,2)
0 ~lW ,am ,dmn ,em , f m ,Hmn!

52l1(2,1)
0 ~2lW ,2am ,2dmn ,2em ,2 f m ,2Hmn!

~16!

between the positive and negative solutions. In this equat
we have displayed only the dependence on the coeffici
for Lorentz andCPT violation that change sign, and it i
understood that the other coefficients are held constant.
numbering of the roots is chosen to agree with the result
Ref. @5#. Equation~16! can be regarded as a consequence
the identity det(Gmlm2M )5det@C(Gmlm2M )C21#, where
C is the usual charge-conjugation matrix. This implies t
invariance of det(Gmlm2M ) under the transformation

$lW ,am ,dmn ,em , f m ,Hmn%

→$2lW ,2am ,2dmn ,2em ,2 f m ,2Hmn% ~17!

and leads to the correspondence~16!.

C. Eigenspinors

The eigenfunctions corresponding to the two negat
rootsl2(a)

0 can be reinterpreted as positive-energy revers
momentum wave functions in the usual way. We define

x1
(a)5exp~2 ipu

(a)
•x!u(a)~pW !,

x2
(a)5exp~1 ipv

(a)
•x!v (a)~pW !, ~18!

whereu(a)(pW ) andv (a)(pW ) are momentum-space spinors a
the 4-momenta are given by

pu
(a)5~Eu

(a) ,pW !, Eu
(a)~pW !5l1(a)

0 ~pW !,

pv
(a)5~Ev

(a) ,pW !, Ev
(a)~pW !52l2(a)

0 ~2pW !.
~19!

The symmetry~16! of the dispersion relation determines
relationship between the two sets of energies. We find

Ev
(1,2)~pW ,am ,dmn ,em , f m ,Hmn!

5Eu
(2,1)~pW ,2am ,2dmn ,2em ,2 f m ,2Hmn!.

~20!

Similarly, the spinors are related by

v (1,2)~pW ,am ,dmn ,em , f m ,Hmn!

5u(2,1)c~pW ,2am ,2dmn ,2em ,2 f m ,2Hmn!,

~21!
8-5
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where the superscriptc denotes a charge-conjugate spin
defined bywc5Cw̄T, as usual.

The spinorsu andv are the eigenvectors of the Hermitia
matrix H and they therefore span the spinor space. Ortho
nality of the eigenspinors is automatic for nondegener
eigenenergies and in any case can be imposed by choice
normalization ofu and v is constrained by the requireme
(xc)c5x but is otherwise arbitrary. For definiteness, w
choose the conditions

u(a)†~pW !u(a8)~pW !5daa8
Eu

(a)

m
,

v (a)†~pW !v (a8)~pW !5daa8
Ev

(a)

m
,

u(a)†~pW !v (a8)~2pW !50. ~22!

Note, however, that the conventional generalization of
orthogonality relation involving the Dirac-conjugate spino
ū and v̄ fails in the present case. Equation~22! implies the
completeness relation

(
a51

2 S m

Eu
(a)~pW !

u(a)~pW ! ^ u(a)†~pW !

1
m

Ev
(a)~2pW !

v (a)~2pW ! ^ v (a)†~2pW ! D 5I . ~23!

With the above definitions, the general solution to t
modified Dirac equation~6! can be written as

x~x!5E d3p

~2p!3 (
a51

2 S m

Eu
(a) b(a)~pW !exp~2 ipu

(a)
•x!u(a)~pW !

1
m

Ev
(a) d~a!

* ~pW !exp~1 ipv
(a)

•x!v (a)~pW ! D , ~24!

whereb(a)(pW ) andd(a)* (pW ) are Fourier coefficients, as usua
For simplicity, the dependence of the eigenenergies
eigenspinors on the coefficients for Lorentz andCPT viola-
tion is suppressed in this equation.

IV. QUANTUM FIELD THEORY

In this section, we perform canonical quantization in
concordant frame by demanding energy positivity, as us
We then study the issues of stability and causality in a
trary frames.

A. Canonical quantization and energy positivity

In the usual case, straightforward canonical quantiza
of a Dirac fermion is inadequate because the theory is
gular. Appropriate quantization conditions can be found
ther by requiring the positivity of the conserved energy
06500
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more formally, by extending the Dirac-bracket procedure
anticommuting fields@34#. We adopt the former procedur
here.

We promote the complex weights in the expansion~24! to
operators on a Fock space. The spinorx thereby becomes a
quantum field, as does the spinorc. The two fields are re-
lated through the redefinitionc5Ax, whereA is the same
matrix discussed in the previous subsection.

We impose the following nonvanishing anticommutati
relations:

$b(a)~pW !,b(a8)
†

~pW 8!%5~2p!3
Eu

(a)

m
daa8d~pW 2pW 8!,

$d(a)~pW !,d(a8)
†

~pW 8!%5~2p!3
Ev

(a)

m
daa8d~pW 2pW 8!.

~25!

These can be used to reconstruct the equal-time anticom
tators for the fieldsx:

$x j~ t,xW !,x̄ l~ t,xW8!g lk
0 %5d jkd3~xW2xW8!,

$x j~ t,xW !,xk~ t,xW8!%5$x̄ l~ t,xW !g l j
0 ,x̄m~ t,xW8!gmk

0 %

50, ~26!

where the spinor indicesj ,k,l ,m are displayed for clarity.
The above expressions permit the derivation of the eq

time anticommutators for the original fieldsc as

$c j~ t,xW !,c̄ l~ t,xW8!G lk
0 %5d jkd3~xW2xW8!,

$c j~ t,xW !,ck~ t,xW8!%5$c̄ l~ t,xW !G l j
0 ,c̄m~ t,xW8!Gmk

0 %

50. ~27!

Note thatpc5c̄G0 is the canonical conjugate ofc, parallel-
ing the usual Dirac case.

The vacuum stateu0& of the Hilbert space in the concor
dant frame is defined by

b(a)~pW !u0&50, d(a)~pW !u0&50. ~28!

The action of the creation operatorsb(a)
† (pW ) andd(a)

† (pW ) on
u0& produces states describing particles and antiparticles
4-momentapu

(a) andpv
(a) , respectively. This can be verifie

using the normal-ordered conserved momentum

Pm5E d3x:Qm0 :, ~29!

where

Qmn5
1

2
i c̄Gm ]Jnc ~30!

is the conserved canonical energy-momentum tensor.
8-6
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STABILITY, CAUSALITY, AND LORENTZ AND CPT . . . PHYSICAL REVIEW D 63 065008
In the present context, the one-particle states carry
4-momentapu

(a) andpv
(a) introduced in the previous section

It follows from Eq. ~19! that the zero components of the
4-vectors are positive definite. This validates the quant
tion ansatz~25! in the concordant frame.

The Lagrangian~1! is observer Lorentz invariant by con
struction. The observables resulting from quantization sho
therefore be invariant or depend covariantly on the obser
In the usual case, Lorentz transformations are unita
implemented on the Hilbert space of states, and so cov
ance follows directly. In contrast, in the present case
coefficients for Lorentz andCPT violation carry spacetime
indices, and their values therefore depend on the obse
This implies that the Fock spaces constructed by differ
observers are inequivalent. Nonetheless, the invarianc
observables may be implemented by suitable mappings
tween the Fock spaces for any two observers. These m
pings then form a representation of the Lorentz group w
group multiplication being the mapping composition. No
that the existence of this group structure is assured if
Lorentz violation is spontaneous. In this case, although
observer Lorentz symmetry cannot be unitarily implemen
on the Fock space, the freedom to select the physical vac
among all Lorentz-equivalent choices means that all obs
ers have Fock spaces in one-to-one correspondence.

The field quantization presented above can be perform
provided the bounds ond0 andd in Sec. III are satisfied, so
that the Lorentz-violating time-derivative terms can be
moved and the usual eigenenergy-sign structure holds. T
conditions involve the size of individual components of o
server Lorentz tensors and are thus inherently noninvar
under observer Lorentz transformations. There is therefo
class of observers, strongly boosted relative to a concor
frame, for whom these bounds are violated and the pre
technique of field quantization fails. However, as discus
above, the observer Lorentz invariance guarantees a on
one correspondence of the Fock spaces among all obser
so some difficulties must also exist even for the quantiza
scheme in a concordant frame. It turns out these are as
ated with the stability and causality of the theory. The n
two subsections discuss these issues in detail.

B. Stability

In usual Lorentz-covariant free-field theories, ener
positivity in a particular frame translates under certain
sumptions to the statement that the vacuum is stable in
frame. One assumption is that the 4-momenta of all o
particle states in the particular frame are timelike or lightli
with nonnegative 0th components. This is satisfied in
usual Dirac theory. Since an observer Lorentz transforma
cannot change the sign of these 0th components, en
positivity is in this case a Lorentz-invariant notion ev
though it is a statement about a 4-vector component.

In the present case with Lorentz andCPT violation, en-
ergy positivity in a concordant frame is assured if the bou
on d discussed in Sec. III B is satisfied. However, stability
the quantized theory in all observer frames requires m
than just energy positivity in a concordant frame. In fact, o
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of the usual assumptions fails: some of the ener
momentum 4-vectors solving the dispersion relation~11!
may under certain circumstances be spacelike in all obse
frames.

As an example, consider the dispersion relation

~l22b22m2!214b2l224~b•l!250 ~31!

for a model with abm coefficient only. One can show that fo
any nonzerobm , no matter how small, it is always possib
to choose an observer frame in whichbm5(b0,0,0,b3) and
b3

2.m21ubmbmu. Defining the real quantitiesp6 by

p6
2 5~2b3

21b22m2!6A~2b3
21b22m2!22~m21b2!2,

~32!

the spacelike 4-vectorslm
65(0,0,0,p6) can be shown to

satisfy the dispersion relation~31!, as the reader is invited to
verify. Moreover, the existence of such spacelike solutions
the dispersion relation is unaffected by the inclusion o
nonzeroam , for example.

Although the instabilities introduced by the existence
spacelike solutions exist in any frame, including a conc
dant frame as discussed below, they are most transpare
considering observer Lorentz boosts. An appropriate
server boost involving a velocity less than 1 can always c
vert a spacelike vector with a positive 0th component to o
with a negative 0th component. In the present instance,
means that there exist otherwise acceptable observer fra
in which a single root of the dispersion relation involves bo
positive and negative energies. In such frames, the canon
quantization procedure fails.

In Figs. 1 and 2, the appearance of negative energies
strongly boosted frame is illustrated for a model with only
nonzerob0 in a concordant frame. The dispersion relation
seen by an observer in a concordant frame is shown in Fig
One of the two positive roots is displayed. The energy
manifestly positive for all 3-momenta. However, the disp
sion relation crosses the light cone@36# at a finite valueM̃ of
the 3-momentum. Beyond this value, points lying on t

FIG. 1. Dispersion relation for a model with only a large no
zero b0 in a concordant frame. One of the two positive roots
displayed. It intersects the light cone at a 3-momentum of mag

tudeM̃ . The dotted line is the conventional dispersion relation fo
massive particle.
8-7



ct
s

a
po

o
er
ta
ed
th
pr

o

e
i

lik

th
a

de
a
f

th
w
en
ll

di
p
ig
th
th

ng

tum

the
ame
ob-
ith
on-
ck-
ys

c-
en-
n
n-
the

e

-

rs
nal

s a

a
the

gh
ing
w-

a
Th
gi
siv

V. ALAN KOSTELECKÝ AND RALF LEHNERT PHYSICAL REVIEW D 63 065008
curve can be regarded as represented by spacelike ve
relative to the origin. All these spacelike vectors have po
tive 0th components.

For a suitable boost, some of the spacelike vectors
converted to spacelike vectors with negative 0th com
nents. Figure 2 shows the result of a large boost. A portion
the dispersion relation has dipped below the energy z
The corresponding negative-energy states represent a s
ity problem for the theory when interactions are introduc
We remark in passing that under the same boost the o
roots of the dispersion relation are positioned so as to
clude eliminating the negative energies by a simple shift
the energy zero.

The scale M̃ of the 3-momentum at which th
4-momentum turns spacelike can be calculated explicitly
various models. For example, consider the case of a time
bm , as above. In an observer frame withbm5(b0 ,0W ), we
find

M̃5
m21b0

2

2ub0u

*O~M P!. ~33!

The approximate equality in the last step is attained for
case of a single suppression factor from the Planck sc
b0;O(m2/M P), following the discussion in Sec. II.

This estimate reveals that the instabilities in the mo
emerge only for Planck-scale 4-momenta in a concord
frame. The corresponding negative energies appear only
observers undergoing a Planck-scale boost relative to
frame. It follows that the concordant-frame quantization
have presented above maintains stability for all experim
tally attainable physical momenta and in all experimenta
attainable observer frames.

Inspection of the dispersion relation for thebm model re-
veals that in all observer frames the asymptotes of the
persion relation are parallel to the usual light-cone asym
totes. The behavior can also be seen in the example in F
1 and 2. We see that, to avoid spacelike 4-momenta,
asymptotes of the dispersion relation must remain inside

FIG. 2. Dispersion relation for the model of Fig. 1 as seen by
observer strongly boosted relative to the concordant frame.
occurrence of negative energies is apparent in the shaded re
The dotted line is the conventional dispersion relation for a mas
particle.
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usual light cone. In terms of the group velocityvW g of a wave
packet in the theory, given as usual by

vW g5
]E

]pW
, ~34!

this requirement on the asymptotes implies the followi
necessary condition for energy positivity:

uvW gu>1, upW u→`. ~35!

The reader is reminded that the relation between momen
and group velocity is unconventional@5#. In particular,pW and

vW g need not be parallel.
Since the physics is invariant under observer boosts,

appearance of negative energies in a strongly boosted fr
indicates that spacelike 4-momenta lead to a stability pr
lem also in a concordant frame, albeit only for particles w
energies exceeding the Planck scale. As an illustration, c
sider the following process in a concordant frame: a Plan
energy fermion emits a virtual photon, which then deca
into a fermion-antifermion pair. We can write this as

f 11→ f 111 f 111 f̄ 21 , ~36!

where f and f̄ denote fermions and antifermions, respe
tively, and the subscript labels the helicity state. In conv
tional QED, this decay is kinematically forbidden eve
though both the U~1! charge and angular momentum are co
served. However, for Planck energies it can occur in
context of the Lorentz- andCPT-violating QED extension
with a nonzerob0 coefficient. The dispersion relation for th
4-momentum (E,pW ) of a fermion of helicity11 or an anti-
fermion of helicity 21 is given in Appendix B of the first
paper in Ref.@5# as

E5Am21~ upW u2b0!2. ~37!

Taking for simplicity the 3-momentumuqW u of the incoming
fermion as

uqW u5
2m21b0

2

b0
1b0*O~M P!, ~38!

we find the process~36! is kinematically allowed with all
final 3-momenta equal toqW /3. A single-particle state describ
ing a fermion of sufficiently large 3-momentum~38! and
helicity 11 is therefore unstable. The instability also occu
for other high-energy single-particle states, although the fi
3-momenta are then unequal.

It can be shown that an initial spacelike 4-momentum i
necessary condition allowing the process~36!, as expected.
The decay process~36! could therefore occur repeatedly in
cascade until the energy of the decay products reaches
order of the Planck scale in a concordant frame. Althou
unusual, this behavior and related phenomena involv
other decays might be phenomenologically admissible. Ho

n
e

on.
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STABILITY, CAUSALITY, AND LORENTZ AND CPT . . . PHYSICAL REVIEW D 63 065008
ever, in what follows we focus on the possibility of mai
taining stability at the Planck scale despite the presenc
Lorentz violation.

The conclusion that instabilities enter atO(M P), as in Eq.
~33!, may fail for models with a nonzero coefficientcmn .
This coefficient is special because the associated quad
field term has the same general spinorial and deriva
structure as the usual Dirac kinetic term, and so it acts a
first-order correction to an existing zeroth-order term.
other Lorentz-violating term has this feature.

As an explicit example, consider a model with only t
coefficientc00 nonzero in a concordant frame@37#. The dis-
persion relation for this model in an arbitrary frame is

~ham1cam!~h n
a 1c n

a !lmln2m250. ~39!

In the concordant frame, this takes the form

z2l0
22lW 22m250, ~40!

where we definez511c00. For the casec00.0, we then
find that spacelike 4-momenta occur at a scaleM̃ given by

M̃5
m

Az221
'

1

A2c00

m1O~c00!

*O~AmMP!, ~41!

where in the last step the approximate equality is attained
a single suppression factor from the Planck scale,c00
;O(m/M P).

The result~41! implies that instabilities occur at energie
well below the scaleM P of the underlying theory in thec00
model withc00.0. We show in the next section that ifc00
,0 instead, then microcausality violations arise at the sa
scale. If these results continue to hold in the full underlyi
theory, they could have observable physical implications.
one example, Coleman and Glashow have suggested@27# the
interesting possibility that high-energy effects fromc00-type
terms might be responsible for the apparent excess of co
rays in the region of 1019GeV. This scale is potentially com
parable toAmMP. However, if stability and causality ar
imposed on the theory, then thec00 dispersion relation~40!
must be modified. This in turn is likely to modify the phys
cal implications at high energies. In Sec. V, we discuss so
possible high-energy corrections to Eq.~40! that would pre-
serve stability and causality. It would be of interest to rev
the cosmic-ray analysis in light of these requirements.

In any case, given the impracticality of achieving Planc
scale energies or boosts in the laboratory, the issues
spacelike 4-momenta are largely unimportant at the leve
the standard-model extension. However, they do confirm
expectation that corrections to the theory at high energies
needed for complete stability. Requiring stability therefo
has the potential to provide insight into the nature of
corrections. This situation is qualitatively different from th
occurring in conventional special relativity, where Planc
scale boosts are admissible without generating instabil
internal to the theory. Since the standard-model extens
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contains all relevant renormalizable operators, the resolu
of the stability issue must involve nonrenormalizable ope
tors that are irrelevant at low energies. We return to this to
in Sec. V.

C. Microcausality

A quantum field theory is microcausal if any two loc
observables with spacelike separation commute. In
Lorentz- andCPT-violating Dirac theory~1!, the local quan-
tum observables are fermion bilinears as usual, and mi
causality holds if

iS~x2x8!5$c~x!,c̄~x8!%50, ~x2x8!2,0. ~42!

We work directly with the original fieldc rather thanx
because the observer Lorentz symmetry holds for the
grangian~1! written in terms ofc, whereas the conversion t
x is frame dependent. Note that the anticommutator funct
S(x2x8) depends only on coordinate differences, due to
translational invariance of the theory.

To investigate the conditions under which Eq.~42! holds,
it is useful to obtain an integral representation forS(x2x8).
The latter can be found in terms of Green functions for
modified Dirac equation. In the conventional case, one u
ally starts with the Fourier decomposition of the field ope
tors and proceeds by identifying spinor projection operato
The latter are then expressed in terms of gamma matri
the momentum, and the mass. However, in the present ca
straightforward generalization of this last step is obstruc
by the complexity of the modified Dirac equation. Instead
more general argument can be adopted.

We proceed in a concordant frame. First, define the fu
tion

iGR~x,x8!5Q~ t2t8!$c~x!,c̄~x8!%, ~43!

whereQ denotes the usual Heaviside step function. With
help of the canonical anticommutators~27!, it can explicitly
be checked thatGR satisfies

~ iGm]m2M !GR~x,x8!5d (4)~x2x8!. ~44!

It follows that GR(x,x8) is a Green function of the modified
Dirac equation, and therefore it can be written as

GR~x,x8!5E
CR

d4l

~2p!4

e2 il•(x2x8)

Gmlm2M
. ~45!

Inspection shows thatCR is the contour of the retarde
Green function passing above all poles in the complexl0

plane. Similarly, it can be shown that the function defined

iGA~x,x8!52Q~ t82t !$c~x!,c̄~x8!% ~46!

is the advanced Green function, with the same representa
as Eq.~45! except that the contourCR is replaced with a
contourCA passing below all the poles.

The anticommutator functionS(x2x8) can be written as
S5GR2GA . The integral represention forS has the same
8-9
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V. ALAN KOSTELECKÝ AND RALF LEHNERT PHYSICAL REVIEW D 63 065008
form as Eq.~45! except thatCR is replaced by a contourC
encircling all poles in the clockwise direction. If the matr
in the integrand of Eq.~45! is explicitly inverted, we can
replacelm→ i ]m in the matrix of cofactors cof(Gmlm2M )
to obtain

S~z!5cof~Gmi ]m2M !E
C

d4l

~2p!4

e2 il•z

det~Gmlm2M !
.

~47!

The interchange of differentiation and integration is justifi
because the contour can be deformed so that the integra
analytic in the neighborhood ofC @35#.

Next, we take advantage of observer Lorentz invaria
and boost to a frame such thatzm5(0,zW). The evaluation of
S(z) outside the light cone is simplified when the spin
redefinition discussed in Sec. III A can be performed inall
observer frames. A sufficient condition for this is

cmn5dmn5em5 f m5glmn50, ~48!

so that the derivative couplings take the standard form w
Gm5gm. In this case, a Hermitian Hamiltonian always exis
and the four poles of the integrand in Eq.~47! remain on the
real axis in the complexl0 plane.

Under the condition~48!, we can directly perform the
contour integration in Eq.~47!. For simplicity, we assume
here that all four rootsE( j )(pW ), j 51, . . . ,4, of thedispersion
relation are nondegenerate. Cases with degenerate root
be treated similarly with slight algebraic changes. Expli
calculation yields

E
C

dl0

2p

1

~l02E(1)!~l02E(2)!~l02E(3)!~l02E(4)!

5
i

~E(1)2E(2)!~E(1)2E(3)!~E(1)2E(4)!

1
i

~E(2)2E(1)!~E(2)2E(3)!~E(2)2E(4)!

1
i

~E(3)2E(1)!~E(3)2E(2)!~E(3)2E(4)!

1
i

~E(4)2E(1)!~E(4)2E(2)!~E(4)2E(3)!
50, ~49!

where the dependence of theE( j ) on pW has been suppresse
This calculation shows thatS(z) vanishes outside the

light cone if Eq.~48! is satisfied. Thus, microscopic causali
is ensured for the Dirac quantum field theory in the prese
of Lorentz andCPT violation controlled by the coefficient
am , bm , andHmn .

The above argument can fail when Eq.~48! is invalid. For
this more general case, the poles of the integrand in Eq.~47!
may no longer lie on the reall0 axis in an arbitrary observe
frame, and the contourC may therefore fail to encircle them
all. This corresponds to the case where the bound ond0

discussed in Sec. III A is violated, so that the Hamiltoni
06500
is

e

h
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e

cannot be made Hermitian and the roots of the dispers
relation can therefore be complex.

As an explicit example, let us return to thec00 model with
dispersion relation~40! discussed in the previous subsectio
but without imposingc00.0. For this model, the integration
in Eq. ~47! can be performed analytically to yield

S~z!5~ i zg0]02 ig j] j1m!
1

4pzr

]

]r
@Q~w2!J0~mAw2!#,

~50!

where r 5uzWu, w25(z0/z)22zW2, and J0(y) is the zeroth-
order Bessel function. Thus, the anticommutator funct
S(z) vanishes only in the region defined byz0

,(11c00)uzWu. Outside this region,S(z) could be nonzero.
Signal propagation therefore could occur with maxim
speed 1/(11c00). Whenc00 is negative, this exceeds 1 an
hence violates microcausality.

To make further progress, it is useful to introduce a de
nition of the velocity of a particle valid for an arbitrar
3-momentum. Even in the usual case without Lorentz a
CPT violation, the notion of a quantum velocity operator
nontrivial. The presence of Lorentz andCPT violation fur-
ther complicates the issue@5#. For definiteness, we conside
here the group velocity defined for a monochromatic wave
terms of the dispersion relation by Eq.~34!. This choice is
appropriate for several reasons. For one-particle states in
theory, the flow velocities of the conserved momentumPm
and the U~1! charge can be calculated from the correspo
ing conserved currents, and they agree with the group ve
ity ~34!. Also, we have checked explicitly that^dxW /dt&5vW g
in the relativistic quantum mechanics of thec00 model.
Moreover, for the explicit examples considered above,
volving either no derivative couplings or ac00 coupling only,
the magnitude of the maximal attainable group velocity
equal to the maximal speed of signal propagation determi
from the anticommutator function.

Figures 3 and 4 illustrate the situation for thec00 model.
The dispersion relation in a concordant frame is displayed
Fig. 3. This figure shows that the maximal speed is attai
asymptotically for large 3-momenta. Figure 4 shows t
group velocity as determined from the dispersion relation

FIG. 3. Dispersion relation for a model with only a large neg
tive nonzeroc00 in a concordant frame. The degenerate posit
roots are displayed. The dashed lines show their asymptotes.
dotted line is the conventional dispersion for a massive particle
8-10
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STABILITY, CAUSALITY, AND LORENTZ AND CPT . . . PHYSICAL REVIEW D 63 065008
the same frame. Above a certain valueM̃ of the
3-momentum magnitude, all the group-velocity magnitud
exceed 1.

It follows from the above considerations that a necess
condition to avoid microcausality violations is that th
asymptotic behavior of the energy must have a slope
than or equal to that of the usual light cone:

uvW gu<1, upW u→`. ~51!

Combined with Eq.~35!, we see that a necessary conditi
for a positive root to avoid both negative energies in so
observer frame and microcausality violations is that
asymptotic behavior of the dispersion relation must lie ins
the forward light cone and satisfy

uvW gu51, upW u→`. ~52!

Although this is only an asymptotic condition, it nonethele
provides an interesting constraint on possible stable
causal models for Lorentz andCPT violation.

Insight about the scaleM̃ of microcausality breakdown
can be obtained by determining the value of t
3-momentum at which the group velocity reaches
uvW gu(upW u5M̃ )51. For thec00 model, the dispersion relatio
~40! gives

M̃5
z

A12z2
m'

1

A22c00

m1O~c00!

*O~AmMP!. ~53!

In the last step, the approximate equality holds for a sin
suppression factorc00;O(m/M P).

The result~53! is a special feature of models with a no
zero cmn parameter. It is the same as that for the case w
c00.0, given in Eq.~41!. We see that group velocities ex
ceeding 1 occur in thec00 model at energies well below th
scaleM P of the underlying theory. This may have physic
implications, as mentioned in the previous subsection.

FIG. 4. Group velocity for the dispersion relation of the mod
in Fig. 3 as a function of the 3-momentum in a fixed direction. T
asymptotic development of velocities exceeding 1 is apparent in

shaded region, which lies above a momentum scaleM̃ . The heavy
dashed lines correspond to the usual limiting velocities61. The
dotted line is the usual result for a massive particle.
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To see what happens for other Lorentz- a
CPT-violating terms with derivative couplings, consider
model with only a nonzeroem term. Its dispersion relation is

l22~m2l•e!250. ~54!

For simplicity, we takeem to be timelike and choose th
concordant frame to haveeW50. The scaleM̃ of microcau-
sality violation is then found to be

M̃5
1

e0
m

*O~M P!, ~55!

where in the last step the approximate equality is attained
a single Planck-scale suppression factor,e0;O(m/M P), as
before. This confirms that microcausality is violated in t
em model at the scale of the underlying theory, as expec

The em model can also be used to illustrate the relati
between microcausality and Hermiticity of the Hamiltonia
H. In theem model, the matrixg0G0 takes the explicit form

g0G05S 11e0 0 0 0

0 11e0 0 0

0 0 12e0 0

0 0 0 12e0

D ~56!

in the Pauli-Dirac representation. Providedue0u,1, the spec-
trum of g0G0 containes positive numbers only, a matrixA
satisfying Eq.~4! can be found, and a Hermitian Hamiltonia
H exists. However, ifue0u.1, two eigenvalues become neg
tive, g0G0 is no longer congruent to the identity, the spino
redefinition matrixA cannot exist, and a HermitianH cannot
be found.

The same problem is reflected at the level of the disp
sion relation~54!. Its solutions

l6
0 5

e0~m1lW •eW !6A~m1lW •eW !21~12e0
2!lW 2

e0
221

~57!

can become complex forue0u.1. Since it is always possible
to find an observer frame in which this condition is satisfie
the model is inconsistent with observer invariance of
Hermiticity of H. This again indicates that the argument f
microcausality can fail when the condition~48! is invalid.

Figures 5 and 6 illustrate in the context of theem model
how eigenenergies can be real in one observer frame
complex in another, despite the observer invariance of
dispersion relation. Figure 5 shows the dispersion relation
a model with a nonzeroe0 only, in a concordant frame. On
of the two positive roots and its negative partner are d
played. The eigenenergies are real for all 3-momenta. H
ever, the slope of the dispersion relation exceeds 1 fo
sufficiently large 3-momentum. The effect of this on a po
tive root and its negative partner as seen by an observer
strongly boosted frame is displayed in Fig. 6. These t
roots admit no real value of the energy for 3-momenta in

l

e
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V. ALAN KOSTELECKÝ AND RALF LEHNERT PHYSICAL REVIEW D 63 065008
shaded region. Moreover, there is a range of 3-momenta
which the dispersion relation has multiple-valued roots.

This feature can be expected in the general case, w
ever the magnitudeuvW gu of the slope of the dispersion rela
tion in a concordant frame exceeds 1. More generally,
individual branches of the dispersion relation should rem
one-to-one mappings under observer Lorentz transfor
tions, so that each 3-momentum has exactly one image p
The number of real solutions to the dispersion relation
then invariant under observer boosts. In terms of
asymptotic behavior of the dispersion relation in the gene
case, we see that the existence requirements for the sp
redefinition~4! and for a Hermitian HamiltonianH also lead
to the condition~51!.

The above analysis reveals that difficulties with causa
in the Lorentz- andCPT-violating Dirac theory arise prima

FIG. 5. Dispersion relation for a model with only a large no
zero e0 in a concordant frame. One positive root and its negat
partner are displayed. The dashed lines show the asymptotes.

FIG. 6. Dispersion relation for the model of Fig. 5 as seen by
observer strongly boosted relative to the concordant frame.
occurrence of multiple-valued energies for a given root is appar
The positive root and its negative partner have no real values o
energy for 3-momenta in the shaded region. The dashed lines s
the asymptotes.
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rily for Planck-scale 4-momenta in a concordant frame or
observers undergoing a Planck boost relative to this fra
Nonetheless, it would be theoretically interesting to hav
framework for Lorentz andCPT violation in which micro-
causality is exactly preserved. Moreover, constraints fr
the requirement of causality may offer insight into the natu
of an underlying theory with Lorentz andCPT violation.
This is the subject of the following section.

V. PLANCK-SCALE EFFECTS

The results of the previous section indicate that a quan
field theory of massive fermions with terms containing e
plicit Lorentz andCPT violation generically develops diffi-
culties with stability or causality. However, if the coeffi
cients controlling the violation are Planck-suppressed, a
the standard-model extension, the difficulties arise only
high energies or high boosts determined by the Planck sc

Many possible sets of values of the coefficien
am , bm , . . . ,Hmn for Lorentz andCPT violation in Eq.~1!
eliminate one of the two difficulties. However, we are u
aware of any combination of the coefficients that simul
neously maintains both stability and causality. Although it
conceivable that a satisfactory combination would be na
rally selected by a mechanism for Lorentz andCPT break-
ing in an underlying theory, we conjecture that no such co
bination exists. A definitive argument to settle this iss
would be of interest but appears hampered by the comple
of the dispersion relation~14!.

We have previously advocated spontaneous Lorentz
CPT breaking in a Lorentz-covariant theory at the Plan
scale as a possible mechanism that could generate the a
ent Lorentz andCPT violations at low energies@3,4#. In-
deed, the standard-model extension includes by construc
all possible renormalizable terms maintaining the us
gauge structure while potentially originating in spontaneo
Lorentz breaking. This reasoning is a top-down approa
with theoretical considerations at the Planck scale sugges
that spontaneous Lorentz violation might emerge as the
parent violation in the standard-model extension. Howev
the requirements of stability and causality appear stro
enough to adopt the inverse line of reasoning. Thus, as
Planck scale is approached, higher-order nonrenormaliz
operators coming from the fundamental theory should p
an increasing role. The structure of the standard-model
tension as a conventional quantum field theory should th
fore undergo a corresponding modification, which could p
vide insight into the nature of the fundamental theory at
Planck scale. In the remainder of the present section, we
in some details for this set of ideas.

A. Spontaneous Lorentz andCPT breaking

Since a theory with spontaneous Lorentz andCPT viola-
tion starts from a Lorentz-invariant Lagrangian and hen
has Lorentz-covariant dynamics, it is unsurprising that
avoids at least some of the difficulties plaguing more gene
models involving Lorentz andCPT violation. For example,
one consequence of spontaneous violation is the nat
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STABILITY, CAUSALITY, AND LORENTZ AND CPT . . . PHYSICAL REVIEW D 63 065008
maintenance of observer Lorentz invariance, which the p
vious sections have shown to be an important advant
Thus, given a Lagrangian invariant under both observer
particle Lorentz transformations, spontaneous symm
breaking violates only the latter. The point is that obser
Lorentz invariance is a statement about physical beha
under certain coordinate changes made by an indepen
external observer, and once this property is built into
theory it cannot be removed by the behavior of fields inter
to the theory. In contrast, imposing observer Lorentz inva
ance in a theory with explicit Lorentz breaking requires
additionalad hocchoice.

Spontaneous violation manifests itself physically beca
the Fock-space states are constructed on a noninva
vacuum. Any difficulties with spontaneous Lorentz andCPT
violation must therefore be a consequence of Lorentz-
CPT-violating properties of the ground state. However, t
link between stability, causality, and Lorentz symmetry do
indeed depend in part on the notion of an invariant vacuu
The difficulties uncovered in the previous section can
regarded as a consequence of vacuum noninvariance.
example, the vacuum state in one frame is not necessarily
lowest-energy state in all frames. Despite its advantages,
therefore might expect that spontaneous Lorentz andCPT
violation alone may be insufficient to guarantee stability a
causality at all scales in a generic quantum field theory.

To gain insight into this issue, it is useful to consider a t
quantum field theory describing a Dirac fermionc interact-
ing with a vector fieldBm , with a potential for the vector tha
induces spontaneous Lorentz andCPT violation @38#. The
Lagrangian is

L5c̄S 1

2
igm ]Jm2m2jg5gmBmDc2

1

4
FmnFmn

2
1

4
l~BmBm2b2!2. ~58!

The fermionc has massm and is chirally coupled to the
vectorBm with dimensionless strengthj. The field strength
Fmn for Bm is defined asFmn5]mBn2]nBm , as usual, while
the potential term forBm is controlled by a dimensionles
constantl and by a constantb with dimensions of mass
satisfyingb2.0.

The Lagrangian~58! is a scalar under both observer a
particle Lorentz transformations and contains no expl
Lorentz- andCPT-violating terms. However, the last term
triggers a Lorentz- andCPT-violating vacuum expectation
value^Bm&5bm , wherebm is a constant 4-vector satisfyin
bmbm5b2. Note the close analogy to spontaneous symme
breaking in the standard O(N) model with N54. The Lor-
entz invariance of the Lagrangian~58! means that the con
stant vectorbm can be arbitrarily chosen, but a defini
choice must be specified to establish the quantum phys
This choice forces the particle Lorentz symmetry to be sp
taneously broken on the Fock space.

The physics of interest is described by fluctuations ab
the vacuum. RedefiningBm→bm1Bm in parallel with the
usual case yields
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L5c̄F1

2
igm ]Jm2m2jg5gm~bm1Bm!Gc2

1

4
FmnFmn

2
1

4
l~BmBm22B•b!2

5c̄S 1

2
igm ]Jm2m2g5gmbmDc1L8, ~59!

where in the last step we have identifiedjbm with bm and
explicitly displayed all the quadratic fermion terms inL. The
remaining pieceL8 of the Lagrangian contains only boson
quadratic terms and interactions. We see that the spont
ous Lorentz andCPT violation in the Lagrangian~58! has
generated thebm model discussed in previous sections.

The free-field Fock space of the quantum theory ass
ated withL contains one-fermion states determined by
quadratic terms in Eq.~59!. These states have dispersion r
lations given by Eq.~31!, as before. They therefore suffe
from the same problems of instability as thebm model dis-
cussed in Sec. IV B. This leads to difficulties within the sta
dard framework of perturbative quantum field theory, sin
the interacting fields are normally constructed iterative
from the free fields under the assumption that the effects
interactions are small. The toy model therefore still has
terpretational difficulties, despite the spontaneous nature
the Lorentz andCPT violation.

A similar argument applies to more general models. Sin
the theory described by Eq.~1! contains the most genera
terms quadratic in the fermion fields and arising in a ren
malizable theory, any conventional fermion field theory w
spontaneous Lorentz andCPT violation analogous to Eq
~58! must generate free-fermion Fock-space states with
persion relations contained as a subset of Eq.~14!. If all such
dispersion relations indeed lead to either stability or causa
violations at some large scale, as expected from the dis
sion in Sec. IV, then it follows that no conventional Lagran
ian of fermions with spontaneous Lorentz andCPT violation
has a completely satisfactory perturbative quantum fi
theory. Although it is conceivable that a nonperturbati
analysis taking the full structure of the theory into accou
would reveal a consistent theory satisfying stability and c
sality, this appears unlikely. Even this possibility is exclud
if the quantum field theory isdefinedin terms of its pertur-
bative expansion, as is sometimes done in the literature.

The above discussion shows that spontaneous symm
breaking in a conventional quantum field theory can na
rally generate Lorentz- andCPT-violating terms of the form
in Eq. ~1! and ensures various desirable features such
observer Lorentz symmetry. Provided the coefficients
Lorentz andCPT violation are small, as in the standard
model extension, difficulties arise only at large scales. Ho
ever, by itself spontaneous Lorentz violation is insufficient
ensure stability and causality at energies determined by
Planck scale. Maintaining stability and causality requires
additional ingredient that goes beyond conventional quan
field theory. This is consistent with the idea that the obs
vation of Lorentz andCPT violation would provide a unique
signal of Planck-scale physics.
8-13
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V. ALAN KOSTELECKÝ AND RALF LEHNERT PHYSICAL REVIEW D 63 065008
B. Nonlocality

If indeed the requirements of stability and causality are
be satisfied by free-field terms, then it is of interest to ide
tify a class of theories for which no difficulties arise in th
quadratic Lagrangian. Such theories would need to incl
terms beyond the ones in Eq.~1!. The new terms must be
nonrenormalizable, and in a realistic scenario with sponta
ous Lorentz violation they would correspond to highe
dimensional nonrenormalizable operators correcting
standard-model extension at energies determined by
Planck scale.

The first step is to determine whether any type of disp
sion relation can satisfy all the requirements for consisten
In a concordant frame, a satisfactory dispersion relation
scribing Lorentz andCPT violation would reproduce the
physics of Eq.~14! for small 3-momenta but would avoi
spacelike 4-momenta and group velocities exceeding 1
large 3-momenta. Moreover, its asymptotic behavior wo
need to obey Eq.~52!. These requirements could be impl
mented by combining the coefficients for Lorentz andCPT
violation with a suitable factor suppressing them only
large 3-momenta. A factor of this type must be essentia
constant at small 3-momenta and must overwhelm poly
mial powers at large 3-momenta. Since the distinction
tween small and large 3-momenta is a frame-dependent
cept, it is to be expected that a suitable factor would also
frame-dependent and hence involve Lorentz- a
CPT-violating coefficients.

A complete treatment of the possibilities lies outside
scope of the present work. Instead, we prove by example
suitable dispersion relations can in principle exist by prov
ing explicit situations with the desired features. We pres
here two cases that are closely related to thebm and cmn

models discussed in Sec. IV. To simplify the discussion,
disregard here issues associated with the size of the co
cients for Lorentz andCPT violation and take all masses an
Lorentz- andCPT-breaking coefficients to be of order 1 i
appropriate units. This permits a focus on resolving the pr
lems of stability and causality at Planck-scale energies
concordant frame without the complications introduced
the hierarchy of scales.

Consider first a dispersion relation obtained from Eq.~31!
for thebm model by combining all appearances ofbm with an
appropriate exponential factor. For simplicity, we take
model with only a nonzerob0 in a concordant frame. Multi-
plication of each factor ofb0 by exp@2(b0l0)

2# suppresses
the effect ofb0 at high energies with minimal effect at low
energies. In an arbitrary frame, observer Lorentz invaria
implies the resulting modified dispersion relation takes
form

†l22b2 exp@22~b•l!2#2m2
‡

214b2l2 exp@22~b•l!2#

24~b•l!2 exp@22~b•l!2#50. ~60!

For b0 of appropriate size, the positive roots of this modifi
dispersion relation remain positive in all frames. This p
vides a proof by example that a suitable modification of
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dispersion relation can be found that removes the difficu
with stability in arbitrary frames.

Figure 7 shows the dispersion relation for the modifiedbm
model in the special case where onlyb0 is nonzero in a
concordant frame. At small energies, the exponential fac
are negligible and the behavior is essentially like that of
original b0 model. However, at large energy the exponen
factors dominate, causing the dispersion relation to rem
within the light cone while asymptotically approaching it
required by condition~52!. The modifiedbm dispersion rela-
tion ~60! therefore has no difficulties with energy positivit
in any frame.

To establish that microcausality is also preserved,
group velocity of the modified dispersion relation~60! can be
examined. Figure 8 shows that the group velocity can ind
lie between the usual limiting values61 for all values of the
3-momentum despite the modification to the dispersion re
tion. Note that the asymmetry of this plot reflects the asy
metry of the corresponding curve in Fig. 7.

It is also possible to find examples where the difficulti
with causality are absent. For example, consider the dis

FIG. 7. Dispersion relation for a model with only a large no
zerob0 in a concordant frame and exponential suppression at la
energy. All four roots are displayed. None cross the light cone. T
dotted lines are the four roots for theb0 model without the expo-
nential suppression.

FIG. 8. Group velocity for the dispersion relation of the mod
in Fig. 7 as a function of the 3-momentum in a fixed direction. T
modified dispersion has no group velocity exceeding 1. The das
lines correspond to the usual limiting velocities61.
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STABILITY, CAUSALITY, AND LORENTZ AND CPT . . . PHYSICAL REVIEW D 63 065008
sion relation obtained from Eq.~40! for the c00 model with
c00,0 by multiplying each factor ofc00 with an exponential
factor exp(c00l0

2). In an arbitrary frame, the result is a mod
fication of Eq.~39! given by

„ham1cam exp~cbglblg!…„h n
a 1c n

a exp~cbglblg!…lmln

2m250. ~61!

The exponential factors remove the microcausality violatio
that previously occurred at largelm . Indeed, it can be shown
that the group velocity remains below 1 for all values oflW .
This proves by example that a suitable modification of
dispersion relation can eliminate difficulties with microca
sality @39#.

Figure 9 displays the dispersion relation for the spec
case of a modified model with only a nonzeroc00 in a con-
cordant frame. At small energies, the exponential factors
negligible and the behavior is essentially like that of t
original c00 model. However, at large energy the exponen
factors dominate, so the group velocities never exceed 1
causality is maintained. The asymptotes of the dispers
relation coincide with the light cone, as required by Eq.~52!.
The group velocity of the modified dispersion relation~61! is
shown as a function of the 3-momentum in Fig. 10. It
mains within the usual limiting velocities everywhere, as d
sired.

The above demonstrations prove that dispersion relat
violating Lorentz andCPT while maintaining stability and
causality can exist. It would be of interest to identify theor
from which these dispersion relations emerge naturally. T
appearance of transcendental functions of the momenta
responds to the occurrence of derivative couplings of a
trary order in the Lagrangian. A satisfactory theory with Lo
entz andCPT violation appears necessarily to be nonlocal
this sense. Although it is conceivable that a theory with
plicit Lorentz breaking might satisfy the requirements of s

FIG. 9. Dispersion relation for a model with only a large no
zeroc00 in a concordant frame and exponential suppression at la
energy. Only two curves appear because there is a two-fold de
eracy among the four roots. The dotted lines are the correspon
roots for thec00 modelwithout the exponential suppression.
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bility and causality, it would appear somewhat contrived
implement both the necessary observer Lorentz invaria
and nonlocal couplings by hand. In contrast, we see
spontaneous Lorentz andCPT violation in a nonlocal theory
can naturally yield the desired ingredients for stability a
causality at all scales.

C. String theory

Our field-theoretic considerations seeking the nature
Planck-scale corrections to a low-energy quantum fi
theory with Lorentz andCPT violation have thus led natu
rally to the case of a nonlocal theory with spontaneous sy
metry breaking. String theories have nonlocal interactio
and it is of interest to determine whether they could be of
desired kind. Although a satisfactory realistic string theo
has yet to be formulated, string field theories do exist
some simple string models and have already been use
investigate microcausality in the Lorentz-invariant case@40#.
Moreover, studies of string field theory provided the origin
motivation for identifying spontaneous Lorentz andCPT
violation as a serious candidate signal from the Planck s
@3# and for the construction of the standard-model extens
as the appropriate low-energy limit.

In the remainder of this section, we examine the struct
of the field theory for the open bosonic string to see whet
it is compatible with dispersion relations of the desired typ
Although this theory is unrealistic in detail, the structur
features of interest are generic to string field theories and
provide insight into the possibility of generating a consiste
theory with spontaneous Lorentz andCPT violation.

The open bosonic string has no fermion modes, so inst
we focus on the dispersion relation for the scalar tachy
mode in the presence of Lorentz- andCPT-violating expec-
tation values of tensor fields. In general, the analogue of
~1! for a single real massive scalar fieldf is @5#

L5
1

2
]mf]mf2

1

2
m2f21

1

2
kmn]mf]nf. ~62!

Here,kmn is a dimensionless coefficient for Lorentz violatio
that preservesCPT. It can be taken as real, symmetric, an
traceless. The dispersion relation for this theory is clos
related to that for the Lagrangian~1! with a nonzero coeffi-

e
n-

ng

FIG. 10. Group velocity for the dispersion relation of the mod
in Fig. 9 as a function of the 3-momentum in a fixed direction. T
modified dispersion has no group velocity exceeding 1. The das
lines correspond to the usual limiting velocities61.
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V. ALAN KOSTELECKÝ AND RALF LEHNERT PHYSICAL REVIEW D 63 065008
cientcmn only. For the special case with onlyk00 nonzero in
a concordant frame, the dispersion relation of the theory~62!
is just that in Eq.~40! with the identificationz2511k00.
Studying the dispersion relation of the scalar tachyon m
in the presence of Lorentz violation is therefore more app
priate than might perhaps be expecteda priori.

The action for the Witten string field theory@41# can be
written in the Chern-Simons form

I ~C!5
1

2a8
E C!QC1

g

3E C!C!C, ~63!

wherea8 is the Regge slope andg is the on-shell 3-tachyon
coupling at zero momentum. The operatorQ acts as a qua
dratic kinetic operator. The interactions are controlled by
star operator!, which joins the left half of one string to th
right half of another. The integral joins the left half of
string onto its own right half.

The vibrational modes of the string are the particle sta
The fieldC can be decomposed as a linear combination
ordinary particle fields with coefficients that are solutions
the first-quantized theory, expressed as creation opera
a21 , . . . acting on a vacuumu0&. Following the notation of
Ref. @42#, the fields inC are found to include among othe
a scalar f ~the tachyon! and a series of 2j -tensors
Bmn , Dmnrs , . . . :

C5S f1•••1
1

A2
Bmna21

m a21
n

1
1

2A6
Dmnrsa21

m a21
n a21

r a21
s 1••• D u0&. ~64!

The explicit Lagrangian for the theory in terms of partic
fields to low orders has been obtained in Ref.@42#. Our in-
terest here lies merely in determining whether the theory
in principle contain the types of term necessary for a sta
and causal dispersion relation involving Lorentz violatio
We therefore proceed under the assumption that spontan
Lorentz violation has occurred, possibly along the lines d
cussed in Ref.@3#, and has generated nonzero expectat
values for the 2j -tensors:^Bmn&, ^Dmnrs&, . . . . Note that
this assumption preservesCPT, as desired.

Follow the approach of Sec. V A, we directly extract re
evant quadratic terms in the Lagrangian involving t
tachyon. This procedure yields the Lagrangian

L.
1

2
]mf]mf1~a8211k0!f21•••1k1^Bmn&]

mf]nf

1•••1k2^Dmnrs&]mf]nf]rf]sf1•••. ~65!

Here, the scalar parametersk0 , k1 , k2 , . . . are fixed by the
theory, but their specific values are irrelevant for the pres
considerations. Each ellipsis represents quadratic terms
volving other tensor expectation values and terms with po
ers of]2.

For a plane-wave tachyon solution, the dispersion rela
resulting from this Lagrangian takes the form
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l21~a8211k0!1•••1k1^Bmn&l
mln1•••

1k2^Dmnrs&lmlnlrls1•••50. ~66!

We see that the structure of this equation does indeed con
features similar to those needed for a dispersion relation
isfying criteria for stability and causality. Thus, for exampl
the type of term in the toy dispersion relation~61! is a subset
of the terms displayed in Eq.~66!, when only 0th compo-
nents of the 2j tensors are nonzero and the 2j th-tensor ex-
pectation value is proportional to (k00)

j .
We emphasize that the purpose of the above discussio

only to provide an outline indicating how an acceptable d
persion relation for Lorentz violation might emerge in th
context of string theory. In particular, we make no claim th
the tachyon itself mustnecessarilyobey such a relation, al
though it is conceivable that it does@3#. Here, the tachyon
dispersion relation is used merely as an example to disp
explicitly the appearance of nonlocal couplings in stri
theory that could be appropriate for a stable and cau
theory with spontaneous Lorentz violation. Such couplin
are generic both for other fields in the open bosonic str
and for fields in other string theories, including ones w
fermions.

It would be of interest to find an explicit analytical con
struction for a Lorentz-violating solution in some string fie
theory and demonstrate its stability and causality. The m
accessible case is likely to be the open bosonic string,
other string field theories with fermions could be amena
to investigation. If such a solution exists, it may be possi
to find it using the methods of Ref.@43#. These interesting
issues lie beyond the scope of the present work.

VI. SUMMARY

In this paper, we have investigated the issues of stab
and causality in quantum field theories incorporating Lore
andCPT violation. No difficulties arise at low energies pro
vided the coefficients for Lorentz violation are small. How
ever, local quantum field theories of fermions involving Lo
entz violation generically develop difficulties with eithe
stability or causality at some scale in every inertial frame

On experimental and theoretical grounds, it is to be
pected that the parameters controlling the Lorentz andCPT
violation are Planck suppressed in any Earth-based lab
tory frame. In this physical situation, except for a spec
case involving a scale intermediate between the low-ene
and the Planck scales, the difficulties appear only for p
ticles with Planck-scale energies or in inertial frames und
going Planck-scale boosts. In particular, the detailed anal
can be applied to the fermion sector of the standard-mo
extension, which is thereby seen to have a regime of valid
comparable in many respects to that expected for the u
standard model. The high-energy difficulties are charac
ized by one-particle dispersion relations with tails eith
crossing the light cone or developing group velocities e
ceeding 1. The former result in instabilities, while the lat
produce microcausality violations.

As part of the analysis, we have presented the relativi
8-16



a
a

ra
it

e-
th
cl
th
re
an
t

er
a

in

d

e
th

i
-
ro
re
lic
m

n
is

nd
t

at
ie
ut
le
e
hi
-
ow
re

b
ne

d
l
g

.

e
2

e

t

roth

t
yed

ht-

ne
6
rary
ws

st
e
rmi-

e
of

e.
y

e.
-

STABILITY, CAUSALITY, AND LORENTZ AND CPT . . . PHYSICAL REVIEW D 63 065008
quantum mechanics and the quantum field theory of a m
sive fermion governed by the quadratic sector of a renorm
izable Lagrangian with general Lorentz- andCPT-violating
terms. Much of the discussion can be extended to quad
terms in a quantum field theory for a massive scalar w
Lorentz andCPT violation, by virtue of the generality of the
dispersion relation~14! and the usual type of connection b
tween the Dirac and Klein-Gordon equations. Some of
results should also apply to the case of massless parti
including any massless neutrinos and the photon or o
gauge bosons. However, further effort is likely to be requi
to account correctly for the differences between massive
massless representations of the Lorentz group and for
effects of gauge symmetry. Our methodology and gen
results are also applicable to nonrenormalizable terms in
effective theory. The limitation to renormalizable terms
our analysis is largely a matter of convenience, chosen
minimize complications in the identification of the origin an
resolution of the difficulties with Lorentz andCPT violation.

The issues with stability and causality can be resolv
under suitable circumstances. An important ingredient in
is the requirement of observer Lorentz invariance, which
guaranteed if the Lorentz andCPT violation develops spon
taneously in a Lorentz-covariant underlying theory. This p
vides a link between the Fock spaces constructed by diffe
inertial observers. In contrast, in theories based on exp
Lorentz violation instead, this condition must either be i
posed by hand or be replaced by some otherad hoccondi-
tion.

We have shown explicitly that spontaneous Lorentz a
CPT violation in suitable nonlocal theories can generate d
persion relations avoiding the problems with stability a
causality. In particular, the necessary structures appear in
context of string field theories. We find it noteworthy th
imposing stability and causality on quantum field theor
with Lorentz violation leads naturally both to insight abo
the nonrenormalizable terms emerging as the Planck sca
approached and to requirements compatible with string fi
theories. This reverses the usual chain of reasoning by w
spontaneous Lorentz andCPT violation in some fundamen
tal theory leads to the standard-model extension in the l
energy limit where nonrenormalizable terms become ir
evant.

The analysis in this work supports the idea that a sta
and causal realistic fundamental theory involving sponta
ous Lorentz andCPT violation exists. If so, it would lead to
potentially observable effects at sub-Planck energies
scribed by the Lorentz- andCPT-violating standard-mode
extension. This offers the promising possibility of providin
a unique experimental signature of Planck-scale physics
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APPENDIX A: BOUND FOR d0

The key to boundingd0 is to obtain a bound on
det(g0G0)5det(I 1e0) in terms of the components of th
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matrix e0 controlling the Lorentz andCPT violation. Ex-
panding the determinant yields 4!524 terms, each a produc
of 4 matrix elements ofI 1e0. It can be written

det~ I 1e0!5~11e11
0 !~11e22

0 !~11e33
0 !~11e44

0 !1•••,
~A1!

wheree jk
0 denotes thejk element ofe0 and the ellipsis rep-

resents the 23 remaining terms, none of which are at ze
order ine0.

Definee5maxj,k$uejk
0 u%, the matrix element with the larges

absolute value. Then, a lower bound for the term displa
in the expansion~A1! is (12e)4. Providede, 1

2 , the largest
of the remaining terms is bounded above bye(11e)3. It
follows that

det~ I 1e0!>~12e!4223e~11e!3. ~A2!

Subtraction of suitable non-negative terms from the rig
hand side of this inequality yields

det~ I 1e0!>~12e!3~1230e!. ~A3!

Explicitly, we have

e05g0S cm0gm1dm0g5gm1e01 i f 0g51
1

2
glm0slmD .

~A4!

Noting the antisymmetry properties ofslm andglmn, we see
that e0 is the sum of 16 terms, each being a product of o
Lorentz- andCPT-violating parameter with one of the 1
gamma matrices. Since the absolute value of an arbit
entry of any gamma matrix does not exceed 1, it follo
from the definition~5! of d0 thate<16d0. Together with Eq.
~A3!, this implies

det~g0G0!.0, 0<d0,
1

480
. ~A5!

In the trivial cased050, g0G05I has four positive eigen-
values. The continuity of the determinant implies this mu
also hold true for alld0 in the above range. An eigenvalu
sign change would be accompanied by a vanishing dete
nant, contradicting Eq.~A5!.

APPENDIX B: BOUND FOR d

Equation ~11! shows that the four roots of th
dispersion relation can be interpreted as eigenvalues
(G0)21(G jl j2M ). Note that the matrixG0 is invertible pro-
vided the spinor redefinition~4! exists, as we assume her
We proceed by obtaining an upper bound on the quantitd
in Eq. ~15! such that

det~g0G jl j2g0M !Þ0, ~B1!

where the factor ofg0 has been inserted for convenienc
With the bound ond in hand, the continuity of the determi
nant in Eq.~B1! as the coefficients for Lorentz andCPT
8-17
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violation vanish then implies the same eigenenergy-s
structure as occurs in the usual Dirac case.

To simplify the notation, definee j and e(M ) such that
Eqs.~2! and ~3! take the forms

G j5g j1g0e j , M5m1g0e~M !. ~B2!

An argument similar to that following Eq.~A3! shows the
componentsekl

j andekl(M ) of e j ande(M ) obey

mekl
j ,16d, ekl~M !,14d. ~B3!

Using this notation, we can write

g0~G jl j2M !5g0~g jl j2m!1„e jl j2e~M !…, ~B4!

where the first term on the right-hand side is just the us
free Dirac HamiltonianHD and the second term controls th
Lorentz andCPT violation.
ed

k

t.

on

06500
n

al

For Eq.~B1! to hold, the kernel ofg0(G jl j2M ) must be
empty. Thus,g0(G jl j2M )vÞ0 must hold for all complex
spinorsv. The normuvu of v can be set to 1 without loss o
generality. A sufficient condition for the vanishing of th
kernel is then

uHDvu2.u„e jl j2e~M !…vu2 ~B5!

for all v, where we have used Eq.~B4!.
The left-hand side of this inequality is justlW 21m2, as can

be seen by expandingv in eigenspinors ofHD . An upper
bound for the right-hand side is determined
64(A3•8ulW u17m)2d2, where we have used Eq.~B3! and the
assumptionuvu51. Some algebra then directly yields th
bound ond given in the text.
t.

t.

e,

e
is,

ev.

ev.

he
e

der
pi-
@1# W. Pauli, Phys. Rev.58, 716 ~1940!.
@2# J. S. Bell, Birmingham University thesis, 1954; G. Lu¨ders,

Det. Kong. Danske Videnskabernes Selskab Mat.fysiske M
delelser28, 5 ~1954!; W. Pauli, inNiels Bohr and the Devel-
opment of Physics, edited by W. Pauli~McGraw-Hill, New
York, 1955!.
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