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Abstract

In this paper we consider a general non-linear size structured population

dynamical model with size and density dependent fertility and mortality rates

and with size dependent growth rate. Based on [3] we are able to deduce a

characteristic function for a stationary solution of the system in a similar way.

Then we establish results about the stability (resp. instability) of the stationary

solutions of the system.
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1 Introduction

The model equation

p′t(a, t)+(γ(a)p(a, t))′a =−µ(a,P(t))p(a, t), 0≤ a < m< ∞,

γ(0)p(0, t) =
∫ m

0
β(a,P(t))p(a, t)da, t > 0, (1.1)

with the initial conditionp(a,0) := p0(a) describes the dynamics of a single

species population with structuring variablea which is now a measure of an indi-

vidual’s “size” (volume, weight, biomass, etc.).

The mortality and the fertility functionsµ,β depend on the sizea and on the

total population quantity

P(t) =
∫ m

0
p(a, t)da

at time t which makes the model a non-linear one. We assume a finite maximal

size denoted bym and the size of any newborn is considered to be 0. We make the

following general assumptions on these vital rate functions:

∀x∈ [0,∞) β(.,x) ∈ L1(0,m), µ(.,x) ∈ L1
loc([0,m)) ,

∀x∈ [0,∞) 0≤ β(a,x)≤ K < ∞, µ(a,x)≥ 0,
∫ m

0 µ(a,x)da= ∞.

The growth rateγ > 0 depends only on the sizea. Moreover we assume that all

the vital rate functionsµ,β,γ are inC1 class. This generalized model is equivalent

to the Gurtin-MacCamy (or McKendrick) non-linear age structured model ifγ ≡ 1,

(se [5],[6],[1]). This type of model can be derived from fundamental principles as a

continuity equation, see e.g. [7],[4].

In [3] a characteristic equation for a stationary solution of the above mentioned

age structured model is deduced which enabled us to prove stability (resp. instabil-

ity) results under relatively general conditions on the vital ratesβ,µ.

In the present note we are going to deduce the characteristic function for a sta-

tionary solution of the more general size structured model. Then we establish sta-
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bility (resp. instability) results under general and simply conditions for the vital rate

functions.

2 The characteristic equation

If the model (1.1) has a stationary solution denoted byp1(a) then it has to satisfy

the following equations

γ′(a)p1(a)+ γ(a)p′1(a) =−µ(a,P1)p1(a), P1 =
∫ m

0
p1(a)da,

γ(0)p1(0) =
∫ m

0
β(a,P1)p1(a)da (2.1)

from which

p′1(a) =
−µ(a,P1)p1(a)− γ′(a)p1(a)

γ(a)
,

and we get the solution

p1(a) = p1(0)e−
∫ a

0
µ(s,P1)+γ′(s)

γ(s) ds
. (2.2)

Substituting (2.2) into (2.1) we get

1 =
∫ m

0 β(a,P1)e
−

∫ a
0

µ(s,P1)+γ′(s)
γ(s) ds

da
γ(0)

=: Q(P1) (2.3)

what is known as the inherent net reproduction number in the age structured

case (γ ≡ 1).

We can solve equation (2.3) for the single variableP1 and from the equation

P1 =
∫ m

0
p1(a) = p1(0)

∫ m

0
e
−

∫ a
0

µ(s,P1)+γ′(s)
γ(s) ds

da

we have the initial valuep1(0).
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This way we showed that for any solutionP1 of (2.3) we have exactly one sta-

tionary solutionp1(a).

Now introducing the variation for an arbtitrary stationary solutionp1(a)

u(a, t) := p(a, t)− p1(a),

which satisfies the following differential equation

u′t(a, t)+(γ(a)u(a, t))′a = p′t(a, t)+(γ(a)p(a, t))′a− (γ(a)p1(a))′a,

and with

p′t(a, t)+(γ(a)p(a, t))′a =−µ(a,P(t))p(a, t), (γ(a)p1(a))′a =−µ(a,P1)P1(a),

we get

u′t(a, t)+(γ(a)u(a, t))′a =−µ(a,P(t))p(a, t)+µ(a,P1)p1(a).

After linearizing the right-hand side inP we obtain

u′t(a, t)+(γ(a)u(a, t))′a =−µ(a,P1)u(a, t)−µ′p(a,P1)p1(a)
∫ m

0
u(a, t)da, (2.4)

and for the initial condition

u(0, t)= p(0, t)−p1(0)=
∫ m

0
β(a,P1)u(a, t)da+

∫ m

0
β′P(a,P1)p1(a)da

∫ m

0
u(a, t)da.

(2.5)

Now suppose that the linearized problem has solutions of the formu(t,a) =

eλtU(a) substituting this into (2.4) and (2.5) and applying the following notation

Ū =
∫ m

0 U(a)dawe get
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U ′(a) = U(a)
−γ′(a)−µ(a,P1)−λ

γ(a)
−Ū

µ′P(a,P1)p1(a)
γ(a)

, (2.6)

U(0) =
∫ m

0
β(a,P1)U(a)da+Ū

∫ m

0
β′P(a,P1)p1(a)da. (2.7)

The solution of (2.6)-(2.7) is

U(a) =
(

U(0)−
∫ a

0

Ūµ′P(s,P1)p1(s)
γ(s)

e
∫ s

0
γ′(r)+µ(r,P1)+λ

γ(r) dr
ds

)
e
−

∫ a
0

γ′(s)+µ(s,P1)+λ
γ(s) ds

.

(2.8)

Integrating (2.8) from 0 tomand using the formulap1(s)= p1(0)e−
∫ s

0
γ′(r)+µ(r,P1)

γ(r) dr

we obtain

Ū = A11(λ)U(0)+A12(λ)Ū ,

whith

A11(λ) =
∫ m

0
e
−

∫ a
0

γ′(s)+µ(s,P1)+λ
γ(s) ds

da,

A12(λ) =−p1(0)
∫ m

0
e
−

∫ a
0

γ′(s)+µ(s,P1)+λ
γ(s) ds

(∫ a

0

µ′P(s,P1)
γ(s)

e
∫ s

0
λ

γ(r)dr
ds

)
da.

Substituting the solutionU(a) into (2.7) we get

U(0) = U(0)A21(λ)+ŪA22(λ),

where

A21(λ) =
∫ m

0
β(a,P1)e

−
∫ a

0
γ′(s)+µ(s,P1)+λ

γ(s) ds
da

A22(λ) =
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= p1(0)
∫ m

0

(
e
−

∫ a
0

γ′(s)+µ(s,P1)
γ(s) dsβ′P(a,P1)−e

−
∫ a

0
γ′(s)+µ(s,P1)+λ

γ(s) dsβ(a,P1)
∫ a

0

µ′P(s,P1)
γ(s)

e
∫ s

0
λ

γ(r)dr
ds

)
da.

Thus, we get the same linear system as in [3] forŪ ,U(0) but with more com-

plicated coefficients:

0 = A11(λ)U(0)+(A12(λ)−1)Ū , 0 = U(0)(A21(λ)−1)+ŪA22(λ).

We can formulate the following

Theorem 1The stationary solutionp1(a) is asymptotically stable (resp. unsta-

ble) if all the roots of the following equation have negative real part (resp. it has a

root with positive real part).

A11(λ)A22(λ)−A12(λ)A21(λ)+A12(λ)+A21(λ) = 1

3 Stability of equilibria

Next we establish our stability results.

The proof of the following result mainly follows the idea of the proof of Th.1 in

[2].

Theorem 2In the case ofµ(a,P) = m(a), β(a,P) general,γ(0) = 1, the station-

ary solutionp1(a) is asymptotically stable ifβ′P(.,P1) < 0, if insteadβ′P(.,P1) > 0

then it is unstable.

Proof

Let us introduce the following notations:

T(a,P1,λ) := e
−

∫ a
0

γ′(s)+µ(s,P1)+λ
γ(s) ds

, T(a,P1) := e
−

∫ a
0

γ′(s)+µ(s,P1)
γ(s) ds

,

and
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T(a,P1,λ) = e
−

∫ a
0

γ′(s)+µ(s,P1)
γ(s) ds

e
−λ

∫ a
0

1
γ(s)ds = T(a,P1)e−λΓ(a),

where

Γ(a) =
∫ a

0

1
γ(s)

ds.

If the vital rates assume the form above then the characteristic equation can be

written the following way

K(λ) = 1 =

=
P1∫ m

0 T(a,P1)da

∫ m

0
T(a,P1)e−λΓ(a)da

∫ m

0
T(a,P1)β′P(a,P1)da+

+
∫ m

0
β(a,P1)T(a,P1)e−λΓ(a)da.

Now suppose thatβ′P(.,P1) > 0 holds. Then we are going to show that the

characteristic function has a positive rootλ.

The following inequality is true for allP1 > 0

K(0) = P1

∫ m

0
T(a,P1)β′P(a,P1)da+ γ(0) > 1

becauseγ(0) = 1 andβ′P(.,P1) > 0 holds.

Additionally we have

lim
λ→∞

K(λ) = 0,

and the functionsµ,β,γ are non-negative so thatK(λ) is a monotone decreasing

function ofλ, which shows that there exists exactly one positiveλ for whichK(λ) =

1.
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On the other hand ifβ′P(.,P1) < 0 holds, suppose that there exists a rootλ =

x+ iy such thatx≥ 0.

Then

1 = Re(K(λ)) =
P1∫ m

0 T(a,P1)da

∫ m

0
T(a,P1)e−xΓ(a) cos(yΓ(a))da·

·
∫ m

0
T(a,P1)β′P(a,P1)da+

∫ m

0
β(a,P1)T(a,P1)e−xΓ(a) cos(yΓ(a))da,

for x≥ 0, we havee−xΓ(a) ≤ 1 and cos(yΓ(a))≤ 1 obviously, so we have

Re(K(λ))≤

≤ P1∫ m
0 T(a,P1)da

∫ m

0
T(a,P1)da

∫ m

0
T(a,P1)β′P(a,P1)da+

∫ m

0
β(a,P1)T(a,P1)da=

= P1

∫ m

0
T(a,P1)β′P(a,P1)da+ γ(0) < 1,

a contradiction.

That means that the characteristic equation does not have a root with positive or

zero real part ifβ′P(.,P1) < 0 holds.�

Remark The stability condition for the fertility function seems to be very nat-

ural in a biological sense, namely it says that if at the equilibrium the growth of

the population decreases the fertility of individuals which in general decreases the

number of newborns as a compensation or balancing principle, then the equilib-

rium is stable. In general if the conditions for stability of equilibria arrived at by

mathematical modelling of biological phenomena are intuitively obvious then the

mathematical model can be relied upon perhaps by greaten certainty.
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The following theorem generalizes the first part of Th.2., that is we give a con-

dition which implies instability of the equilibrium for generalµ(a,P),β(a,P),γ(a).

Theorem 3Supposeγ(0) = 1, then ifQ′(P1) > 0 holds then the stationary solu-

tion p1(a) with total population quantityP1 is unstable.

Proof With the notations above we have

A11(λ) =
∫ m

0
T(a,P1,λ)da, A21(λ) =

∫ m

0
β(a,P1)T(a,P1,λ)da,

A12(λ) =− P1∫ m
0 T(a,P1)da

∫ m

0

(
T(a,P1,λ)

∫ a

0
µ′P(s,P1)

eλΓ(s)

γ(s)
ds

)
da,

A22(λ)=
P1∫ m

0 T(a,P1)da

∫ m

0
T(a,P1)β′(a,P1)−T(a,P1,λ)β(a,P1)

∫ a

0

µ′P(s,P1)
γ(s)

eλΓ(s)dsda.

Substitutingλ = 0 into the characteristic equation a basic calculation leads to

K(0)= P1

∫ m

0
T(a,P1)β′P(a,P1)−T(a,P1)β(a,P1)

∫ a

0

µ′P(s,P1)
γ(s)

dsda+
∫ m

0
β(a,P1)T(a,P1)da

and observe that the first term on the right hand side isP1Q′(P1) so that we have

K(0) = P1Q′(P1)+1 > 1.

Now we only have to prove that limλ→∞ K(λ) = 0 which proves that there exists

a real positive rootλ. ForA11(λ),A21(λ) we have limλ→∞ A11(λ)= limλ→∞ A21(λ)=

0. ForA12(λ) consider the function

e
−

∫ a
0

γ′(s)+µ(s,P1)+λ
γ(s)

∫ a

0

µ′P(s,P1)
γ(s)

eλΓ(s) = e
−

∫ a
0

γ′(s)+µ(s,P1)
γ(s)

∫ a

0

µ′P(s,P1)
γ(s)

eλ(Γ(s)−Γ(a))

and we have
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∫ a
0

1
γ(u)du= Γ(a) > Γ(s) =

∫ s
0

1
γ(u)du for a> s, which proves limλ→∞ A12(λ) = 0.

So does the second term ofA22(λ), namely

lim
λ→∞

T(a,P1,λ)β(a,P1)
∫ a

0

µ′P(s,P1)
γ(s)

eλΓ(s)ds= 0.

That is we have

lim
λ→∞

A22(λ) =
P1∫ m

0 T(a,P1)da

∫ m

0
T(a,P1)β′(a,P1)da= C

a constant, which completes the proof.�

Remark The conditionQ′(P1) > 0 gets a natural meaning for the age structured

population model (the caseγ ≡ 1) whenQ(P) = R(P) is the expected number of

newborns for an individual. Then Th.3. states that for sufficiently closeP, P > P1

the net reproduction number is greater than 1, so that the stationary solution cannot

be stable. This is not a surprising behaviour again.

At the moment the problem, that whether forR′(P1) < 0 (or even in general in

the case of a size structured model forQ′(P1) < 0), the stationary solution is stable,

seems to be open.
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