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ility Con itions for Multiclass 

Fluid Queueing Networks 
Dimitris Bertsimas, David Gamarnik, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Abstract-We zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAintroduce a new method to investigate stability 
of work-conserving policies in multiclass queueing networks. 
The method decomposes feasible trajectories and uses linear 
programming to test stability. We show that this linear program 
is a necessary and sufficient condition for the stability of all 
work-conserving policies for multiclass fluid queueing networks 
with two stations. Furthermore, we find new sufficient conditions 
for the stability of multiclass queueing networks involving any 
number of stations and conjecture that these conditions are also 
necessary. Previous research had identified sufficient conditions 
through the use of a particular class of (piecewise linear convex) 
Lyapunov functions. Using linear programming duality, we show 
that for two-station systems the Lyapunov function approach is 
equivalent to ours and therefore characterizes stability exactly. 

1. INTRODUCTION 

HE PROBLEM of establishing conditions under which a 

multiclass queueing network is stable under a particular 

policy has attracted a great deal of attention in recent years. It 

is known that for single class [2], [16], [19] and multiclass 
acyclic queueing networks zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 11 J ,  a necessary and sufficient 

condition for stability of all work-conserving policies is that 

the traffic intensity at each station of the network is less than 

one. For multiclass networks with feedback, 1131, [14], and 

[ 171 have identified particular priority policies that lead to 

instability even if the traffic intensity at each station of the 

network is less than one. More surprisingly, [3] and [18] have 

shown that these instability phenomena are present even for 

the standard first-in/first-out (FIFO) policy. It is, therefore, a 

rather interesting problem to identify the right set of necessary 

and sufficient conditions for stability of multiclass queueing 
networks under work-conserving policies. 

In recent years, researchers have identified progressively 

sharper sufficient conditions for stability of all work- 

conserving policies through the use of Lyapunov functions. 

Kumar and Meyn [121 used quadratic Lyapunov functions, 

while Botvich and Zamyatin [4], Dai and Weiss [Si, 

and Down and Meyn [9] used piecewise linear convex 
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Lyapunov functions. Chen and Zhang [6] have found some 

sufficient (but not necessary) conditions for the stability of 

multiclass queueing networks under FIFO. In all cases, it 

was established that a multiclass network is stable if certain 

linear programming problems are feasible. To the best of 

our knowledge, the sharpest such conditions are those of [8] 

and [9] obtained through the use of piecewise linear convex 

Lyapunov functions. For some specific examples (for example 

in [4]), the conditions obtained are indeed sharp. In general, 

however, the problem of establishing the exact stability region, 

i.e., sharp necessary and sufficient conditions for stability, is 
open. Furthermore, it is not known whether the Lyapunov 

function method with piecewise linear convex functions (or 

with any convex function) has the power of establishing the 

exact stability region. 

Dai [7] has shown that a stochastic multiclass network is 

stable if the associated fluid limit (a deterministic network) is 

stable. Meyn [ 1.51 has proven a partial converse result. For this 

reason, the exact stability conditions obtained in this paper for 

the fluid model are suspected to,hold for stochastic queueing 

networks as well. 

The contributions as well as the structure of this paper are 

as follows. 

1) We introduce, in Section 111, a new method to investigate 

the stability of work-conserving policies in multiclass 

fluid networks. The method looks at the detailed struc- 

ture of possible trajectories. We find the exact stability 

region for two-station multiclass networks. The stability 

condition is expressed in terms of a linear program. 

2) We demonstrate, in Section IV, a duality relationship 

between our linear program from Section 111 and the 
linear program proposed in 191 using Lyapuniov function 

methods. We, therefore, establish that piecewise linear, 

convex Lyapunov functions have the power of checking 

stability exactly for networks with two stations. 

3) We find, in Section V, new sufficient conditions for 

multiclass networks with more than two stations that 

we believe are necessary, although we were unable to 

establish necessity. The conditions are again expressed 

in terms of a linear program with a small number of 

variables and constraints. 

11. NOTATION 

We introduce a fluid model (a ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp,  P, C) consisting of 

n classes C1, . . .  , C,, and J service stations 1, . . .  , J ,  as 

follows. Each class is served at a particular station. Let 
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“:, be the set of classes served in station j. The external 

arrival rate for class zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi is ai, and the service rate is pi. 
Let CY = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(o1, . . . , aTL)’ and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = ( p l ,  . . . , pn)’. After a 
service completion, a fraction p i j  of class i customers becomes 

class j and a fraction 1 - E, p ; j  exits the system. Let P 
be the substochastic matrix P = (F‘ij)lsi,jsn. Finally, we 
define the J X n matrix c as follows: c j k  = 1 if class 

k is served at station j and c j k  = 0 otherwise. We let 

M = diag { zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp1, . . . , pun} and assume that the matrix P has 
spectral radius less than one. 

Any scheduling policy can be described in terms of the 

variables T k ( t )  defined as the amount of time class k is being 

served in the interval [O, t] and Q k ( t )  defined as the queue 
length for class IC at time t .  We let T( t )  = [Tl(t), .. . , Tn(t)]’ 
and Q(t )  1 [Qi(t), . . . , QTL(t)l’. 

Throughout the paper we call Q ( t )  the trajectory of the fluid 
process under the allocation process T(t ) .  Given the initial 

condition Q(O), the dynamics of the queue length process are 

as follows: 

n 

Q k ( t )  = Q k ( 0 )  + akt + p iT i ( t )p i k  - ~ T k ( t )  
i=l 

2 0 ,  k =  1, . . . ,  n 

or in matrix form 

Q(t)  Q(0)  + at + [P’ - I ]MT(t)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 0. 

We assume that the allocation process satisfies the following 

conditions. 

1)  T(0)  = 0. 

2) (Feasibility) For any t 2  > t l  3 0 and any station i 

tl 
k E U %  

and T k  ( t )  is nondecreasing. 

ClcE0, Q k ( t )  > 0 for some station a ,  then 
3) (Work-conservation) If for all t E [ t l ,  tz] we have 

kEUz 

Any scheduling policy satisfying all the above properties 

is called a (feasible) work-conserving policy. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
An alternative characterization of the above requirements is 

to introduce for any station i, the cumulative idling process 

U, ( t )  = t - T k ( t ) .  
kEU, 

Feasibility condition (1) then requires that U, ( t )  be nonnega- 

tive and nondecreasing, while the work-conservation condition 

is rewritten as follows: if for all t E [ t l ,  t z ]  we have 

E k e o ,  Q k ( t )  > 0, then 

initial condition Q(O), there exists a finite time t o  such that 

Q ( t )  = 0 for all t 2 to. Rybko and Stolyar [17] show that 

this is equivalent to the weaker condition: for every work- 

conserving allocation process T( t )  and every initial condition 

Q(O), there exists a finite time t o  such that Q ( t o )  = 0. We 
will use this as our working definition of stability. 

A necessary condition for stability (see Chen [ 5 ] )  is that the 

traffic intensity vector p defined by p = C M - l [ I  - P’]- la 
satisfies 

where e = (1, 3 . . , 1)’. As mentioned in the introduction, for 

general multiclass networks with feedback, this condition is 
not sufficient. Our goal in the next section is to establish 

necessary and sufficient conditions for the stability of a mul- 

ticlass fluid network with two stations, given that p < e. 

In preparation for this analysis, we introduce some further 

notation. 

We refer to Q ( t )  E RT as the state of the system at time 

t 2 0. We partition the set RT - (0) of nonzero states into the 

following finite family of subspaces. For any nonempty set of 

service stations S c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{I, 2, . . . , J } ,  we let 

i.e., Rs corresponds to states for which all stations in S are 

busy, while all other stations have empty buffers. 

111. STABILITY CONDITIONS FOR MULTICLASS 
TWO-STATION FLUID NETWORKS 

In this section, we establish necessary and sufficient con- 
ditions for stability for the case where J = 2, i.e., for 

multiclass networks with two stations. Throughout this section, 

we assume that p < e, since otherwise the system is unstable. 

We denote by RI, Rz, and R12 the subspaces corresponding 

to S = {l}, {a}, (1, 2}, respectively, as defined at the end 
of Section 11. In particular, for Q E R1 station 2 has no 

customers, for Q E Rz station 1 has no customers, while 

for Q E Rlz both stations have customers in queue. The 
proposition that follows states that a trajectory can be broken 
down into subtrajectories of four different types. 

Proposition I: Consider a stable work-conserving trajec- 
tory Q( t )  and let 7- be the smallest time such that Q ( T )  = 0. 

There exists a (finite or infinite) nondecreasing sequence t, 
such that supz t ,  = T and such that for all times less than T 

the following hold: 

Q(t47r~+l) E RI and for t E [ t4m+l,  b m + 2 ] ,  

Q(t)  E RI U Biz 

Q ( h n L + 2 )  E RI and for t E ( t4m+2r hm+3) .  

U % ( t l )  = G ( t 2 ) .  (3 )  

Following Chen [5], a fluid network (a .  p, P, C )  is said 

to be (globally) stable for all work-conserving policies if 
for every work-conserving allocation process T( t )  and every Q(t )  E E12 
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t4m+4 t4m+3 

Fig. I .  The times zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt ,  for a typical trajectory 

Q ( h m + 3 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA ER^ and for t E [ k m + 3 ,  t4m+4]; 

&(t )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE R2 U R12 

Q(t4m,+4) E R2 and for t E (t4na+4, t4m+5)1 

Q(t)  E Riz.  

Proq? This is a simple consequence of the fact that 

starting in R I ,  the system can get to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARz only by first going 

through R12, and vice versa; see Fig. 1.  In particular, once 
t4m+l has been defined, we may let t47n+3 = rnin{t > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t 4 m + l )  Q(t )  nz) and t 4m+Z = max{t < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb T n + 3 I  &(t )  E 

R I } .  [In case Q ( t )  never enters Rz after time t4rrL+1, then 

the preceding definition of tdm+3 is inapplicable; however, in 

this case, the system gets to Q ( T )  = 0 without ever leaving 

R1 U Rlz.  Thus, [t4m+l, 7 )  can be taken as the last interval.] 

Having thus defined t4m+3, the times t4m+4 and t4m+5 are 

defined similarly. U 

A. Boundsfor the Strong Busy Period of Stable 
Work-Conserving Policies 

In this subsection, we find an upper bound on the time 

that stable work-conserving policies take to empty the fluid 

network starting with an initial condition Q(0). This time 

is usually called the strong busy period. This result is of 
independent interest as it contributes to our understanding 

of the performance o f  the network; it is also the key to our 

stability analysis in the next subsection. 

Proposition 2: Consider a stable work-conserving policy 

T(1) starting with initial condition Q ( 0 )  # 0. Let T be the 
smallest time such that Q(r)  0. Then, T is bounded above 

by the optimal value of the following linear program to be 

called LP[Q(0)] :  

maximize 

i: 71 
j=1 

subject to 

i=l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
71 

i=I 
n 

i=l 

V k  t 01: 

n 

i=l  

n 

k = 1  
n 

i=l 

' dk  E (1, " . )  7 1 ) :  

4 n. 4 4 

Proof: Consider a stable work conserving policy with 

initial condition Q(0) # 0. Without loss of generality, we only 

provide the proof for the case Q ( 0 )  E RI; the proof for the 

other cases is essentially identical. Let tl = 0 and let the times 
t, be as in the statement of Proposition 1. For j z= 1. . . . , 4 

we introduce the following variables: 

M 

rn=O 

and 

m,=O 

Intuitively, 71 is the total amount of time the trajectory spends 
in R1 as well as in excursions from RI into R12 and back 
into RI ;  7 2  is the total amount of time the trajectory spends in 

I212 coming from RI and going to Ra; 7 3  is the total amount 

of time the trajectory spends in Rz as well as in excursions 

from Rz into R12 and back into R,; finally, r4 is the total 

amount of time the trajectory spends in R12, coming from Rz 
and going to RI .  Clearly r1 2 0 and the first time that Q ( t )  
becomes zero is given by 7 = T I  + 7 2  + 7 3  + 74.  Note that for 

every class I C ,  T;, T:: T:, and 7; is the total worlk allocated 
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to class zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk during the time intervals that enter in the definitions 

of rl, 7 2 ,  ~ 3 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA74. respectively. 

Similarly, for k E 01, we have Q k ( f 4 r n + 3 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Qk(t4m+4)  = 0 

which yields 

By summing over m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0 we obtain that 

7-1 = 7; 

k € o i  

which simply expresses the work conservation in station 1 ,  

while the trajectory is in R 1  U Rlz (station 1 busy). Similarly, 
work conservation for station 2, while the trajectory is in 

R2 U RI;! (station 2 busy) leads to 

7 3  = TZ. 

Moreover, for t E ( h n L + 2 ,  h m + 3 )  U ( h m + 4 ,  h n L + 5 ) ,  we have 
Q ( t )  E Rlz,  and work conservation for both stations leads to 

kE0, 

T:! = 7; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

n 

= 7; Summing over all r n  2 0, we obtain 

k E m 2  n 

k E U l  i=l  

7-4 = T; a k T 2  + b&kT,2 - pkT: 2 0, k E 0 2 .  

Similarly, for all k E 0 1 ~  Qk(t4m,+3)  - Qrc(t4m+2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 0, 
leading to 

= O  

which leads to 
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4 
Recall that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArj. Then, from the dynamics of the 

network 
n 4 4 

i=l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj=1 j = 1  

Since Q(r)  = 0, we obtain 

n 4 4 

f f k T  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPiPik Er" - p k  
i = L  j=1 j=1 

= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- Q k ( O ) ,  k = 1, . . . ,  n. 

We have shown that all of the constraints of the linear program 

LP[Q(O)] must be satisfied, and therefore T must be bounded 
0 

The linear program LP[Q(O)] gives an upper bound on 

the strong busy period of all stable work-conserving policies. 

Similarly, if we minimize r; we find a lower bound 

on the time it takes for the network to empty using a work- 

conserving policy starting from an initial condition Q(0) .  The 

lower bound is particularly interesting as it gives information 
on the least possible emptying time. 

above by the value of this linear program. 

B. SuSficient Conditions for  Stability 

In this subsection, we derive sufficient conditions for stabil- 

ity of the fluid network. The sufficient conditions involve the 

linear program LP[O] which is defined exactly as the linear 

program LP[Q(O)] of the preceding subsection, except that 

the right-hand side variables Q k ( 0 )  in ( 5 )  are set to zero. 

Theorem I-Suficient Conditions for Stability: Consider 

the following set of linear inequalities in 4(n + 1) variables: 

i=l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7 

i=l 

V k  E 01: 
n 

' dk  E (1, . . ' ,  n}:  
4 n 4 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

rj 2 0, ri 2 0 (19) 

to be referred to as LP[O]. If LP[0] has zero as the only fea- 

sible solution, then the multiclass fluid network (a, p, P, C) 
is stable for all work-conserving policies. 

Proof: Let us assume that zero is the only feasible 

solution of LP[O]. Let us also assume that there exists an 

initial condition Q(0) # 0 and a work-conserving policy such 

that Q(t )  never becomes zero. We will derive a contradiction. 

Recall that the constraints in LP[0] and in LP[Q(O)] are the 

same except that the right-hand side in ( 5 )  is changed from 

- Q k ( O )  to zero. Using linear programming theory ([ 11) and 

since zero is the only feasible solution of LP[O], it follows that 

the feasible set of LP[Q(O)] is bounded. Let 2 be the optimal 

value of the objective function in LP[Q(O)] which is finite. 
Let us now consider the unstable policy starting from Q (0). 

Let us follow this policy up to time 2; from then on, let 

us switch to some stable work-conserving policy (under our 

standing assumption that p < e, it is known that such a policy 

exists). We then obtain a work-conserving policy that, starting 

from Q(O), eventually leads the state to zero, say at some time 

r.  By construction r > Z .  On the other hand, Proposition 2 

asserts that T 5 2. This is a contradiction and the proof is 
complete. 0 

C. Necessary Conditions for  Stability 

In this section, we show that the conditions of Theorem 

1 are also necessary. In particular, we show that, if the 

linear program LP[O] has a nonzero solution (73 ,  r l ) ,  j = 
1, . . .  , 4, k = 1, . . .  , n, then there exists a work.-conserving 

policy and an initial condition Q(0) # 0 such that for some 

time r > 0, Q ( T )  = Q(0). By repeating the same policy each 

time that the state Q(0) is revisited, the system never empties 

and therefore the fluid network is unstable. In preparation of 
the instability theorem we prove the following proposition. 

Proposition 3: If ( r j ,  T,") ,  j = 1, . . .  , 4, k = 1, . " ,  n is 

a nonzero solution of LP[0],  then rj > 0 for all j = 1, . . . , 4. 

Proof: Suppose r1 = 0. Then from (9) rl = 0 for all 

k = 1, . . . , n, and therefore from (1  9) we ob'tain for all 
k = 1 . . .  12 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

> l  

or in matrix form, with T I  = (T: ~ . . . , T,",)' 
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Multiplying both sides from the left by C M P 1 [ 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- P'1-l we 

obtain 

But from (10)-(12) we obtain 

Since 7 2  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~3 + 74 > 0, we obtain that p2 = 1, a contradiction. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A similar argument shows that r3 > 0. 

Suppose now that r2 = 0. From ( IO) ,  7' = (712, . . . . r:) = 
0, while from (13), (15), and (19), we obtain that 

11 

a k 7 3  + p.LpzkT,3 - p k r ;  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0, k. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE 0 2  

?=1 

From (16) we obtain 

Combining these two equations in matrix form, we obtain 

Multiplying both sides of the inequality by C M P 1 [ 1  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP-', 
we obtain 

Since from (1 I ) ,  7-3 = ClcEoa ri and 7-3 > 0, we obtain that 

p2 = I, a contradiction. By a similar argument 74 > 0. 0 
We next prove that the condition of Theorem I is also 

necessary. 

Theorem 2-Necessary Conditions ,for Stability: If the lin- 

ear program LP[O] has a nonzero solution, then there exists 
a work-conserving policy under which the multiclass fluid 
network ( U ,  p, P, C) is unstable. 

Proof: Let ( T ~ ,  r;) be a nonzero solution of the linear 

program LP[0]. We will construct an initial condition Q(0) E 

R1 and a work-conserving policy such that for some time 

r > 0, Q(r) = Q(0) .  It will follow that there exists a work- 

conserving policy under which the system never empties and 

therefore the fluid network is unstable. 

Let 

IC E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 1  (20) 

and 

Constraint (18) guarantees that Q(0) 2 0. We next show that 

xktv, Q k ( 0 )  > 0, i.e., Q(0) E RI. If Q(0) = 0, then, for 
all k E c1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1) 

2 
a k 7 2  + PhPzk7? - k k r k  = 0. 

1 = l  

Moreover, from (1 4), for all k E a2 

r b  

ak72 + l*,rPzk7: - p k r z  2 0. 
%=1 

In matrix form, with r L  = (712, . . . , r;)', the previous equa- 

tions become 

Multiplying by CM- l [1  - P']-', we obtain 

From (lo), we have 7 2  = CkEUl 7; = EkErr2 7:. From 
Proposition 3, 7 2  > 0, so p1, p2 2 I, a contradiction and 

therefore, Q(0) # 0. 
We construct the following allocation process for k = 

1, . . . , n as shown in (20a) at the bottom of the page. We 

show that the above allocation process is both feasible and 

work-conserving. 

We first consider the first interval [O, 7-21. By the dynamics 

of the fluid network for this allocation process and starting 
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from the initial condition given above, we obtain from (14) or equivalently zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k E n z  

so Q(7-2) E R2. If not, then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Q k ( 7 2 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 ,  k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE 0 2  

or 

n 

IC E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 2 .  

Then from (13) and (19), we obtain that 

n 

Also from (16) and (17), we obtain that 

n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
w(r3 + 7-4) + PiPik(Ti? + 7,") - pk(7;+7; )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0, 

i=l 
k E O1. 

Written in matrix from, the two previous relations become 

a(73 + T4) + [P/ - 1 p q 7 3  + 74) 2 0. 

Multiplying by C M p l [ I  - P'Ip1, we obtain 

L k € U z  

Since 7-3 + 7 4  = xkEoe (rz + r,") and 7-3 + r4 > 0, we obtain 

p2 2 1, a contradiction, and therefore CkEoa Q k ( . r z )  > 0. 

Since the allocation process is linear, we obtain 

v t  E [O. - rZ l ,  

vt  E (0, 5). 

&(t)  2 0 

&(t )  E R12 

and 

i.e., the allocation process i s  feasible. We next show that it is 

also work-conserving. From (1 0) 

t 

7 2  
t = -7: 

k t o i  

vt E [O,  721 : U,(t)  = U,(t) = U l ( 0 )  = U2(0) = 0 

and the process is indeed work-conserving. 

In the interval ( 7 2 ,  7 2  + r3], we prove similarly that for 

k E g 2  we have 4 ? k ( 7 2 + 7 3 )  2 0 and CkEga & k ( r z + n )  > 0. 
Therefore, Q(r2 + ~ 3 )  E R2, and since Q ( n )  E R2, we obtain 

by linearity that 

Work-conservation is shown similarly. 
Additionally, we show that in the interval t E ( 7 2  + 7 3 ,  r2 + 

7 3  +r4], Q ( t )  E R12 and in the interval t E [ r ~  + 7 3  +r4, 7 2  + 
Q + T ~ + T ~ ] ,  Q ( t )  E R I ,  while the process is work-conserving. 

In addition, because of (19), Q(r1 + 7 2  + 7 3  $- r 4 )  = Q(0) .  
It follows that the fluid network never empties for this work- 

0 
The necessity proof has identified a particular way that 

an unstable work-conserving trajectory materializes, leading 

to some insight as to how instability may be reached. In 

particular, we have shown that if there exists an unstable tra- 

jectory, then there exists a periodic trajectory with a particular 

structure. 

Combining Theorems 1 and 2, we obtain the main theorem 

of this section. 

Theorem 3: A two-station multiclass fluid network ( a ,  p, 
P; C) is stable for all work conserving policies if and only if 

the load condition p < e holds and the linear program LP[O] 
has zero as the only feasible solution. 

conserving feasible policy and is unstable. 

D. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA Special Case 

To illustrate the use (as well as the power) of 'Theorem 3, 

we prove that a two-station fluid network, in which one of 

the two stations has only one class, is stable provided that 

the load condition (4) is satisfied. This generalizes previous 

results obtained by Kumar [lo], Down, and Meyn [9] for a 

three-class, two-station network. 

Theorem 4: A fluid network satisfying the load condition 

p < e with two stations and such that only one class is served 

by station 2 (10-21 = 1) is stable. 

Pro03 We show that the corresponding linear program 
LP[O] cannot have a nonzero solution. For the purposes of 

contradiction suppose that (T?, 7;) is a nonzero solution to 

LP[0]. Let CJZ = { I } .  We distinguish between two1 cases. 
Case I :  

From (16) 

We combine the previous relations in matrix form as follows: 

+ [P' - l ]n/1~~ 2 0 .  
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We multiply both sides by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC M - l [ I  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- P'1-l to obtain 

But from (1 I ) ,  we obtain 7 3  = 7; and from Proposition 3, we 

obtain ~3 > 0, leading to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp2 = 1, a contradiction. 

Case 2: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3 
(2173 + 

From (19), we obtain 

PcLLP%17,3 - PlTl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 0. 
t = l  

n 

0 2  (74 + 7 1  + 7 2 )  + pzpd (7," + 7,' + 7,") 

L = l  

- pl(7p + 71' + TI") zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0. 

Moreover, from (16) and (19) we obtain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n 

i=l 

which, in matrix form, becomes 

+ 7l + 7 2 )  + [PI - 1 1 ~ ( ~ 4  + + T z )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0. 

Multiplying both sides by CM-'[i' - .'Ip1 we obtain 

From (9), (lo), and (12), we obtain 

k t u 1  

and since 74 + TI + 7 2  > 0, then p1 = 1, a contradiction. 0 

Iv. ON THE POWER OF PIECEWISE 

LINEAR LYAPUNOV FUNCTIONS 

It is well known (see, for example, [91) that a multiclass 

fluid network is stable under all work conserving policies if 

and only if there exists a Lyapunov function which decreases 

along all possible trajectories. An example of such a function is 

the maximum (over all work conserving policies) of the time it 

takes for the system to empty. However, to prove that a system 

is stable, one needs to explicitly construct such a Lyapunov 

function, and this can be quite difficult. One possibility that 

has been investigated recently is to restrict to a class of convex 

Lyapunov functions (quadratic or piecewise linear) and to use 
mathematical programming techniques to identify a suitable 

Lyapunov function within such a class; see Kumar and Meyn 

[12], Botvich and Zamyatin [4], Dai and Weiss [SI, Down and 

Meyn [9]. 

These papers, however, leave open the question of whether 

convex Lyapunov functions have the power to establish 

1625 

(sharp) necessary and sufficient conditions for stability. In 

other words, is it true that a system is stable under all 

work conserving policies if and only if there exists a convex 

Lyapunov function that testifies to this? 

In this section we give a positive answer to this question for 

the case of a piecewise linear, convex Lyapunov function and 

a two-station multiclass fluid network. Concretely, we will 

show that a two-station network is stable if and only if the 

linear program constructed by Down and Meyn in [9] has 

a feasible solution. This solution (as discussed in [9]), if it 

exists, provides a certain piecewise linear Lyapunov function 

which guarantees stability. In particular, we will demonstrate 

that the dual of this linear program is a relaxation of the linear 

program LP[O] constructed in the previous section. Finally, 

we will simplify LP[O] and construct a linear program with 

only 271 variables that exactly characterizes stability. 

A. Piecewise Linear Lyapunov Functions and Duality 

Consider a multiclass fluid network (a ,  p, P, C) ,  with two 

stations, which is a reentrant line. Namely, there is only a 

single arrival stream of customers, i.e., a1 = A, a2 = . . . = 
a,  = 0. These customers are processed deterministically from 

c l a s s ~ t o c l a s s ~ f l ~ k , k + l  = l f o r k =  1 , 2 , . . . , n - l , p i j  = 
0 otherwise). Down and Meyn [9] proved that if the following 

linear program: 

AL1 + p;(L;+1 - L;) I -1 i t 01 

X Q i  + ~ j ( Q j + i  - Q j )  I -1 j E gz 

XL1 + PL;(Li+l - L;) 

+p j (L j+ l  - L j )  I -1 i E (r l ,  j E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU2 

X Q i  + ~ i ( Q i + i  - Q i )  

+ P j ( Q j + 1 -  Q j )  5-1 2 E 01, j E 0 2  

i E 01 

Lj I Qj .i E 0 2  

L; 2 Qr 

L > Q , Q > O  

is feasible, then the piecewise linear function @(z) = 
max(L'z, Q'z), for z 2 0, is a Lyapunov function and 

therefore the network is stable for all work-conserving policies. 

We can easily extend this linear program to a general 

multiclass two-station fluid network (a :  p, P, C),  i.e., not 

necessarily a reentrant line. If the following linear program 

(we call it LP[dm]): 

I )  n 

k = l  k = l  

5-1 i E 0 ]  

5 .i E 0 2  

n n 

k = l  k = l  

- < -1 j E 0 2  
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k = l  

I W  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi t a 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(mi) Li zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 Qi i F zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(nj) Lj I Qj j E 0 2  

L, Q, V; W 2 0 

is feasible, then a piecewise linear function @(z) = 
max(L'z, Q'x)  is a Lyapunov function, and therefore the 

network is stable for all work-conserving policies (the 

associated dual variables are indicated in parenthesis). 

Let the objective function in LP[dmj be to maximize 0L + 
OQ + OV + OW and consider the dual LP. It is a homogeneous 

LP in the variables X k ,  Y k ,  k = 1,2, . . .  , n, m k ,  k E 

01, n k ;  k E 0 2  which has the following form: 

maximize zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 E U l  

subject to 
n 

i E U l  i=l 

n 

3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA€ U 2  a t o l  

X, Y, m, n 2 0 

which we call DLP[dm]. 

zero as the only feasible solution. 

Lemma 5: LP[dm] is feasible if and only if DL,P[dm] has 

Proof The proof follows immediately from strong dual- 

0 
We will gradually simplify DLP[dm]. We start with the 

following lemma. 

Lemma 6: DLP[dm] has a nonzero feasible solution if and 

only if the following linear program, called D L P [ l ] ,  has a 

nonzero feasible solution: 

maximize 

ity of linear programming (see [l]). 

i t U 1  J t 0 2  

subject to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
71. 

n 

3Eu2  i=l  

k E U l  

x, Y 2 0. 
i t U l  

Proof Let Xk, Y k ,  m k ,  n k  be a feasible nonzero solu- X, Y, m, n 5 0. 
tion to DLP[dm]. Since 

The above linear program is equivalent to n 

a k  X ;  + ,u lp ikx i  - p k x k  - mk 2 0, mk 2 0 

(21) follows. Similarly, (22) follows. By adding inequalities in 

DLP[dm] corresponding to stations 01 and 02 separately, we 

Conversely, if Xk, Y k  is a nonzero solution to DLP[1],  

maximize 
i t 01  i = l  

c x i +  
i E o 1  j E U 2  

subject to 

a k  xi + hCipikxi - /*kxk - mk 2 o k E 01 

n obtain that X k ,  Y k  is a feasible nonzero solution to D L P [ l j .  

i t U l  i=l then by setting 
n n 

B k  Yj + P i P i k K  - PkYk  + mk 2 0 k E 0 1  vik E 01 1 Clk xi + P i P i k X i  - p k x k  =mk 

j - 2  i = l  i € U l  i=l 
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Lemma 7: Let DLP[2] be a linear program obtained from 

DLP[ 1 1  by replacing (23) with equality. Then, if the condition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< e holds, DLP[2]  has a nonzero feasible solution if and 

only if DLLP[l] has a nonzero feasible solution. 

Proof: Trivially, if X ,  Y is a nonzero solution to 

DLP[2],  then it is also a nonzero solution to DLP[ l ] .  For 

the converse part, let X ,  Y be a nonzero solution to DLP[1]. 
We will construct a nonzero solution to DLP[2]. 

Let us rewrite (23) in matrix form as follows: 

a(z  + y) + [P' - I ] M ( X  + Y )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0 (26) 

where we define zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x =  E X L  

Y =  E,; 
aE01 

j - 2  

x = ( X I )  ' " )  X,) 

Y =(Y1, ' " )  Yn). 

In the remaining part of this section we will show that 

DLP[2] has a nonzero solution if and only if LP[0] (from 
Section 111) has a nonzero solution. We show first that DLP[2] 
is a relaxation of LP[O]. 

Lemma 8: Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(7-1, 7 2 ,  7 3 ,  7-4, 7-;, T,& T:, 7,")) k = 1, 2, 

. . . ,  n be a nonzero feasible solution to LP[O]. Let X I ,  = 
7 - ~ + ~ ~ , Y k : = ~ ~ + f ~ , k = l , 2 , . . . , n . T h e n ( X 1 , , Y k ) i s a  

nonzero feasible solution to DLP[2].  
Proof: Combining (9) with (12), we obtain (24). Com- 

bining (10) with ( I  l), we obtain (25). Equation (19) shows 

that (23) (with equality) holds. Combining (16) with (18), we 
obtain that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

n 

3Eg2  t = l  

By subtracting this from (23) (with equality) we obtain (21). 

Equation (22) is obtained similarly. By construction, if 

1 2 3 4  7-z? 7-3, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA74i 7-k ,  (27) 

is nonzero, then the solution ( X k ,  Y k )  is nonzero as well. 0 
We next prove the converse part. 

Lemma 9: If there exists a nonzero solution to DLP[2] ,  

Proof: Let (Xk, Y k ,  k = 1, 2 ,  . . .  , n)  be a nonzero 

Since [ I  - ./I-' and M-' exist and are nonnegative, (26) 

is equivalent to 

MP1[l - P/ ] - l a (x  + y) - (A- + Y )  2 0 then there exists a nonzero solution to LP[O]. 

solution to DLP[2]. Let :I: = CLEC1 X i  and y = C3E02 y3.  or simply 

We will construct a nonzero solution to LP[O]. 
We select a number y E [O, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI]; we specify how y is selected 

p(z + y) - ( X  + Y )  2 0. 

P k ( Z  + y) - ( X k  + Y k )  = 0. 

We will increase X k  to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX k  for all k E c2 so that for all k E o2 later. Combining (22) and (23) (with equality), we obtain 

n 

a k 5 '  + pjpikxi - pI;,xk 5 0, k E 0 2 .  

This is possible to do because x is not affected by Xk  for r = l  

k E 0 2 .  Notice also that this change can only increase the 

left-hand side of (21). T I  

Similarly, we construct Y k  for all k E 01 such that for all 

Then 

nk~y:l: + p L i p i k y ~ i  - pkyxk 5 0, k E (28)  
k E (TI i= l  

P k ( Z  + y) - (XI ,  + P k )  = 0 Let us rewrite this as follows: 

and (22) is still satisfied. Finally, we show that (24) and (25) 

are still satisfied. We have, by construction 
nkyx + PiP ikYX,  

%Em1 

+ F i P i k Y X i  - FkYXk ,  IO, k. E 0 2 .  (29) 
3En2 

21, f Yk = P k ( 2  + !/) 
kEo:! k t 0 2  k t 0 2  

= Po2 (x + w )  We introduce the following notation. For any vector W E 
I t ;  let W,, and W,, be the portion of the vector W 
corresponding to the indexes in a1 and Q, respectively. We 
partition the matrix I' as follows: 

< x + y .  

Since by definition, y = CkEn2 Y k ,  we obtain that 

i.e., (24) holds. By a similar reason (25) holds, i.e., The matrices 1'12 and f'l1 are portions of the matrix P 
corresponding to flows of classes from station 1 to station 
2 and from station 1 to itself. Similarly, the matrices PI, and 

P22 are the portions of the matrix P corresponding to flows 
going from station 1 to station 2 and from station 2 to itself. 

Y k  5 Y. 
kEff1 

The new solution 2,Y satisfies X 2 X , Y  2 Y and, 
therefore, it is nonzero. By construction, it is a feasible solution 

to DLP[2].  0 (Y,,Y.c + I'12MmI~X01 + [f'm - 102 ]Mn2~X02  5 0. (30) 

We rewrite (29) in matrix form 
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The matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPz2 is nonnegative and has spectral radius less 

than one. Therefore the matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[Io2 - P221-l exists and is 

nonnegative. We rewrite (30) as follows: 

fiI&1[L2 - P221-lao2yZ 

+M;1[L2 - P2z]-1P12M,lYX,, - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7x0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 0. (31) 

We next introduce 102 [-dimensional vectors T : ~ ,  Z,, 

From (31) it follows that 

d2 =YZ,z 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArx,, . (33) 

Having defined the variables rt for IC E 0 2 ,  we let ri = yXk, 

for k E 01. Let rl = yx. From (32), (13) follows. 

From (24), we obtain 

k€OZ 

Then from (33),  it follows that (9) is satisfied. 

w e  next let r: = XI, - 7; = ( I  - y ) ~ ,  for k E 01. r: = 
X I ,  - r; for k t gz and r4 = (1 - y)z. It follows froin (33) 

that ri are nonnegative for k E 02 and, therefore, all the new 

variables T: are nonnegative. Since 2 = CzEgl X,, it follows 

that the first part of (12) is satisfied. 

We next show that we can select y E [0,1] so that the 

second part of (12), i.e., 

r; = r; (34) 
k E U l  k € U 2  

is satisfied as well. Recall that 7; = yXk, k E 01, r: = 
yZk, k E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA02 [from (32)], r: = Xk - ri = (1 - y)Xk, k E 
01, 7;;" = X k  - r i ,  IC E CTZ. Then 

k E U l  

and 

k € m  k E U 2  

From (33) Zk 5 X I ; ,  k E 02 and from (24) 

Therefore 

In case the first sum is strictly less than the third sum, we 

take y to be 

This guarantees 

k E n 2  

or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
kE , l  

From the inequalities above, this value of y satisfies y E [0, I]. 

If, on the other hand, all sums are equal, then we take y to be 

any number in [0,1] and (34) is still satisfied. 

Therefore, we have satisfied (9), (12), and (1.3). We next 

prove that (15) and (17) are satisfied as well. 

Subtracting (22) from (23) (with equality), we obtain 

n 

2=1 

1 4  which in terms of the variables r:, . . . , rTZ. r1 , . . . , r," re- 
duces to 

n 

v k  E 0 2  : Crk(T4 + TI) + P,P2k(7,4 + 7:) 

2=1 

- /Lk(T," + T i )  5 0. 

This combined with (13) proves (15). Also from (21) 

 MU(^ - y)XZ 

n 

'dk E ~1 ak (1 - Y)Z + 
- P k ( 1  - Y ) X k  2 0. 

2 = 1  

From (33) we obtain for k E 0 2  

1 
T; = Xk - r k  

2 xk - Y X k  
= (1 - 7)Xk. 

kEUl  which is (17). 
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We have constructed T I ,  r4, r l ,  r l ,  IC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1, 2, . . . , n, which 

satisfy (9), (12), (13), (15), and (17). The construction of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7 2 ,  r3, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT:, T:, IC = 1, 2 ,  . . . , n is symmetric. Finally, (19) 
is a simple implication of (23) (with equality). If the ini- 

tial solution ( 2 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg, X k ,  Y k )  is nonzero, then the solution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(71, 7 2 ,  “3 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr4, T ~ ,  rk, r k ,  rk), k = 1, . . . ,  nisalsononzero. 

0 
We now summarize the results obtained in this and the 

previous section. k e o 2  

Corollary I :  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA multiclass fluid network (a ,  p, P, C) with 

two stations is stable for all work-conserving policies if and 

only if one of the following equivalent conditions hold. 

I )  Linear program LP[dm] constructed in [9] is feasible. 

2) Linear program DLP[2] constructed in this section has 

4 

ZQ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk 
ke zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

1 2 3 4  

This concludes the proof of the lemma. 

ZC! k 

\ 

k 
k& 0, 

zero as the only feasible solution. 

3) Linear program LP[0] constructed in the previous sec- 
cc 

empty at the same time, we assign time tit arbitrarily to one 

of these stations. Notice that by definition, Q k ( t l , )  = 0 for all 

a decomposition of trajectories. On the other hand, it has half 

as many variables compared to LP[O]. 

v. SUFFICIENT STABILITY CONDITIONS FOR 

A GENERAL MULTICLASS FLUID NETWORK 

In this section, we derive new sufficient conditions for 

stability of a general multiclass fluid network involving an 

arbitrary number J of stations. We follow the notation of 

Section 11. We consider an arbitrary stable trajectory with T 

being the emptying time. 

A time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt^ 5 r will be called an “emptying time for station 

cr” if 

E Q k ( i )  = 0 

k e a  

and there exists an t > 0 such that for all t E (i - F ,  t^) 

kEo 

namely, t^ is exactly the time at which station CT becomes 

empty. The set of all “emptying times” A is clearly a countable 

set. Let A = { t l ;  t 2 ,  . . . , t,, . . . 1. For any t ,  t’ E A, we will 

say that an interval ( t ,  t’) is of type cr,, T = 1, 2 ,  . . .  , J or a 
a,-interval if t’ is an “emptying time” of station crT [and no 

other “emptying times” are located strictly within the interval 

( t :  t’)]. Consider the example of Fig. 2. In this example, there 

are three stations and we denote by tzI , tz2 . . . ~ t l ,  the first 

six emptying times. The reason we use a double subscript is 

that it is possible for the emptying times of two stations to 

alternate countably many times followed by another countable 

alternation of the emptying times of two other stations. This 
situation cannot arise with two stations. It also does not arise 

when the number of emptying times is finite. So, we can take 

t i t  = ti in the example. Here, t i ,  , t l ,5 are the times that station 

1 becomes empty, times t l , ,  t l ,  are the times that station 2 
becomes empty, and times t ~ ,  t i ,  are the times that station 3 
becomes empty. If there is a time t i L  that two stations become 

k E CJ,. if (t i, ,. t i , )  is an interval of type crT. 

( t i % - ,  , t i , ] ,  we obtain for IC E or 

Q ~ ( t i , )  ~ Q k ( t i , - , )  = a k ( t l S  - 

By writing the dynamics of the system during a cr7 interval 

n 

+ P-L3PJlc[T.(tl”) - TJ(tl,-1)1 

- P k P k ( t l , )  - T k ( t L 1 ) l .  

J=1 

Since Q k ( t i 7 )  0 and Q k ( t l % - , )  2 0, we obtain that 

n 

rj, = 

( t i b -  I , t i , ]  is auT -interval 

T =  1, ’ ” ,  J,  

c 
( t i % - ,  , t i , ]  isau,-int,rrvaI 

j =  1 . . .  

, J  T =  I, .,. 

we obtain 
rL 

akrr + P j 1 ) j k 7 j r  - PliTk, 5 0, v k  E 0,. 
J=l 

Since by definition, during a a,-interval, station LT, is busy, 
we obtain from work-conservation that 

k E o ,  
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