
 Open access  Journal Article  DOI:10.1103/PHYSREVA.15.1359

Stability conditions for the solutions of the half-projected Hartree-Fock scheme. The
lithium-hydride ground state — Source link 

Yves G. Smeyers, Gerardo Delgado-Barrio

Institutions: Spanish National Research Council

Published on: 01 Apr 1977 - Physical Review A (American Physical Society)

Topics: Hartree–Fock method, Lithium hydride and Ground state

Related papers:

 Half-Projected and Projected Hartree-Fock Calculations for Singlet Ground States. i. four-Electron Atomic Systems

 
Analysis of the half-projected Hartree--Fock function: density matrix, natural orbitals, and configuration interaction
equivalence

 Half-projected Hartree–Fock model for computing potential-energy surfaces

 Half-projected and projected Hartree-Fock calculations for singlet ground states. II. Lithium hydride

 The half-projected Hartree-Fock method

Share this paper:    

View more about this paper here: https://typeset.io/papers/stability-conditions-for-the-solutions-of-the-half-projected-
3dequa6qeb

https://typeset.io/
https://www.doi.org/10.1103/PHYSREVA.15.1359
https://typeset.io/papers/stability-conditions-for-the-solutions-of-the-half-projected-3dequa6qeb
https://typeset.io/authors/yves-g-smeyers-hxe5h5lq8d
https://typeset.io/authors/gerardo-delgado-barrio-1fpzdcfqy0
https://typeset.io/institutions/spanish-national-research-council-27f2hp8j
https://typeset.io/journals/physical-review-a-j6ltrmrf
https://typeset.io/topics/hartree-fock-method-2qa3mbab
https://typeset.io/topics/lithium-hydride-1mlp0mf9
https://typeset.io/topics/ground-state-34bkh3n9
https://typeset.io/papers/half-projected-and-projected-hartree-fock-calculations-for-3rpia4fwfn
https://typeset.io/papers/analysis-of-the-half-projected-hartree-fock-function-density-21vekqsjj4
https://typeset.io/papers/half-projected-hartree-fock-model-for-computing-potential-19f7u7ojrl
https://typeset.io/papers/half-projected-and-projected-hartree-fock-calculations-for-128bixtbeh
https://typeset.io/papers/the-half-projected-hartree-fock-method-521krj795u
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/stability-conditions-for-the-solutions-of-the-half-projected-3dequa6qeb
https://twitter.com/intent/tweet?text=Stability%20conditions%20for%20the%20solutions%20of%20the%20half-projected%20Hartree-Fock%20scheme.%20The%20lithium-hydride%20ground%20state&url=https://typeset.io/papers/stability-conditions-for-the-solutions-of-the-half-projected-3dequa6qeb
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/stability-conditions-for-the-solutions-of-the-half-projected-3dequa6qeb
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/stability-conditions-for-the-solutions-of-the-half-projected-3dequa6qeb
https://typeset.io/papers/stability-conditions-for-the-solutions-of-the-half-projected-3dequa6qeb


PH YSICAL RE VIEW A VOLUME 15, NUMBER 4 APRIL 1977

Stability conditions for the, solutions of the half-projected Hartree-Fock scheme.

The lithium- hydride ground state

Yves Gabriel Smeyers and Gerardo Delgado-Barrio

Instituto de Estructura de ta Materia del Consejo Superior de Investigaciones Cientificas, Serrano 119, Madrid-6, Spain

(Received 7 September 1976)

The stability conditions for the solutions of a two-unrestricted-determinant function (the half-projected

Hartree-Fock function) are deduced from the necessary requirements for the minimization of the energy

functional. The theory is applied to the case of the LiH ground state, in order to investigate the various

solutions encountered in the variational problem. It is fo'und that the two lowest solutions are local minima.

The number of these solutions is estimated and their significance discussed as a function of the nuclear

separation.

I. INTRODUCTION

The stability conditions for the solutions of the

Hartree-Fock equations were first formulated

by Thouless for a single determinant function. '
This author deduced the expression that ensures
the minimization of the wave function from the

necessary conditions. for minimizing the energy
functional. Adams reformulated the stability con-
ditions from the first-order density-matrix form-
alism and compared the relative stability of the

restricted (RHF) and unrestricted Hartree-Fock
schemes (UHF). ' Similarly, Cizek and Paldus
studied the instability of the RHF solutions with

respect to variations, which release the double

occupancy conditions, in cyclic polyenes, linear
polyacenes, and odd linear polyenic radicals. '
Furthermore, from the variational conditions,
the multiple solutions to the RHF problem were
investigated by Stanton. ' On the other hand, the

stability of a RHF function with respect to sym-
metry breakdowns was studied by Kaplan et al.
from another point of view based on an upper-
bound theorem for the RHF ground energy. '

In the present work, we extend the above in-
vestigations and deduce the stability conditions
for the solutions of a two-unrestricted-determi-
nant function, i.e., the half-projected Hartree-
Fock function (HPHF). ' The latter has been found

to be very useful in the study of bond-breaking

process, ' and was successfully employed in cal-
culations on small molecules. '

As is well known, the HPHF function has the

form

yHPHF ~ (S) guHF

2 t. ~ Px Pi +2+a
' ' '

I

+(-1)~+~
i P yi y yl [ ]

where A(S) is the half-projection operator which

projects on the subspace of quantum numbers S
even or odd."

When 8 is even, the HPHF function may be suc-
cessfully used for the study of singlet ground

states, because it does not contain triplet con-
taminants. In fact, the HPHF function in this case
only has one shell which is clearly split. There-
fore this function is shown to be approximately
equivalent to two natural configurations of closed
shells: the fundamental and a second doubly ex-
cited one. '

Some difficulties arise in the determination of
the HPHF function because various solutions,
lower than the RHF one, are often encountered
in the variational procedure. " In this work, we

examine this problem from the stability point of

view. For this purpose we have investigated the

two lowest solutions, found for the LiH ground

state, as a function of the nuclear separation.

II. HPHF STABILITY CONDITIONS

A way for determining if the HPHF solution cor-
responds to a minimum (or a saddle point) is to
study the second variation of the energy functional.
If this second variation is positive definite the

solution corresponds to a real minimum. This
may be, however, of local type because of the

range of the variation.
Let us express the variation of the occupied

orbitals y~ and y~ in terms of the virtual ones.
Thus,

'5pn get A ~ (2
t t

where the coefficients c~ and d~ are infinitesimal.
The first variation of the HPHF function may then

be written as a linear. combination of singly ex-
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cited HPHF functions between primed and unprimed

orbitals:

'

be written likewise in terms of doubly excited
HPHF functions:

5p = Q[cp )(+dan gi].
P, t

These singly excited HPHF functions must, hovr-

ever, be renormalized in order to properly con-
struct the matrix elements corresponding to the

second variation of the energy.
The second variation of the vrave function may

5' g = g g [c~ c", P,„+c~ d,
"

P,„' + ~ ~ ~ ] .
Pt' ev

As is mell knovrn, the second variation of the

mean energy can be written

(4)

&qy&~'E =&t 'qHy& +2&~q(H Z)-aq&+ &yH8'q& . (5)

Substituting (3) and (4) into (5) one obtains

&g ) $2@ gg [ gt cg &qPQH)& +2c tkt doc &yP Hy& +de~ dw &yP
0

Hq&]
Pt ev

+ g g 2[c*'c,"&Pf(H E) g-& +c,*'d,"&gf(H-Z) g.&+d~~'c", &g, (H-E) P'„&+d~ 'd,"&g~.(H E)g.-&]

Pt ev

+ Q Q [cp' c,"&AH),'„'& +c,'d,"&gHy,'„",
& +dp'd,"&AH)', "„'&].

Pt ev

This expression has a quadratic form in the coef-
ficients g~ and d~ and its Hermitian matrix may
be written in the usual vray:

where A. and B are likewise 2&&2 submatrices de-
pending on the type of orbitals (primed or un-

primed) involved in the excitation. If the matrix

( I) is positive definite the HPHF wave function
vrill correspond to an actual minimum.

Expression (7) was derived under the assump-
tion that&, and & may be complex. The orbitals
are, hovrever, usually developed in terms of real
coefficients. Thus g and jp should be made up of
real numbers. Accordingly, the matrix (I) may

be rewritten after partial diagonalization in the

following manner:

(W+fl O

a-Hf
where the submatrices&+& andg -& correspond
to variations in the real and imaginary space, re-
spectively.

III. APPLICATION TO THE LiH GROUND STATE

In this section, the theory of stability is applied
to the case of LiH ground state, in which two so-
lutions lovrer than the RHF one were encountered
for all the nuclear configurations considered.

In Ref. 7, the lowest solution was taken as the
correct one, in order to study the performances
of the HPHF scheme. A very satisfactory po-

tential-energy curve was obtained. This choice
yields, however, some discontinuity in the prop-
erties of the wave function when drawn as a func-
tion of nuclear separation. This discontinuity oc-
curs because the nature of the excited configur-
ation, vrhich appears in the configurational equiva-
lent, changes in the region of bond breaking. '

Now, if the tvro lowest solutions vrere considered,
it would seem more reasonable to classify them

'

according to the nature of this excited configur-
ation, that is, according to the type of shell which

is being split. In this way, two potential-energy
curves, which cross, are obtained (see Fig. 1).
The problem consists then of verifying vrhether

these tvro solutions are connected in some way

betvreen themselves, i.v. , vrhether the solution
corresponding to the higher-energy value is either
a saddle point or a local minimum.

Jn order to study the stability of these tvro HPHF
solutions we resorted to expression (8), since the

HPHF orbitals vrere restricted to the real space.
The matrix elements of such an expression were
obtained, after renormalization of the excited
configurations, from the calculations of the HPHF
vr ave function. For these calculations a procedure
based on the generalized Brillouin's theorem was
used.

For simplification, the HPHF functions vrere
recalculated using a very limited basis set, since
we are more interested in the behavior of the so-
lutions than in the numerical values. In fact, the
truncation would essentiaQy affect the yosition of
the crossing point. This basis set was, thus, re-
stricted to only four STO's and these were the
same for both solutions.
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FIG. 1. Energy values vs the nuclear separation for
two HPHF solutions, classified according to the nature

of their split shell, together with the BHF ones.

After diagonalization of the quadratic form

(8), it is seen that this form is positive definite
in the case of both solutions and for all the

nuclear separations considered. It may be thus
concluded that both solutions are stable solutions
corresponding to two nonconnected loca, l minima.
These two minima correspond to different phy-
sical situations. Solution 1 introduces corre-
lation effects in the K shell of the Li atom,
whereas solution 2 in the valence shell of the

LiH molecule. In the approximation considered
here, it is not possible to go over from one.
minimum to the other without introducing drastic
changes in the wave function.

In Table II, the lowest eigenvalues correspond-
ing to the submatrices (A +8) and (A -~) for both

solutions as functions of the internuclear separa-
tion are collected. They are all positive. It ap-
pears they are maximum in the equilibrium region.
It is seen, however, that the eigenvalue, corre-
sponding to a split inner shell and a variation in

the imaginary space (matrix A -~), obviously de-
creases with the internuclear distance. This fea-
ture suggests that, at very large distances, solution
1 could become a saddle point connected with a
lower-complex solution.

The energy values encountered in such, a way

for both solutions, as a function of the internuclear
distance R, are given in Table I, together with the

basis set employed. Solution 1, which has its
inner shell split, yields better energy values in the

equilibrium region. Solution 2, which has its
outer shell open, gives on the contrary better
results at distances larger than 4 a.u. , and is
capable of describing correctly the breakup of the

molecule with R. These results are summarized
in Fig. 1, where the HHF potential-energy curve
calculated in the same basis is included for com-
parison.

IV. DISCUSSION

& the present work, the stability conditions for

a two-unrestricted-determinant function are de-
duced. These conditions have the habitual form
of a matrix. The elements of this matrix are
built firstly between all the possible singly ex-
cited configurations (matrix A), and secondly
from all the possible doubly exqited configurations
with the fundamental one (matrix ~). The pro-
cedure becomes obviously rapidly unmanageable
as the number of electrons or basis functions in-
creases. The procedure was applied to a very

TABLE I. Energy values versus the nuclear separation 8 encountered for the two lowest

solutions corresponding to LiH ground states, in a.u. , together with the STO's employed.

8TO exponents
1s L; 2s 1SH

Energy
Solution 1 Solution 2

2.4
2.8
3.0157
3.2
3.6
4.0
4.5
5.0
7.0

10.0

3.70

3.70

3.70
3.70

3.70

3.70

3.72

3.74

3.74

3.74

2.25
2.25
2.25
2.25

2.25
2.25
2.26

2.27
2.28

2.29

0.74

0.79
0.80
0.80

0.78

0.76

0.78

0.75
0.70

0.65

0.88

0.87
0.86

0.85
0.84
0.83
0.88

0.89
0.90
0.80

—7.959 18
-7.980 31
—7.983 63
—7.983 68
—7.978 24
—7.968 57
-7.950 87
-7.929 29
—7.877 91
—7.843 29

—7.95248
-7.974 53
—7.978 26
-7.978 68
-7.97506
-7.96748
-7.958 72
-7.95161
-7,93086
-7.91153
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TABLE II. Lowest eigenvalues of the A+B and A-B
matrices versus internuclear distance R, in a.u. , for
two solutions corresponding to the LiH ground state.

Solution 1
A+B A-B

Solution 2
A+B A-B

2.4
2.8
3.0157
3.2
8.6
4.0
4.5
5.0
7.0

10.0

0.485
0.500'

0,501
0.497
0.477
0.451
0.464

0.475
0.395
0.303

0.374
0.883
0.377
0.366
0.386
0.304
0.286

0.264
0.166
0.098

0.144

0,158

0.153
0.152

0.145

0.136
0,141
0.152

0.136

0.118

0 144

0.158

0.154

0.152

0.146

0.136

0.141
0.152

0.136

0.118

simple case: the HPHF solutions obtained with

four STG's for the LiH ground state. It is found

that the bvo lowest solutions are, in this case,
stable solutions, i.e. , that both correspond to
local minima.

The next question arising is to what extent these
results may be extrapolated to molecular systems
of increasing complexity. In this sense, one may

anticipate that the number of possible stable so-

lutions will be given by the number of different

physical situations, that is, the number of shells
in the wave function under consideration.

All these HPHF solutions may be regarded, of

course, as restricted forms of a more general
configuration interaction function. Therefore, the

significance of the different HPHF solutions will

vary according to their applications. For example,
in the case of the LiH ground state the solution 2

mill give better results with respect to properties
depending essentially on the va1ence shell, like

force constants, dissociation, etc. On the other

hand, solution 1 will work better for properties
depending on the inner she11. Thus, for properties
depending on both shells, like the total energy,
solution 1 will be better in the equilibrium region
whereas solution 2 will be better at distance larger
than 4.0 a.u.

The existence of various solutions in the vari-
ational problem is not restricted to the HPHF

model. Spurious solutions were previously found

in the UHF model" and full projected Hartree-
Fock scheme (PHF)." Since the PHF function

seems to behave like the HPHF function, the con-

clusions presented here, would be valid foi the

full projected case. ' A study of this problem is
now in progress in our laboratory.
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