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ABSTRACT

We develop a theory of Bridgeland stability conditions and moduli spaces of semistable objects for a family of
varieties. Our approach is based on and generalizes previous work by Abramovich–Polishchuk, Kuznetsov, Lieblich, and
Piyaratne–Toda. Our notion includes openness of stability, semistable reduction, a support property uniformly across the
family, and boundedness of semistable objects. We show that such a structure exists whenever stability conditions are known
to exist on the fibers.

Our main application is the generalization of Mukai’s theory for moduli spaces of semistable sheaves on K3
surfaces to moduli spaces of Bridgeland semistable objects in the Kuznetsov component associated to a cubic fourfold.
This leads to the extension of theorems by Addington–Thomas and Huybrechts on the derived category of special cubic
fourfolds, to a new proof of the integral Hodge conjecture, and to the construction of an infinite series of unirational locally
complete families of polarized hyperkähler manifolds of K3 type.

Other applications include the deformation-invariance of Donaldson–Thomas invariants counting Bridgeland
stable objects on Calabi–Yau threefolds, and a method for constructing stability conditions on threefolds via degeneration.
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1. Introduction

Stability conditions on triangulated categories were introduced by Bridgeland in
[Bri07] and further studied by Kontsevich and Soibelman in [KS08]; originally based
on work by Douglas [Dou02] in string theory, they have found many applications to
algebraic geometry via wall-crossing. In this paper we develop the corresponding theory
for derived categories in a family of varieties over a base. Our definition is guided by the
requirement that it should come with a notion of relative moduli spaces, but also be flexible
enough to allow deformations.

Stability conditions over a base. — Let X→ S be a flat family of projective varieties
over some base scheme S. Consider a collection of stability conditions σs on the derived
categories Db(Xs) of the fibers. When does this form a well-behaved family σ of stability
conditions? Our proposed answer is the main content of this article. It can be paraphrased
as follows; see Definitions 20.5 and 21.15 for the precise formulation.

Definition 1.1. — A collection of numerical stability conditions

σ = (σs = (Zs,Ps))s∈S

on the fibers is a stability condition on Db(X) over S if it satisfies the following conditions:
(1) The central charge is locally constant in families of objects.
(2) Geometric stability is open in families of objects.
(3) After base change C→ S to any Dedekind scheme C, the stability conditions σc on the fibers

over C are induced by a HN structure on Db(XC).
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(4) Each stability condition σs satisfies the support property, an inequality on classes of semistable
objects, in a form that is uniform across all fibers.

(5) The set of semistable objects in the fibers of X→ S satisfies a boundedness condition.

Our precise setup is quite general, see Main Setup; for instance S could be defined
over a non-algebraically closed field, or it could be a scheme of mixed characteristic. In
the definition, we consider all points of S, closed or non-closed. We work with numerical
stability conditions, as they allow base change under field extensions, see Theorem 12.17.
This gives a stability condition σt on Xt for any point t over S.

For a base change T → S, the notion of a family of objects over T appearing
in (1) and (2) is formalized by Lieblich’s notion of a relatively perfect object E ∈Db(XT)

[Lie06a]; the fibers Et of such an object lie in Db(Xt).
Condition (2) is the glue tying together the stability conditions on different fibers;

for example, we will see in Proposition 20.11 that in the case where X is a product X0×S,
it forces the collection of stability conditions on X0 parametrized by s ∈ S to be constant.

The concept of a Harder–Narasimhan (HN) structure in (3) will be introduced
in Section 13 of this paper (see Definition 13.3 for a precise definition) and studied for
the remainder of Part III. The condition (3) requires that the hearts Ac of the stability
conditions σc “integrate” to a global heart AC; in the product case, such an AC has
been constructed by Abramovich–Polishchuk [AP06, Pol07]. Moreover, every object in
Db(XC) is required to have a global HN filtration; this combines the classical notion of
generic HN filtrations with the existence of semistable reductions, and will thus imply the
valuative criterion of properness for relative moduli spaces.

Let us elaborate on conditions (4) and (5). We fix a finite rank free abelian group
�, and a morphism vs : Knum(Db(Xs))→ � for every s ∈ S, such that vt(Et) is locally
constant in families. Then σ is a stability condition with respect to � if each Zs factors as
Z ◦ vs for some fixed Z ∈Hom(�,C). In (4), we require that there is a quadratic form Q
on �R such that

(1) the kernel (ker Z)⊂� is negative definite with respect to Q, and
(2) for every s ∈ S and every σs-semistable object E ∈Ds, we have Q(vs(E))� 0.

Our boundedness condition (5) says that given v ∈ �, there is a finite type family
parametrizing the union for all s ∈ S of objects E ∈ Db(Xs) that are σs-semistable with
vs(E)= v.

Our first main result is a version of Bridgeland’s Deformation Theorem.

Theorem 1.2 (Theorem 22.2). — The space Stab�(Db(X)/S) of stability conditions on
Db(X) over S with respect to � is a complex manifold, and the forgetful map

Z : Stab(Db(X)/S)→Hom(�,C),

is a local isomorphism.
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In the absolute case where S is a point, the support property (4) is enough to prove
Bridgeland’s Deformation Theorem for stability conditions [Bri07]. In our setting, the
main step is to show that openness of geometric stability is preserved under small defor-
mations of the central charge Z; this both requires boundedness of semistable objects (5)
(to obtain boundedness of destabilizing quotients, and thereby constructibility of the un-
stable locus) and the existence of HN structures over DVRs (3) (to show that the unstable
locus is closed under specialization).

Our second main result (which is the content of Part V) is that, whenever stability
conditions are known to exist fiberwise, they also exist in families.

Theorem 1.3 (Theorem 24.1). — Let g : X→ S be a polarized flat family of smooth projective
varieties.

(1) If the fibers of g are one- or two-dimensional, then the standard construction of stability
conditions on curves or surfaces produces a stability condition σ on Db(X) over S.

(2) If the fibers of g are three-dimensional and satisfy the conjectural Bogomolov–Gieseker inequal-
ity of [BMT14, BMS16], then the construction of stability conditions proposed in [ibid.]
produces a stability condition σ on Db(X) over S.

The known construction of stability conditions on smooth projective varieties is
based on the operation of tilting bounded t-structures, starting from coherent sheaves,
and uses weaker notions of stability similar to slope-stability. We first generalize Defini-
tion 1.1 to allow for a collection of weak stability conditions. Then we show that this
tilting procedure extends to our setup. The main tool is the derived dual functor, which
we show to provide a notion of double dual inside the hearts As for s ∈ S, and AC for a
Dedekind scheme C over S.

Relative moduli spaces and properness. — Moduli spaces of semistable objects, and their
wall-crossing, are what makes stability conditions useful to algebraic geometers. Given a
class v ∈�, we denote by Mσ (v) the stack parameterizing σ -semistable objects of class
v. Using results of Lieblich, Piyaratne, and Toda [Lie06a, Tod08, PT19], we show the
following.

Theorem 1.4 (Theorem 21.24). — Let σ be a stability condition on Db(X) over S and v ∈�.
Then Mσ (v) is an algebraic stack of finite type over S. In characteristic 0 it admits a good moduli space
Mσ (v) which is an algebraic space proper over S.

The notion of good moduli space was introduced by Alper in [Alp13]. The exis-
tence of a good moduli space is a consequence of the very recent result [AHLH18].

When moduli stacks of Bridgeland stable objects are well-behaved, associated
Donaldson–Thomas invariants have been defined in [PT19], based on [KS08, JS12].
When Mσ (v)=Mst

σ (v), namely there are no properly semistable objects, the definition is
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the same as in [Tho00, Beh09], via virtual classes or weighted Euler characteristic:

DTσ (v) :=

∫

[Mσ (v)]vir
1=

∫

Mσ (v)

χB ∈ Z.

As a first application of Theorem 1.3 and Theorem 1.4, we can prove the
deformation-invariance of DT invariants for those CY threefolds on which Bridgeland
stability conditions exist; in particular, by [Li19a], for quintic threefolds.

Corollary 1.5 (Theorem 28.1). — Let X → S be a flat family of Calabi–Yau threefolds,
defined over C, with S connected. If the fibers Xs satisfy the generalized Bogomolov–Gieseker inequality of
[BMT14, BMS16], then the Donaldson–Thomas invariant DTσs(v) is independent of s. In particular,
this holds for smooth quintic threefolds.

Another application, pointed out by Koseki [Kos20, Proposition 3.2], is a method
to construct stability conditions on threefolds via degeneration, see Proposition 27.1.

Cubic fourfolds. — In the case of higher-dimensional Fano varieties, moduli spaces
of semistable objects often become more useful when we restrict our attention to objects
lying in certain semiorthogonal components of Db(Xs), called Kuznetsov components.

This can also be done in families. Let D ⊂ Db(X) be an admissible subcategory
that is invariant under tensoring with perfect complexes on S (see Section 3 for the precise
assumptions). Then Theorems 1.2 and 1.4 hold similarly with Db(X) replaced by D. We
also give conditions under which a weak stability condition on Db(X) over S induces
a stability condition on D over S, see Theorem 23.1 which extends the corresponding
results in the absolute case from [BLMS17].

Our main application, treated in Part VI, concerns cubic fourfolds. Let X⊂ P5 be
a smooth cubic fourfold over the complex numbers. We denote by Ku(X) its Kuznetsov
component

Ku(X) :=O⊥
X ∩OX(H)⊥ ∩OX(2H)⊥ ⊂Db(X).

Over the moduli space of cubic fourfolds, these categories give a family of polarized
non-commutative K3 surfaces [Kuz10, AT14] (see also [Huy17, MS19a]). There is no
analogue of slope- or Gieseker-stability for such non-commutative K3 surfaces; instead,
Bridgeland stability conditions have been constructed in [BLMS17]. The main result of
Part VI is that our notion of stability over a base exists in this setup.

The first application concerns moduli spaces Mσ (Ku(X),v) of σ -stable objects in
Ku(X) with Mukai vector v, for σ a Bridgeland stability condition in the distinguished
connected component Stab†(Ku(X)), generalizing a series of results for K3 surfaces
[Bea83, Muk84, Muk87, O’G97, Huy97, Yos01, Tod08, BM14b].

Theorem 1.6 (Theorem 29.2). — Let X be a cubic fourfold with Kuznetsov component Ku(X).
Let H̃(Ku(X),Z) be its extended Mukai lattice, together with the Mukai Hodge structure. Then
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H̃Hdg(Ku(X),Z)= H̃alg(Ku(X),Z). Moreover, assume that v ∈ H̃Hdg(Ku(X),Z) is a non-zero
primitive vector and let σ ∈ Stab†(Ku(X)) be a stability condition on Ku(X) that is generic for v.
Then:

(1) Mσ (Ku(X),v) is non-empty if and only if v2 � −2. Moreover, it is a smooth projective
irreducible holomorphic symplectic variety of dimension v2 + 2, deformation-equivalent to a
Hilbert scheme of points on a K3 surface.

(2) If v2 � 0, then there exists a natural Hodge isometry

θ : H2(Mσ (Ku(X),v),Z)
∼

−−−−→

{
v⊥ if v2 > 0

v⊥/Zv if v2 = 0,

where the orthogonal is taken in H̃(Ku(X),Z).

Theorem 1.6 has many interesting applications to cubic fourfolds and to families
of polarized hyperkähler manifolds. We invite the reader to jump to Section 29 for a
comprehensive summary of our related results, and give a shorter overview here. First of
all, we can extend a result by Addington and Thomas, [AT14, Theorem 1.1]:

Corollary 1.7 (Corollary 29.7). — Let X be a cubic fourfold. Then X has a Hodge-theoretically
associated K3 surface if and only if there exists a smooth projective K3 surface S and an equivalence
Ku(X)≃Db(S).

A version of the corollary also holds for K3 surfaces with a Brauer twist, extend-
ing a result of Huybrechts [Huy17, Theorem 1.4]; the corresponding Hodge-theoretic
condition is the existence of a square-zero class in H̃Hdg(Ku(X),Z).

A second application is that relative moduli spaces give rise to unirational locally-
complete families of polarized hyperkähler manifolds of arbitrarily large dimension and
degree over the moduli space of cubic fourfolds:

Corollary 1.8 (Corollary 29.5). — For any pair (a, b) of coprime integers, there is a unirational
locally complete 20-dimensional family, over an open subset of the moduli space of cubic fourfolds, of
polarized smooth projective irreducible holomorphic symplectic manifolds of dimension 2n + 2, where
n= a2 − ab+ b2. The polarization has either degree 6n and divisibility 2n if 3 does not divide n, or
degree and divisibility 2

3n otherwise.

When a= 1 and b= 1, this is nothing but the family of Fano varieties of lines in the
cubic fourfold from [BD85] (with the Plücker polarization of degree 6), while when a= 2
and b = 1, we find the family of polarized eightfold from [LLSvS17] (with the Plücker
polarization of degree 2). For the proof of these two examples, we refer to [LPZ18] (see
also [LLMS18]).

Strategy of the proof: base change, Quot spaces, HN structures over a curve, and the support
property. — The theory of base change for semiorthogonal decompositions has been de-
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veloped by Kuznetsov [Kuz11]; the corresponding theory for t-structures is originally due
to Abramovich and Polishchuk [AP06, Pol07]. In Part I we recall and generalize these
results to our context. In particular, Theorem 5.7 addresses an important technical point,
base change of t-structures with respect to essentially perfect morphisms.

A second technical point of this paper is a rigorous treatment of Quot spaces for
fiberwise t-structures. This is the main goal of Section 11, in Part II. The existence of
Quot spaces allows us, among other things, to give a proof of Langton-Maruyama’s semi-
stable reduction without using completions, see Theorem 16.1. This result is fundamental
for us, since it gives examples for HN structures over a curve, and is thus part of the proof
of Theorem 1.3. It is worth mentioning that we use the algebraicity of the moduli stack
to prove the algebraicity of the Quot functor. This implication is in the opposite direction
from the construction of classical moduli spaces of sheaves, so our results depend heavily
on the powerful machinery of [Lie06b].

The support property in Definition 1.1.(4) is studied in detail in Section 21. In
combination with boundedness and universal closedness of relative moduli spaces it en-
sures, for example, that openness of stability is preserved by deformations, by tilting, or
when inducing stability conditions on the admissible subcategory D. It also allows us to
avoid imposing the noetherianity of the heart of the t-structure.

Relation with existing works and open questions. — The theory of deformations of Bridge-
land stable objects and relative moduli spaces can be applied to other families of polar-
ized non-commutative K3 surfaces. In fact, Theorem 1.6 and its Corollaries will hold in
a polarized family of non-commutative K3 surfaces, as long as at least one fiber is an
actual K3 surface, and stability conditions exist on the whole family. For example, the
case of Gushel–Mukai fourfolds (see [IM11, DIM15, DK18, DK19, KP18, KP21]) has
now been established in [PPZ19]. Another interesting example to study is the case of
Debarre–Voisin manifolds [DV10].

Even in the case of cubic fourfolds, there are other examples of families of polar-
ized hyperkähler manifolds associated to some geometric construction which should be
possible to interpret as relative moduli spaces. For instance, in Corollary 1.8, when a= 2
and b= 2 the (singular) relative moduli space is birational to the construction in [Voi18]
by [LPZ20].

Structure of the paper. — Part I and Part II of the paper are mostly review sections;
in these sections, we prove results about base change for triangulated categories and t-
structures, and existence of moduli spaces in the generality needed in the paper. In par-
ticular, base change results for t-structures for essentially perfect morphisms in Section 5
are new, as well as the complete proof of representability of the Quot functor in Sec-
tion 11.

Part III is the first instance of a (weak) stability condition over a base. We consider
the case where the base is a Dedekind scheme and develop the theory of HN structures
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over it. We do not yet introduce the support property, but we do require stronger condi-
tions in the one-dimensional case, which essentially translate into the valuative criterion
of properness for relative moduli spaces later on. In Section 12 we briefly review Bridge-
land stability conditions over a field, and prove a base change result in this setting. In
Section 13 we present the main definition and results for HN structures. In order to con-
struct examples, we first extend this to the less well-behaved, and more technical, notion
of weak stability conditions in Section 15. Then, in Section 16, we prove the fundamental
result of semistable reduction in our context. The remaining sections are more technical.
Section 17 shows that a HN structure comes with a well-behaved notion of C-torsion,
and Section 18 gives a criterion for a collection of stability conditions on the fibers to
“integrate” to a HN structure. Finally, in Section 19, we give conditions under which a
(weak) HN structure can be rotated.

Part IV includes the main sections in the paper. Definition 1.1 is presented there (in
Section 20 and Section 21), together with the proofs of Theorem 1.2 (in Section 22) and
Theorem 1.4 (in Section 21). In Section 23, we discuss how to induce stability conditions
on semiorthogonal components, which will be important in applications, e.g. to cubic
fourfolds.

In Part V we deal with the construction of stability conditions over a base, thus
proving Theorem 1.3 and its immediate application to Donaldson–Thomas invariants
(in Section 28). Finally, the applications to cubic fourfolds are contained in Part VI.

2. Setup, notation, and some terminology

Main Setup. — The main results in this paper work in the following setup:

• S is a noetherian Nagata scheme which is quasi-projective over a noetherian affine
scheme (for the existence of good moduli spaces, we need S to have characteristic
0);

• if S is also integral, regular, and one-dimensional, we call it a Dedekind scheme, and
often write C instead of S;

• X is a noetherian scheme of finite Krull dimension;
• g : X→ S is a flat projective morphism (the notion of projective morphism we

use is the one in [Sta21, Tag 01W8]); in our constructions of stability conditions
we further assume g to be smooth;

• D ⊂Db(X) is an S-linear strong semiorthogonal component of finite cohomo-
logical amplitude (see Definitions 3.5 and 3.7).

We assume S to be Nagata since in Parts II and IV we need the valuative criterion
for relative moduli spaces of stable objects, or for Quot spaces. However, we will only con-
sider DVRs that are essentially of finite type over S; this is sufficient to deduce universal
closedness or properness if S is locally given by a Nagata ring, see Section 11.4. We refer

https://stacks.math.columbia.edu/tag/01W8


STABILITY CONDITIONS IN FAMILIES 165

to [Sta21, Tag 032E] for the definition of Nagata rings. It is preserved by morphisms es-
sentially of finite type, and it is implied by being excellent [Sta21, Tag 07QV]. Examples
include localizations of finite type ring extensions of a field, of Z, or more generally of a
Dedekind domain with generic point of characteristic zero.

The general assumptions in each part of the paper are the following. Some results
work is greater generality and we will explain this by recalling the precise assumptions in
each section.

Part I:

(1) Sections 3–5 work with g : X → S a morphism of quasi-compact schemes with
affine diagonal and X noetherian of finite Krull dimension;

(2) In Section 6, g is in addition flat;
(3) In Section 7, the key results hold when g is smooth and proper and S is noetherian

with an ample line bundle.

Part II:

(a) g is a flat, proper, finitely presented morphism of schemes which are quasi-compact
with affine diagonal, where X is noetherian of finite Krull dimension;

(b) D ⊂Db(X) is an S-linear strong semiorthogonal component of finite cohomologi-
cal amplitude.

Part III:

(a) g : X → C is as in Part II and it is in addition projective, where C is a Dedekind
scheme;

(b) D ⊂Db(X ) is as in Part II.

Part IV:

(a) g : X → S is as in Part II and it is in addition projective, where S is a Nagata scheme
which is quasi-projective over a noetherian affine scheme;

(b) In Section 23, we further assume g to be smooth;
(c) D ⊂Db(X ) is as in Part II.

Part V:

(a) g : X → S is as in Part II and it is in addition smooth, projective of relative dimen-
sion n � 3, where S is a Nagata scheme which is quasi-projective over a noetherian
affine scheme.

(b) D ⊂Db(X ) is as in Part II.

Part VI:

(a) S is a quasi-projective variety over C;
(b) g : X → S is a smooth, projective family of cubic fourfolds.

https://stacks.math.columbia.edu/tag/032E
https://stacks.math.columbia.edu/tag/07QV
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Derived categories. — For a scheme X we consider various versions of the derived
category:

• the category of perfect complexes Dperf(X),
• the category of pseudo-coherent complexes with bounded cohomology Db(X),
• the category of pseudo-coherent complexes Dpc(X), and
• the unbounded derived category of OX-modules with quasi-coherent cohomol-

ogy Dqc(X),
• the unbounded derived category of OX-modules D(X).

These categories are related by inclusions

Dperf(X)⊂Db(X)⊂Dpc(X)⊂Dqc(X)⊂D(X).

For background on pseudo-coherent complexes, see [Sta21, Tag 08E4]. We note that a
complex E ∈D(X) is pseudo-coherent if and only if there exists an open cover X=

⋃
Ui

such that EUi is quasi-isomorphic to a bounded above complex of finitely generated
locally free sheaves on Ui ; indeed, the forward direction follows directly from the def-
initions, and the converse follows from [Sta21, Tag 064U]. If X is noetherian, then
pseudo-coherence boils down to a more classical notion: Dpc(X) coincides with the
bounded above derived category of OX-modules with coherent cohomologies [Sta21,
Tag 08E8]. Moreover, in the noetherian case we have equivalences Db(X)≃Db(Coh X)

and Dqc(X)≃D(Qcoh X).
We use the “classical” language of triangulated categories, with the following ex-

ceptions that occur in a few places in Sections 3 and 5. The triangulated categories we
consider arise as subcategories of the derived categories of schemes, and hence come with
natural stable∞-category enhancements. All colimits in such categories are meant in the
∞-categorical sense. Moreover, we sometimes use the enhanced structure to make natu-
ral constructions, e.g. tensor products, with such categories; see Remark 3.16 for further
discussion.

We exclusively use the language of “classical” scheme theory. Using derived alge-
braic geometry, it would be possible to remove various flatness and transversality assump-
tions. We have not done so because our results already cover the situations of interest in
applications.

Unless otherwise stated, all derived functors (e.g. pushforward, pullback, tensor
products) will be denoted as if they are underived. We denote the S-relative derived sheaf
Hom by

HomS(−,−)= g∗Hom(−,−).

Given E ∈Dqc(S) and a morphism T→ S, we let XT denote the base change of X,
and ET the pullback of E. In particular, for a closed subset W⊂ S, we write iW : XW →X
for the embedding of the fiber over W, and EW = i∗WE for the derived restriction. We

https://stacks.math.columbia.edu/tag/08E4
https://stacks.math.columbia.edu/tag/064U
https://stacks.math.columbia.edu/tag/08E8
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write s ∈ S for (closed or non-closed) points of S, and Es for the pullback to the residue
field k(s). In the case of a Dedekind scheme C, we write p ∈ C for a closed point, c ∈ C
for an arbitrary point, K for its fraction field, and Ep, EC or EK for the corresponding
pullbacks.

In Section 3 we will consider an S-linear strong semiorthogonal component D ⊂ Db(X)

of finite cohomological amplitude; we will write DT for its base change to T when that exists,
in particular Ds and DW for its base change to points or closed subschemes of S, and
similarly Dp, DK, or Dc in the case of a Dedekind scheme C.

Part I. Semiorthogonal decompositions and t-structures in families

3. Semiorthogonal decompositions and base change

In this section, following [Kuz11], we recall some results on base change for
semiorthogonal decompositions.

3.1. Semiorthogonal decompositions.

Definition 3.1. — Let D be a triangulated category. A semiorthogonal decomposition

D = 〈D1, . . . ,Dn〉

is a sequence of full triangulated subcategories D1, . . . ,Dn of D — called the components of the
decomposition — such that:

(1) Hom(F,G)= 0 for all F ∈Di , G ∈Dj and i > j .
(2) For any F ∈D, there is a sequence of morphisms

0= Fn → Fn−1 → ·· ·→ F1 → F0 = F,

such that cone(Fi → Fi−1) ∈Di for 1 � i � n.

Remark 3.2. — Condition (1) of the definition implies the “filtration” in (2) and its
“factors” are unique and functorial. The functor pri : D→D given by the i-th “factor”,
i.e.,

pri(F)= cone(Fi → Fi−1),

is called the projection functor onto Di .

A full triangulated subcategory C ⊂ D is called right admissible if the embedding
functor γ : C→D admits a right adjoint γ !, left admissible if γ admits a left adjoint γ ∗,
and admissible if γ admits both right and left adjoints. If D = 〈D1,D2〉 is a semiorthogonal
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decomposition, then D1 is left admissible and D2 is right admissible. Vice versa, if C ⊂D

is left admissible then there is a semiorthogonal decomposition D = 〈C,⊥C〉, and if C ⊂D

is right admissible then there is a semiorthogonal decomposition D = 〈C⊥,C〉. Here,

⊥C = {G ∈D Hom(G,F)= 0 for all F ∈ C },

C⊥ = {G ∈D Hom(F,G)= 0 for all F ∈ C },

denote respectively the left and right orthogonals to C ⊂D. These remarks lead to the notion
of mutation functors.

Definition 3.3. — Let C ⊂D be an inclusion of triangulated categories. If C is right admissible,
then the inclusion α : C⊥→D admits a left adjoint α∗, and the functor

LC = α ◦ α∗ : D→D

is called the left mutation functor through C. Similarly, if C ⊂D is left admissible, then the inclusion
β : ⊥C→D admits a right adjoint β !, and the functor

RC = β ◦ β ! : D→D

is called the right mutation functor through C.

Remark 3.4. — When they exist, the mutation functors fit into exact triangles

γ ◦ γ !→ idD→ LC and RC → idD→ γ ◦ γ ∗.

In our discussion of base change below, we need the following technical notions.

Definition 3.5. — A semiorthogonal decomposition D = 〈D1, . . . ,Dn〉 is called strong if
for each i the category Di is right admissible in D. We will call a subcategory D′ ⊂ D a strong
semiorthogonal component if it is part of a strong semiorthogonal decomposition.

Remark 3.6. — Definition 3.5 is slightly different than the one given in [Kuz11,
Definition 2.6], but is easily seen to be equivalent.

Definition 3.7. — Let X be a scheme and let D ⊂ Dqc(X) be a triangulated subcategory. If
Y is a scheme and 	 : D→ Dqc(Y) is a triangulated functor, we say that 	 has cohomological
amplitude [a, b] if

	(D ∩D[p,q]
qc (X))⊂D[p+a,q+b]

qc (Y)

for all p, q ∈ Z. We say 	 has left finite cohomological amplitude if a can be chosen finite, right
finite cohomological amplitude if b can be chosen finite, and finite cohomological amplitude
if a and b can be chosen finite. We say that a semiorthogonal decomposition D = 〈D1, . . . ,Dn〉 is of
(right or left) finite cohomological amplitude if its projection functors have (right or left) finite
cohomological amplitude.
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3.2. Linear categories and base change. — We will be interested in triangulated subcat-
egories that occur as subcategories of the derived category of a scheme. A crucial point
is that there is a good notion of a “family” of such categories, made precise by the notion
of a linear category.

Definition 3.8. — Let g : X→ S be a morphism of schemes. A triangulated subcategory D of
Dqc(X) is called S-linear if it is stable with respect to tensoring by pullbacks of perfect complexes on S,
i.e., if for every F ∈D and G ∈Dperf(S) we have F⊗ g∗G ∈D. A semiorthogonal decomposition of
D is called S-linear if all of its components are S-linear.

Remark 3.9. — By [Kuz11, Lemma 2.7], for an S-linear semiorthogonal decom-
position the condition (1) of Definition 3.1 is equivalent to the following: HomS(F,G)= 0
for all F ∈Di , G ∈Dj and i > j.

In the rest of this subsection, we review a formalism of base change for linear
categories from [Kuz11]. Along the way we explain how to upgrade results proved in
[Kuz11] for quasi-projective varieties over a field to more general settings. Another gen-
eralization is discussed in [BOR20, Section 3]; we also refer to [AE21, Proposition 3.13]
for a statement in derived algebraic geometry language.

Our main interest is in linear categories that occur as semiorthogonal components
of Db(X) for a scheme X, but it is convenient to consider the whole chain of derived
categories

Dperf(X)⊂Db(X)⊂Dpc(X)⊂Dqc(X).

Namely, we will see that base change for semiorthogonal decompositions of Db(X) can
be obtained by a combination of inducing and restricting semiorthogonal decompositions
along the above inclusions and base change for Dperf(X).

Lemma 3.10. — Let X→ S be a morphism of schemes where X is noetherian of finite Krull
dimension. Let

Db(X)= 〈D1, . . . ,Dn〉

be a strong S-linear semiorthogonal decomposition. Define Di,perf =Di ∩Dperf(X). Then there is an
S-linear semiorthogonal decomposition

Dperf(X)= 〈D1,perf, . . . ,Dn,perf〉.

Proof. — An object E ∈ Db(X) is called homologically finite if for all F ∈ Db(X) we
have Hom(E,F[i])= 0 for all but finitely many i ∈ Z. Let Db(X)hf ⊂Db(X) denote the
full triangulated subcategory of homologically finite objects, and let Di,hf =Di ∩Db(X)hf.
Then by [Orl06, Proposition 1.10] we have a semiorthogonal decomposition

Db(X)hf = 〈D1,hf, . . . ,Dn,hf〉.
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So it suffices to show that Db(X)hf = Dperf(X). This follows by an easy modification of
the argument of [Orl06, Proposition 1.11]. ✷

We will often work with quasi-compact, quasi-separated schemes. The relevance
of these conditions for us is the following result.

Proposition 3.11 ([Nee96, TT90]). — If X is a quasi-compact and quasi-separated scheme,
then Dqc(X) is compactly generated with compact objects the perfect complexes.

Remark 3.12. — By [BZFN10, Propositions 3.6 and 3.9], for a scheme X we
have Dqc(X) = Ind(Dperf(X)) if and only if Dqc(X) is compactly generated with com-
pact objects the perfect complexes; in particular, by Proposition 3.11 this holds if X
is quasi-compact and quasi-separated. Here, Dqc(X) and Dperf(X) are regarded as ∞-
categories, and Ind(Dperf(X)) denotes the category of Ind-objects in the sense of [Lur09,
Section 5.3]. This recipe for recovering Dqc(X) from Dperf(X) will be used several times
below.

We also note that in [BZFN10], X is called perfect if it has affine diagonal and
Dqc(X) = Ind(Dperf(X)). In particular, a quasi-compact scheme with affine diagonal is
perfect. Below we will often consider such schemes in order to take advantage of the
results of [BZFN10].

Next we show that a semiorthogonal decomposition of Dperf(X) induces one of
Dqc(X) and Dpc(X). We use the following terminology. Let 	 : D→ D′ be a functor
between triangulated categories. We say that 	 is compatible with semiorthogonal decom-
positions D = 〈D1, . . . ,Dn〉 and D′ = 〈D′

1, . . . ,D
′
n〉 if 	(Di) ⊂ D′

i for all i. If 	 is fully
faithful, then 	 is compatible if and only if Di = 	−1(D′

i), see [Kuz11, Lemma 3.3].
Moreover, if 	 is fully faithful and D′ = 〈D′

1, . . . ,D
′
n〉 is given, then Di = 	−1(D′

i) de-
fines a semiorthogonal decomposition of D if and only if the image of 	 is preserved by
the projection functors of the decomposition of D′, see [Kuz11, Lemma 3.4].

Lemma 3.13. — Let X→ S be a morphism of schemes where X is quasi-compact and quasi-
separated. Let

(3.1) Dperf(X)= 〈D1, . . . ,Dn〉

be an S-linear semiorthogonal decomposition.
(1) Define Di,qc ⊂ Dqc(X) to be the minimal triangulated subcategory of Dqc(X) which is

closed under arbitrary direct sums and contains Di . Then there is an S-linear semiorthogonal
decomposition

(3.2) Dqc(X)= 〈D1,qc, . . . ,Dn,qc〉

whose projection functors are cocontinuous.
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(2) Assume that the decomposition (3.2) has right finite cohomological amplitude. Then if we
define Di,pc =Di,qc ∩Dpc(X), there is an S-linear semiorthogonal decomposition

(3.3) Dpc(X)= 〈D1,pc, . . . ,Dn,pc〉.

(3) Assume that X is noetherian of finite Krull dimension, and that the decomposition (3.1) is
induced via Lemma 3.10 by a strong S-linear decomposition

Db(X)= 〈Db
1, . . . ,D

b
n 〉

of right finite cohomological amplitude. Then the inclusion Db(X)→Dqc(X) is compatible
with the given decomposition of Db(X) and the decomposition (3.2) of Dqc(X), and the
projection functors of Dqc(X) have the same cohomological amplitude as those of Db(X).

Proof. — Using Proposition 3.11, the argument of [Kuz11, Proposition 4.2] goes
through to prove (1) in the stated generality. Alternatively, Dqc(X) = Ind(Dperf(X)) by
Remark 3.12, so the result follows from the more general [Per19, Lemma 3.12], which
also shows Di,qc = Ind(Di).

For (2) we must show that the projection functors p̂ri : Dqc(X)→ Dqc(X) of the
decomposition (3.2) preserve Dpc(X). We use the following characterization of pseudo-
coherent objects on a quasi-compact and quasi-separated scheme, see [Sta21, Tag
0DJN]: an object F ∈ Dqc(X) is pseudo-coherent if and only if F = colimk∈Z Fk where
Fk is perfect and for any n ∈ Z the map τ�nFk → τ�nF is an isomorphism for k ≫ 0.
Given such an F, by the cocontinuity of p̂ri we have

(3.4) p̂ri(F)≃ colim p̂ri(Fk).

By construction, p̂ri restricts to the projection functor of the decomposition (3.1) of
Dperf(X), so p̂ri(Fk) is perfect. Defining Ck as the cone of Fk → F, the above condi-
tion on the truncations of Fk → F can be rephrased as follows: for any n ∈ Z we have
Ck ∈D�n

qc (X) for k≫ 0. By the assumption that p̂ri has right finite cohomological ampli-
tude, it follows that for any n ∈ Z we have p̂ri(Ck) ∈D�n

qc (X) for k≫ 0. In other words,
for any n ∈ Z the map τ�np̂ri(Fk)→ τ�np̂ri(F) is an isomorphism for k≫ 0. All together,
this proves that p̂ri(F) satisfies the above criterion for pseudo-coherence.

Now we turn to (3). To show the compatibility of Db(X)→Dqc(X), we must show
that if F ∈ Db

i then p̂ri(F) ≃ F. Since F is in particular pseudo-coherent, the descrip-
tion (3.4) above applies, so we need to show colim p̂ri(Fk)≃ F. By construction both p̂ri

and the projection functor prb
i of (3) restrict to the same projection functor of the decom-

position (3.1), hence colim p̂ri(Fk) ≃ colim prb
i (Fk). As above, we consider the cone Ck

of Fk → F, which we note lies in Db(X) in our current situation. Since prb
i (F) ≃ F, we

obtain an exact triangle

prb
i (Fk)→ F→ prb

i (Ck).

https://stacks.math.columbia.edu/tag/0DJN
https://stacks.math.columbia.edu/tag/0DJN
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Using the assumption that prb
i has right finite cohomological amplitude, the argument

from the previous paragraph shows that for any n ∈ Z the map τ�nprb
i (Fk)→ τ�nF is an

isomorphism for k ≫ 0. Applying [Sta21, Tag 0CRK] (taking H there to be the coho-
mology functors on D(X)), it follows that colim prb

i (Fk)≃ F, as required.
Finally, we show that if prb

i has cohomological amplitude [ai, bi], then so does p̂ri .
In other words, we claim that for any object F ∈D[p,q]

qc (X) we have p̂ri(F) ∈D[p+ai,q+bi]
qc (X).

By Lemma 3.14 below, we can write such an object as filtered colimit F= colim Fα where
Fα ∈Db(X)[p,q]. Then we have

p̂ri(F)≃ colim p̂ri(Fα)≃ colim prb
i (Fα),

where the second equivalence holds by the compatibility of Db(X) → Dqc(X) shown
above. But prb

i (Fα) ∈Db(X)[p+ai,q+bi], so Lemma 3.14 gives p̂ri(F) ∈D[p+ai,q+bi]
qc (X). ✷

Lemma 3.14. — Let X be a noetherian scheme. Let F ∈Dqc(X). Then F ∈D[a,b]
qc (X) if and

only if F= colim Fα for a filtered system of Fα ∈Db(X)[a,b].

Proof. — By [Sta21, Tag 09T4] we have Dqc(X) ≃ D(QCohX), so by [Lur17,
Propositions 1.3.5.21 and 1.4.4.13] the truncation functors for the standard t-structure
on Dqc(X) commute with filtered colimits. This implies that if F= colim Fα is a colimit of
objects Fα ∈Db(X)[a,b], then F ∈D[a,b]

qc (X). Conversely, since Dqc(X)= Ind(Dperf(X)) by
Remark 3.12, any F ∈Dqc(X) can be expressed as a filtered colimit F= colim Gα where
Gα ∈Dperf(X). If F ∈D[a,b]

qc (X), then we have

F≃ τ�aτ�bF≃ colim τ�aτ�bGα.

Hence we may take Fα = τ�aτ�bGα ∈Db(X)[a,b]. ✷

Now we discuss base change for semiorthogonal decompositions. Given mor-
phisms of schemes g : X→ S and φ : T→ S, we use the following notation for the base
change diagram:

(3.5) XT

g′

φ′

X

g

T
φ

S

Following [Kuz11], we say that φ : T → S is faithful with respect to g : X → S if the
canonical morphism of functors φ∗g∗→ g′∗φ

′∗ is an isomorphism; this holds, for instance,
if either φ : T→ S or g : X→ S is flat.

https://stacks.math.columbia.edu/tag/0CRK
https://stacks.math.columbia.edu/tag/09T4
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Proposition 3.15. — Let g : X→ S be a morphism of schemes which are quasi-compact with
affine diagonal. Let

Dperf(X)= 〈D1, . . . ,Dn〉

be an S-linear semiorthogonal decomposition. Let φ : T→ S be a morphism from a scheme T which
is quasi-compact with affine diagonal, such that φ is faithful with respect to g. Define the following
categories:

(1) DiT ⊂ Dperf(XT) is the minimal triangulated category subcategory which is idempotent
complete1 and contains φ′∗F⊗ g′∗G for all F ∈Di and G ∈Dperf(T).

(2) (Di,qc)T ⊂Dqc(XT) is the minimal triangulated subcategory which is closed under arbitrary
direct sums and contains DiT.

Then there are T-linear semiorthogonal decompositions

Dperf(XT)= 〈D1T, . . . ,DnT〉,(3.6)

Dqc(XT)= 〈(D1,qc)T, . . . , (Dn,qc)T〉,(3.7)

where the projection functors of (3.7) are cocontinuous. Moreover, the functors φ′∗ and φ′∗ are compatible
with all of the above decompositions.

Proof. — In the setting of quasi-projective varieties over a field, this is a combina-
tion of [Kuz11, Proposition 5.1 and 5.3]. The proof there goes through once we know
the following claim: the category Dperf(XT) coincides with the minimal idempotent com-
plete triangulated subcategory of Dqc(XT) which is idempotent complete and contains
φ′∗F⊗ g′∗G for all F ∈Di and G ∈Dperf(T). Note that XT agrees with the derived fiber
product of X and T over S, since φ is faithful with respect to g. Hence by [BZFN10,
Theorem 1.2] we have an equivalence

Dperf(XT)≃Dperf(X)⊗Dperf(S) Dperf(T),

so the above claim follows from [Per19, Lemma 2.7]. Alternatively, we note that the
proposition follows by combining the above equivalence, the fact that XT is perfect (see
[BZFN10, Proposition 3.24]), and [Per19, Lemma 3.15 and 3.12]. ✷

Remark 3.16. — As hinted in the proof, Proposition 3.15 can be formulated in a
much more general setting, which is sometimes useful. We briefly summarize the situa-
tion; see [Per19, Section 2.3] for details. Namely, there is an abstract notion of an S-linear
∞-category (called simply an “S-linear category” in [Per19]), which is a small idempotent-
complete stable ∞-category C equipped with a module structure over Dperf(S). These
categories are organized into an ∞-category CatS. As an example, the semiorthogonal

1 Recall that an additive category is idempotent complete if any idempotent e : F→ F, e2 = e, arises from a splitting
F= Im(e)⊕Ker(e).
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components Di in Proposition 3.15 have a canonical S-linear ∞-category structure, and
hence may be regarded as objects of CatS.

Further, there is a notion of a presentable S-linear ∞-category (called simply a “pre-
sentable S-linear category” in [Per19]), which is a presentable ∞-category equipped
with a module structure over Dqc(S). These categories also organize into an∞-category
PrCatS. The operation of taking Ind-categories gives a functor Ind : CatS → PrCatS. For
instance, Di,qc = Ind(Di) is an object of PrCatS.

There are several advantages of working in this setting. For instance, for any
S-scheme T we get categories Dperf(T) ∈ CatS and Dqc(T) ∈ PrCatS, and using the
monoidal structures on CatS and PrCatS we can form for any C ∈ CatS and C ′ ∈ PrCatS

new categories

CT = C⊗Dperf(S) Dperf(T) ∈CatT and C ′T = C ′⊗Dqc(S) Dqc(T) ∈ PrCatT.

This construction makes sense for any S-scheme T, and plays well with semiorthogonal
decompositions by [Per19, Lemma 3.15 and 3.12]. In case C = Di and C ′ = Di,qc, this
construction recovers the categories from Proposition 3.15 if T→ S is faithful with re-
spect to g and T is quasi-compact with affine diagonal.

Besides the use of this technology in the proof of Proposition 3.15, the only other
time we will need it in this paper is in the proof of Theorem 5.3 below.

Theorem 3.17. — Let g : X→ S be a morphism of schemes which are quasi-compact with
affine diagonal, where X is noetherian of finite Krull dimension. Let

(3.8) Db(X)= 〈D1, . . . ,Dn〉

be a strong S-linear semiorthogonal decomposition. Let φ : T→ S be a morphism from a scheme T
which is quasi-compact with affine diagonal, such that φ is faithful with respect to g. Let

(Di,perf)T ⊂Dperf(XT) and (Di,qc)T ⊂Dqc(XT)

be the categories obtained by combining Lemma 3.10 and Proposition 3.15, and define

(Di,pc)T = (Di,qc)T ∩Dpc(XT) and DiT = (Di,qc)T ∩Db(XT).

Then there are T-linear semiorthogonal decompositions

Dperf(XT)= 〈(D1,perf)T, . . . , (Dn,perf)T〉,(3.9)

Dqc(XT)= 〈(D1,qc)T, . . . , (Dn,qc)T〉,(3.10)

where the projection functors of (3.10) are cocontinuous. If the decomposition (3.8) has right finite co-
homological amplitude, then the projection functors of (3.10) have the same cohomological amplitude as
those of (3.8). In this case, we have a T-linear semiorthogonal decomposition

(3.11) Dpc(XT)= 〈(D1,pc)T, . . . , (Dn,pc)T〉,
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and if (3.8) has finite cohomological amplitude we have a T-linear semiorthogonal decomposition

(3.12) Db(XT)= 〈D1T, . . . ,DnT〉.

Moreover, the functors φ′∗ and φ′∗ are compatible with all of the above decompositions.

Proof. — Combining Lemma 3.10 and Proposition 3.15 gives the decomposi-
tions (3.9) and (3.10), and guarantees that the projection functors of (3.10) are cocon-
tinuous. To prove the theorem, it suffices to show that if the decomposition (3.8) has right
finite cohomological amplitude, then the projection functors of (3.10) have the same co-
homological amplitude as those of (3.8). Indeed, then the decomposition (3.11) holds by
Lemma 3.13.(2). Moreover, if (3.8) has finite cohomological amplitude, then the projec-
tion functors of (3.11) preserve Db(XT)⊂Dpc(XT) because they are of finite cohomolog-
ical amplitude, so (3.12) holds.

Let pri, p̂ri , and p̂riT denote the projection functors for the semiorthogonal decom-
positions of Db(X),Dqc(X), and Dqc(XT). We want to show that if [ai, bi] is the cohomo-
logical amplitude of pri , then it is also the amplitude of p̂riT, i.e., for any F ∈ D[p,q]

qc (XT)

we have p̂riT(F) ∈D[p+ai,q+bi]
qc (XT).

If U ⊂ T is an affine open subset, then Proposition 3.15 also gives a semiorthog-
onal decomposition of Dqc(XU), whose projection functors we denote by p̂riU. By the
compatibility of the restriction functor Dqc(XT)→Dqc(XU) with the semiorthogonal de-
compositions, we have

p̂riT(F)U ≃ p̂riU(FU).

It follows that the claim on the amplitude of p̂riT can be checked on an affine open cover
of T, so we may assume T is affine.

Since T is affine and S has affine diagonal, the morphism φ : T → S is affine.
Therefore so is the base change φ′ : XT → X. In particular, φ′∗ : Dqc(XT)→ Dqc(X) is
conservative and t-exact, which implies that an object F ∈Dqc(XT) satisfies F ∈D[p,q]

qc (XT)

if and only if φ′∗(F) ∈D[p,q]
qc (X). Further, by compatibility of φ′∗ with the semiorthogonal

decompositions, we have

φ′∗(p̂riT(F))≃ p̂ri(φ
′
∗(F)).

It follows that to prove the result, we just need to show that p̂ri has the same cohomolog-
ical amplitude as pri. But this holds by Lemma 3.13.(3). ✷

We will often apply the above results in the following way. Let X→ S be a mor-
phism of schemes with X noetherian of finite Krull dimension. Let D ⊂ Db(X) be an
admissible S-linear subcategory. Then it follows directly from the definitions that

(3.13) Db(X)= 〈D,⊥D〉
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is a strong S-linear semiorthogonal decomposition. Hence by Lemmas 3.10 and 3.13 we
obtain S-linear left admissible subcategories Dperf ⊂Dperf(X) and Dqc ⊂Dqc(X).

Moreover, if φ : T→ S is a morphism which is faithful with respect to X→ S and
all of X,S, and T are quasi-compact with affine diagonal, then by Theorem 3.17 we ob-
tain T-linear left admissible subcategories (Dperf)T ⊂ Dperf(XT) and (Dqc)T ⊂ Dqc(XT).
We call the projection functor onto D in the decomposition (3.13) the left projection functor of
D. The decomposition (3.13) has finite cohomological amplitude if this projection func-
tor does. Hence in this case we also obtain by Theorem 3.17 a T-linear left admissible
subcategory DT ⊂Db(XT).

If T→ S and T′→ S are morphisms of quasi-compact schemes with affine diago-
nal which are faithful with respect to X→ S, and if f : T′→T is a morphism over S, then
we consider the base change morphism f ′ : XT′→XT. It follows from the definitions that
pushforward and pullback along f ′ induce functors

f ′∗ : (Dqc)T′→ (Dqc)T and f ′∗ : (Dqc)T → (Dqc)T′ .

Further, if the projection functor of D has finite cohomological amplitude, then we get
a functor f ′∗ : DT′ →DT if f is proper, and a functor f ′∗ : DT →DT′ if f has finite Tor-
dimension. We will often refer to pullback as restriction and use the notation FT = f ′∗F.

Below we use the following observations. The inclusion φ : U→ S of an open sub-
scheme is always faithful with respect to X→ S and of finite Tor-dimension; moreover, if
S has affine diagonal then so does U. Similarly, if S= Spec(A) and B is a localization of A,
then Spec(B)→ Spec(A) is faithful with respect to X→ S and of finite Tor-dimension.

Lemma 3.18. — Let X→ S be a morphism of schemes which are quasi-compact with affine
diagonal, where X is noetherian of finite Krull dimension. Let D ⊂ Db(X) be an S-linear strong
semiorthogonal component. If T→ S is either:

(1) the inclusion of a quasi-compact open subset, or
(2) a morphism of affine schemes corresponding to a localization of rings A→ B,

then the pullback functors

Dqc → (Dqc)T and D→DT

are essentially surjective. For the statement for D→DT, we assume the projection functor of D has finite
cohomological amplitude so that DT is defined.

Proof. — In both cases (1) and (2), the pullback functors

(3.14) Dqc(X)→Dqc(XT) and Db(X)→Db(XT)

are essentially surjective. In case (1) this holds for Dqc(−) by [Sta21, Tag 08ED] and for
Db(−) by [Pol07, Lemma 2.3.1]. In case (2) essential surjectivity holds by the same argu-
ments. The result follows since pullback along T→ S is compatible with the semiorthog-
onal decompositions of the source and target categories in (3.14). ✷

https://stacks.math.columbia.edu/tag/08ED
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3.3. Relative exceptional collections. — In the applications later in this paper, we will
consider S-linear semiorthogonal decompositions induced by relative exceptional collec-
tions, which are defined and studied below.

Definition 3.19. — Let X→ S be a morphism of schemes, and let D ⊂ Dqc(X) be an S-
linear subcategory. A relative exceptional object in D is an object E ∈D such that E is perfect and
HomS(E,E)=OS. A relative exceptional collection in D is a sequence E1, . . . ,Em of relative
exceptional objects in D such that HomS(Ei,Ej)= 0 for all i > j .

Remark 3.20. — If S=Spec(k) is a point, then HomS(−,−) is simply RHom(−,−)

regarded as a k-complex. Hence the above definition reduces to the usual one in this case.

We note that the relative Hom functor behaves well under base change.

Lemma 3.21. — Let g : X→ S be a quasi-compact and quasi-separated morphism of schemes.
Let E ∈Dperf(X) and F ∈Dqc(X). Let φ : T→ S be a morphism which is faithful with respect to g.
Then we have

HomS(E,F)T ≃HomT(ET,FT).

Proof. — Indeed, using the notation of (3.5), we have

HomS(E,F)T ≃ g′∗φ
′∗HomX(E,F)≃ g′∗HomXT(ET,FT)=HomT(ET,FT),

where the first isomorphism holds by base change [Sta21, Tag 08IB] and the second since
E is perfect. ✷

The property that a set of perfect objects is a relative exceptional collection can be
checked fiberwise:

Lemma 3.22. — Let X→ S be a flat quasi-compact and quasi-separated morphism of schemes.
Then an object E ∈ Dperf(X) is relative exceptional if and only if Es ∈ Dperf(Xs) is exceptional for
all points s ∈ S, if and only if Es ∈ Dperf(Xs) is exceptional for all closed points s ∈ S. Similarly, a
sequence E1, . . . ,Em ∈ Dperf(X) is a relative exceptional collection if and only its restriction to Xs is
an exceptional collection for all points s ∈ S, or equivalently for all closed points s ∈ S.

Proof. — Let E ∈Dperf(X). The canonical morphism OS →HomS(E,E) is an iso-
morphism if and only if its restriction κ(s)→HomS(E,E)s is an isomorphism for every
point s ∈ S, or equivalently for every closed point s ∈ S. But by Lemma 3.21 and the flat-
ness of g, this restriction is identified with κ(s)→Homs(Es,Es), which is an isomorphism
if and only if Es is exceptional. This proves the first claim of the lemma, and the second
follows similarly. ✷

https://stacks.math.columbia.edu/tag/08IB
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In the next lemma, we will use the following observation. If g : X→ S is a proper
morphism of finite Tor-dimension between noetherian schemes, then pushforward and
pullback give functors g∗ : Db(X)→ Db(S) and g∗ : Db(S)→ Db(X). The functor g∗ is
right adjoint to g∗. If the relative dualizing complex ωg of g is a shift of a line bundle on
X, then g∗ also admits a right adjoint g! : Db(S)→ Db(X) and g∗ admits a left adjoint
g! : Db(X)→Db(S), given by

g!(−)= g∗(−)⊗ωg and g!(−)= g∗(−⊗ωg).

Indeed, the first formula holds by Grothendieck duality. More precisely, [Nee96, The-
orem 5.4] applies because S is separated and g! preserves arbitrary coproducts since g∗
sends perfect complexes to perfect complexes by our assumption. Moreover, since ωg is
the shift of a line bundle, g! preserves bounded derived categories. The formula for g!
follows from the one for g!. The condition that ωg is the shift of a line bundle holds for
instance if g : X → S is smooth, or, more generally, if X and S are smooth over some
common base.

Lemma 3.23. — Let g : X→ S be a proper morphism of finite Tor-dimension between noethe-
rian schemes. Let E ∈Dperf(X) be a relative exceptional object. Then the functor

αE : Db(S)→Db(X), F �→ g∗(F)⊗ E.

is fully faithful, and admits a right adjoint given by

α!E : Db(X)→Db(S), G �→HomS(E,G).

Moreover, if ωg is a shift of a line bundle, then αE admits a left adjoint given by

α∗E : Db(X)→Db(S), G �→ g!HomX(E,G).

Proof. — For F ∈Db(S) and G ∈Db(X), we compute

Hom(αE(F),G)=Hom(g∗(F)⊗ E,G)

≃Hom(g∗(F),HomX(E,G))

=Hom(F,HomS(E,G)),

which proves the formula for α!E. Moreover, we have

α!EαE(F)=HomS(E, g∗(F)⊗ E)

= g∗HomX(E, g∗(F)⊗ E)

≃ g∗(g∗(F)⊗HomX(E,E))

= F⊗HomS(E,E)≃ F,
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where the final line holds because E is relative exceptional. This proves that αE is fully
faithful. Finally, an argument similar to the one for α!E shows the existence and claimed
formula for α∗E in the presence of a relative dualizing complex which is a shift of a line
bundle. ✷

Remark 3.24. — If the assumption in Lemma 3.23 guaranteeing the existence of
α∗E holds and X is in addition regular of finite Krull dimension, then in fact we have
α∗E(G) ≃HomS(G,E)∨. Indeed, the regularity of X guarantees that Db(X) = Dperf(X),
and then the claim follows easily from Grothendieck duality.

In the situation of Lemma 3.23, we write LE/S and RE/S for the right and left
mutation functors through αE(Db(S)) ⊂ Db(X), see Definition 3.3. Note that these can
be computed via exact triangles

g∗HomS(E,F)⊗ E→ F→ LE/S(F)

and RE/S(F)→ F→ g∗g!HomX(E,F).

Lemma 3.25. — Let g : X→ S be a proper morphism of finite Tor-dimension between noethe-
rian schemes. Let E1, . . . ,Em be a relative exceptional collection in Dperf(X). Then there is an S-linear
semiorthogonal decomposition of finite cohomological amplitude

(3.15) Db(X)= 〈D, αE1(D
b(S)), . . . , αEm(D

b(S))〉,

where the left adjoint to the inclusion D→Db(X) is given by

(3.16) LE1/S ◦ LE2/S · · · ◦ LEm/S.

If further g : X→ S is smooth, then the components appearing in (3.15) are all admissible; in particular,
(3.15) is a strong semiorthogonal decomposition.

Proof. — First we claim the sequence αE1(D
b(S)), . . . , αEm(D

b(S)) is semiorthog-
onal. For this, it suffices to show that the composition α!Ei

◦ αEj vanishes for i > j. For
F ∈Db(S), we compute

α!Ei
αEj (F)=HomS(Ei, g∗(F)⊗ Ej)

= g∗HomX(Ei, g∗(F)⊗ Ej)

≃ g∗(g∗(F)⊗HomX(Ei,Ej))

≃ F⊗HomS(Ei,Ej)= 0,

where in the third line we used that Ei is perfect and in the fourth we used the pro-
jection formula. Now the decomposition (3.15) and the formula (3.16) follow from
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[Per19, Lemma 3.10], since the subcategory αEi(D
b(S))⊂ Db(X) is right admissible by

Lemma 3.23.
If further the morphism g : X → S is smooth, then it follows from Lemma 3.23

that the αEi(D
b(S)) are in fact admissible in Db(X). Then again by [Per19, Lemma 3.10]

it follows that the subcategory 〈αE1(D
b(S)), . . . , αEm(D

b(S))〉 they generate is admissible.
Thus D is also admissible by Lemma 3.26 below. ✷

Lemma 3.26. — Let X→ S be a smooth and proper morphism of noetherian schemes. Let

Db(X)= 〈D1,D2〉

be an S-linear semiorthogonal decomposition. Then D1 is admissible if and only if D2 is admissible.

Proof. — By our assumptions, Db(X) admits a relative Serre functor SDb(X)/S; see
the discussion preceding Corollary 7.5 for a review of this notion. Assume that D1 is
admissible. Then there is a semiorthogonal decomposition Db(X)= 〈D′

2,D1〉. Moreover,
it follows directly from the definition of the Serre functor that the autoequivalence SDb(X)/S

takes D2 to D′
2. Since D′

2 admits a left adjoint, it follows that D2 does too. Hence D2 is
admissible. The proof that admissibility of D2 implies that of D1 is similar. ✷

4. Local t-structures

In this section, we discuss basic definitions and results about local t-structures. We
start by recalling the absolute case.

4.1. t-structures.

Definition 4.1. — A t-structure τ on a triangulated category D is a pair of full subcategories
(D�0,D�0) satisfying the following conditions:

(1) D�0[1] ⊂D�0 and D�0[−1] ⊂D�0;
(2) Hom(F,G)= 0, for every F ∈D�0 and G ∈D�1;
(3) every object E ∈D fits into an exact triangle

τ�0E→ E→ τ�1E→ τ�0E[1]

with τ�0E ∈D�0 and τ�1E ∈D�1.

Here we used the notation D�n :=D�0[−n] and D�n :=D�0[−n], for any n ∈ Z.
Similarly, for the truncation functors τ�n, τ�n. Moreover, we let D[a,b] =D�b ∩D�a, for
all a, b ∈ Z∪ {±∞}, a � b.

Definition 4.2. — The heart of a t-structure (D�0,D�0) is the abelian category defined as
the intersection A=D�0 ∩D�0.
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The cohomology objects of an object E ∈ D with respect to the heart of a t-
structure A will be denoted by H•

A(E). When D = Db(X) and A = Coh X we simply
write H•(E).

Definition 4.3. — A t-structure (D�0,D�0) is bounded if D =
⋃

n,m∈Z D
�n ∩D�m.

Remark 4.4. — Our terminology for bounded t-structures follows [Bri07]. Such a
t-structure is called nondegenerate in [AP06, Pol07], and bounded and nondegenerate
in [BBD82].

A bounded t-structure is uniquely determined by its heart.

Proposition 4.5 ([Bri08, Lemma 3.1]). — If A⊂D is a full additive subcategory of a trian-
gulated category D, then A is the heart of a bounded t-structure on D if and only if

(1) for F,G ∈A, we have HomD(F,G[k])= 0, for all k < 0; and
(2) for all E ∈D, there are integers m < n and a collection of triangles

0 Em Em+1 . . . En−1 En = E

Am Am+1 An

with Ai[i] ∈A for all i.

Definition 4.6. — Let A ⊂ D be the heart of a t-structure. A pair of additive subcategories
(T ,F) of A is called a torsion pair if

• for all T ∈ T and for all F ∈F , we have Hom(T,F)= 0,
• for all E ∈A, there exist TE ∈ T , FE ∈F , and an exact sequence

0→TE → E→ FE → 0.

Note that if (T ,F) is a torsion pair, then F = T ⊥ is the right orthogonal to T in
A; we will call a subcategory T ⊂A a torsion subcategory if (T ,T ⊥) forms a torsion pair.

Given a torsion pair (T ,F) in A, we can tilt to obtain a new t-structure
(D♯,�0,D♯,�0) with

D♯,�0 :=
{
E ∈D�0 H0

A(E) ∈ T
}
, D♯,�0 :=

{
E ∈D�−1 H−1

A (E) ∈F
}
,

see [HRS96]. Its heart A♯ can be described as the extension-closure

A♯ := 〈F [1],T 〉.

If (D�0,D�0) is bounded, then so is (D♯,�0,D♯,�0). By [Pol07, Lemma 1.1.2],
(D♯,�0,D♯,�0) can be obtained by tilting from (D�0,D�0) if and only if there are in-
clusions D�−1 ⊂D♯,�0 ⊂D�0.
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Definition 4.7. — A t-structure (D�0,D�0) is
(1) noetherian if its heart is noetherian, and
(2) tilted-noetherian if it can be obtained from a noetherian t-structure (D

�0
0 ,D

�0
0 ) on D

by tilting, i.e., if D�−1
0 ⊂D�0 ⊂D

�0
0 .

In [Pol07] a tilted-noetherian t-structure is called close to noetherian.

Definition 4.8. — Let D1 and D2 be a pair of triangulated categories equipped with t-structures.
An exact functor 	 : D1 → D2 is called left (resp. right) t-exact if 	(D

�0
1 ) ⊆ D

�0
2 (resp.

	(D
�0
1 )⊆D

�0
2 ). A t-exact functor is a functor which is both left and right t-exact.

Remark 4.9. — Recall that a functor between triangulated categories is conservative
if 	(E)∼= 0 implies E∼= 0. Now assume 	 : D1 →D2 is both conservative and t-exact,
and write Ai ⊂Di for the corresponding hearts. Then 	(E) ∈A2 if and only if E ∈A1.
Similarly, in this case two morphisms A→ B→C in D1 form a short exact sequence in
A1 if and only if 	(A)→	(B)→	(C) is a short exact sequence in A2.

4.2. Local t-structures. — In the case of a linear category, we will be interested in
t-structures that are local over the base scheme in the following sense.

Definition 4.10. — Let X → S be a morphism of schemes which are quasi-compact with
affine diagonal, where X is noetherian of finite Krull dimension. Let D ⊂Db(X) be an S-linear strong
semiorthogonal component.

(1) A t-structure on Dqc is called S-local if for every quasi-compact open U⊂ S, there exists a
t-structure on (Dqc)U such that the restriction functor Dqc → (Dqc)U is t-exact.

(2) Assume the projection functor of D has finite cohomological amplitude. Then a t-structure on
D is called S-local if for every quasi-compact open U⊂ S, there exists a t-structure on DU

such that the restriction functor D→DU is t-exact.

In Definition 4.10 we require U⊂ S to be quasi-compact so that the base change
categories (Dqc)U and (if the projection functor has finite cohomological amplitude) DU

are defined; see the discussion preceding Lemma 3.18. In particular, U may be any affine
open in S, or an arbitrary open if S is noetherian.

Lemma 3.18 implies that, given an S-local t-structure on D or Dqc, for every quasi-
compact open U⊂ S the t-structure on DU or (Dqc)U is uniquely determined. We shall
sometimes refer to this as the induced t-structure on DU or (Dqc)U. We will denote by
AU ⊂DU or (Aqc)U ⊂ (Dqc)U the heart of the corresponding t-structure.

Our primary interest is local t-structures on D, but parallel to the situation for base
change of linear categories from Section 3.2, when we discuss base change of t-structures
in Section 5 we will also need to consider Dqc. In the rest of this section, we focus on
results that do not require the use of Dqc.
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Note that for F ∈D the condition F ∈D[a,b] can be checked locally on S, since the
cohomology functors H•

AU
commute with restriction and the condition that an object in

D vanishes can be checked locally. This observation has the following consequence.

Lemma 4.11. — Let g : X→ S be a morphism schemes which are quasi-compact with affine
diagonal, where X is noetherian of finite Krull dimension. Let D ⊂ Db(X) be an S-linear strong
semiorthogonal component whose projection functor is of finite cohomological amplitude, and which is
equipped with an S-local t-structure. Then for any vector bundle V on S, the tensor product functor
(g∗V⊗−) : D→D is t-exact.

The following gives a relative analogue of condition (2) in Definition 4.1; recall
from Section 2 our notation HomS(−,−) for the S-relative derived sheaf Hom.

Lemma 4.12. — Let X→ S be a proper morphism of noetherian schemes with affine diagonals,
where X has finite Krull dimension and S admits an ample line bundle. Let D ⊂Db(X) be an S-linear
strong semiorthogonal component whose projection functor is of finite cohomological amplitude, and which
is equipped with an S-local t-structure. Let F ∈D�a ∩Dperf(X) and G ∈D�b. Then

HomS(F,G) ∈Db(S)�b−a.

Proof. — Note that since g is a proper morphism between noetherian schemes and
F is perfect, the object HomS(F,G) indeed lies in Db(S). Let q ∈ Z be the smallest integer
so that Hq

Coh SHomS(F,G) �= 0. We must show q � b− a. Note that if L is a line bundle on
S, then by the projection formula and perfectness of F we have

HomS(F,G)⊗ L≃HomS(F,G⊗ g∗L).

Hence there is a spectral sequence

Ep,q
2 =Hp(S,Hq

Coh SHomS(F,G)⊗ L)⇒Hom(F,G⊗ g∗L[p+ q]).

For degree reasons, the term H0(S,Hq
Coh SHomS(F,G) ⊗ L) must survive in the spec-

tral sequence. By choosing a suitably ample L we can ensure this term, and hence also
Hom(F,G ⊗ g∗L[q]), is nonzero. But by Lemma 4.11 we have G ⊗ g∗L ∈ D�b, so it
follows that q � b− a. ✷

Theorem 4.13. — Let X→ S be a morphism schemes which are quasi-compact with affine
diagonal, where X is noetherian of finite Krull dimension and S admits an ample line bundle L, and
let D ⊂ Db(X) be an S-linear strong semiorthogonal component whose projection functor is of finite
cohomological amplitude. Then a bounded t-structure on D is S-local if and only if tensoring with g∗L
is left t-exact, or equivalently, if and only if tensoring with g∗L is t-exact. In particular, if S is affine then
any bounded t-structure on D is automatically S-local.
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Proof. — This is the analogue of [Pol07, Theorem 2.3.2] (that builds on [AP06,
Theorem 2.1.4]) in our setup, and follows by the same argument. ✷

Definition 4.14. — Let X→ S be a morphism schemes which are quasi-compact with affine
diagonal, where X is noetherian of finite Krull dimension. Let D ⊂ Db(X) be an S-linear strong
semiorthogonal component whose projection functor is of finite cohomological amplitude. An S-local t-
structure (D�0,D�0) on D is called:

(1) noetherian locally on S if for every quasi-compact open subscheme U⊂ S, the induced
t-structure on DU is noetherian.

(2) tilted-noetherian locally on S if there exists an S-local t-structure (D
�0
0 ,D

�0
0 ) on D

which is noetherian locally on S, such that D�−1
0 ⊂D�0 ⊂D

�0
0 .

An S-local t-structure is tilted-noetherian locally on S if and only if it is obtained
by tilting (on each quasi-compact open) from an S-local t-structure which is noetherian
locally on S.

Lemma 4.15. — Let X→ S be a morphism of schemes which are quasi-compact with affine
diagonal, where X is noetherian of finite Krull dimension. Let D ⊂ Db(X) be an S-linear strong
semiorthogonal component whose projection functor is of finite cohomological amplitude, and which is
equipped with an S-local t-structure. The following are equivalent:

(1) The t-structure on D is noetherian locally on S.
(2) For every quasi-compact open U⊂ S in a basis for the topology of S, the induced t-structure

on DU is noetherian.
(3) There is an open cover S = ∪iUi by quasi-compact opens Ui ⊂ S such that the induced

t-structure on DUi is noetherian locally on Ui for each i.
(4) There is an affine open cover S=∪iUi such that the induced t-structure on DUi is noetherian

for each i.
Moreover, if S admits an ample line bundle, then the above conditions are further equivalent to the
following:

(5) The t-structure on D is noetherian.

Proof. — Clearly (1) implies (2), (3), and (4).
To see (2) implies (1), let U ⊂ S be an arbitrary quasi-compact open. Choose a

finite cover U= ∪Ui by quasi-compact opens Ui ⊂ S in the given basis for the topology
of S. Now observe that an increasing sequence F1 ⊂ F2 ⊂ · · · ⊂ F in AU ⊂DU stabilizes
at the N-th term if and only if its restriction to Ui stabilizes at the N-th term for all i.
Since there are finitely many Ui , it follows that (2) implies (1).

Similarly, if (3) holds and U⊂ S is a quasi-compact open, then we can write it as
a union U= ∪jVj of finitely many Vj =U ∩Uj . Since the t-structure on DVj is noethe-
rian by assumption (note that each Vj is quasi-compact since S has affine diagonal), we
conclude as above that the t-structure on DU is noetherian, i.e., (1) holds.
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If S admits an ample line bundle, then S is in particular quasi-compact, so (1)
implies (5). Conversely, we show that if S admits an ample line bundle, then (5) im-
plies (2). Note that S has a basis for its topology given by affine open sets of the form
U =

{
x ∈ S f (x) �= 0

}
, where f is a global section of a line bundle L on S. Hence it

suffices to show that for such a U, any sequence F1 ⊂ F2 ⊂ · · · ⊂ F of inclusions in
the induced heart AU ⊂ DU stabilizes. By Lemma 4.16.(3) below, there is a sequence
F̃1 ⊂ F̃2 ⊂ · · · ⊂ F̃ in AS which restricts to the given sequence F1 ⊂ F2 ⊂ · · · ⊂ F in AU.
Since the sequence in AS must stabilize by assumption, this claim implies the result.

So far we have shown (1), (2), and (3) are equivalent, imply (4), and if S admits an
ample line bundle then they are further equivalent to (5). Since any affine scheme admits
an ample line bundle, we thus conclude that (4) implies (3), finishing the proof. ✷

The proof relied on the following Lemma, which we state in a more general form
that will become useful in Section 5.

Lemma 4.16. — Let g : X → S be a morphism of schemes which are quasi-compact with
affine diagonal, where X is noetherian of finite Krull dimension. Let D ⊂Db(X) be an S-linear strong
semiorthogonal component whose projection functor is of finite cohomological amplitude. Let f : T→ S
be one, or the composition, of

(a) the inclusion of an open subset given by the non-vanishing locus of a section h ∈ Ŵ(S,L) of
a line bundle L on S, and

(b) a morphism between affine schemes given by a localization of rings.
Then the following assertions hold:

(1) Let F̃ ∈ D be an object with pullback F = F̃T ∈DT. Let β : G→ F be a morphism in
DT. Then there exists a morphism β̃ : G̃→ F̃ in D such that g∗β̃ = β .

(2) Assume that D and DT have t-structures such that f ∗ is t-exact. Let F̃ ∈AS and F= F̃T,
and let β : G→ F be a morphism in AT. Then there exists a morphism β̃ : G̃→ F̃ in AS

with f ∗β̃ = β . If β is injective, we can choose β̃ to be injective; if β is instead surjective, we
can replace F̃ by another lift F̃′ to make β̃ surjective.

(3) More generally, any (not necessarily finite) filtration in AT

F1 ⊂ F2 ⊂ · · · ⊂ F,

can be lifted to a filtration in AS

F̃1 ⊂ F̃2 ⊂ · · · ⊂ F̃.

Proof. — To prove (1), we first use Lemma 3.18 and choose an arbitrary lift
G̃0 ∈ D of G. In case (a), [AP06, Lemma 2.1.8] shows that hkβ extends to a morphism
G0 ⊗ L−k → F, which restricts to β after the identification L−1

U
∼= OU induced by h. In

case (b), flat base change implies Hom(G,F)=Hom(G̃0, F̃)⊗OS OT; thus a similar state-
ment holds with L trivial, and h ∈H0(OS) in the localizing subset; replacing G̃0 by the
isomorphic object G̃0 ⊗ (h) then yields a morphism as claimed.
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To prove (2), we first choose a lift G̃1 ∈D as in (1). Since f ∗ is exact, we can replace
G̃1 by G̃2 =H0

AS
(G̃1) and obtain a lift of G and β in AS. Finally, since f ∗ is t-exact, the

morphism β is injective if and only if f ∗Ker β̃ = 0; in this case, we can thus replace G̃2

by the image of β̃ to obtain an injective lift of β in AT. The case of β surjective follows
similarly.

Finally, to prove (3), we first choose lifts β̃i : F̃′i →֒ F̃ given by the previous steps.
Then we obtain a desired filtration of F̃ by replacing F̃′i with

F̃i :=
⊕

j�i

Im β̃i. ✷

Remark 4.17. — We will see in Theorem 5.7 that such a t-structure on DT always
exists.

5. Base change of local t-structures

In this section we prove results on base changes of local t-structures. Namely, given
an S-linear category D ⊂Db(X) with an S-local t-structure, we construct under suitable
hypotheses induced t-structures on the base changes of Dqc and D along a morphism
T→ S (Theorems 5.3 and 5.7). The result for base changes of D generalizes the results
on “constant t-structures” from [AP06, Section 2] and [Pol07, Theorem 3.3.6], which
correspond to the case where D =Db(X) and S is a point. In fact, many of the ingredients
in our proof come from [AP06, Pol07].

5.1. The unbounded quasi-coherent case. — In this subsection we focus on base change
of t-structures in the setting of unbounded derived categories of quasi-coherent sheaves.
In this setting it is possible to prove results with very few hypotheses, because it is very
easy to construct t-structures, as the following lemma illustrates.

Lemma 5.1. — Let X→ S be a morphism of schemes where X is noetherian of finite Krull
dimension. Let D ⊂Db(X) be an S-linear strong semiorthogonal component endowed with a t-structure
(D�0,D�0). Then there is a t-structure on (D�0

qc ,D�0
qc ) on Dqc where:

• D�0
qc is the smallest full subcategory of Dqc which contains D�0 and is closed under extensions

and small colimits.
• D�0

qc =
{
F ∈Dqc Hom(G,F)= 0 for all G ∈D�−1

}
.

This t-structure has the following properties:
(1) The truncation functors commute with filtered colimits.
(2) The inclusion D→Dqc is t-exact.
(3) For F ∈Dqc, we have F ∈D[a,b]

qc if and only if F= colim Fα for a filtered system of objects
Fα ∈D[a,b].
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(4) Assume X and S are quasi-compact with affine diagonal, the projection functor of D has
finite cohomological amplitude, and the t-structure on D is S-local. Then the above t-structure
on Dqc is S-local. More precisely, if U ⊂ S is a quasi-compact open, then the t-structure
on (Dqc)U making Dqc → (Dqc)U = (DU)qc t-exact is obtained by applying the above
construction to the t-structure on DU.

Proof. — By [Lur17, Propositions 1.4.4.11 and 1.4.4.13] there is a t-structure on
Dqc with D�0

qc as described, whose truncation functors commute with filtered colimits.
Then D�0

qc is the right orthogonal to D�−1
qc , which is easily seen to be given by the stated

formula. The t-exactness of D→Dqc then follows directly. We note that the above argu-
ment is essentially the same as [Pol07, Lemma 2.1.1], but we use [Lur17] for the state-
ment about truncation functors.

By construction Dqc = Ind(Dperf), so using parts (1) and (2) of the lemma, the ar-
gument of Lemma 3.14 proves part (3).

Now assume we are in the situation of part (4). Let U⊂ S be a quasi-compact open
subset. By what we have already shown, the t-structure on DU induces one on (DU)qc.
Note that (DU)qc = (Dqc)U. We claim that the restriction functor Dqc → (DU)qc is t-exact,
which will prove that the t-structure on Dqc is S-local. This follows from part (3) of the
lemma, the fact that the restriction functor Dqc → (DU)qc commutes with colimits, and
the S-locality of the t-structure on D. ✷

Remark 5.2. — In Lemma 5.1, if D = Db(X) with the standard t-structure, then
the induced t-structure on Dqc =Dqc(X) is the standard one.

In [Pol07], the focus is on inducing t-structures in the setting of bounded de-
rived categories of coherent sheaves, but the idea of first constructing t-structures on
unbounded derived categories of quasi-coherent sheaves is used extensively. The follow-
ing theorem can be thought of as an elaboration on this idea; see also [HL14, Section 5]
for similar results in the setting of varieties over a field.

Theorem 5.3. — Let g : X → S be a morphism of schemes which are quasi-compact with
affine diagonal, where X is noetherian of finite Krull dimension. Let D ⊂Db(X) be an S-linear strong
semiorthogonal component with a t-structure (D�0,D�0). Let φ : T → S be a morphism from a
scheme T which is quasi-compact with affine diagonal, such that φ is faithful with respect to g. Let g′

and φ′ be the morphisms in the following base change diagram:

XT

g′

φ′

X

g

T
φ

S
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If T is affine, then there is a t-structure ((Dqc)
�0
T , (Dqc)

�0
T ) on (Dqc)T where:

• (Dqc)
�0
T is the smallest full subcategory of (Dqc)T which contains φ′∗(D�0) and is closed

under extensions and small colimits.
• (Dqc)

�0
T =

{
F ∈ (Dqc)T Hom(G,F)= 0 for all G ∈ φ′∗(D�−1)

}
.

In general, there is a t-structure on (Dqc)T given by

(5.1) (Dqc)
[a,b]
T =

{
F ∈ (Dqc)T

FU ∈ (Dqc)
[a,b]
U for any flat morphism

U→T with U affine

}
.

This t-structure has the following properties:
(1) The truncation functors of (Dqc)T commute with filtered colimits.
(2) For any fpqc cover {Ui →T} of T by affine schemes Ui , we have

(5.2) (Dqc)
[a,b]
T =

{
F ∈ (Dqc)T FUi ∈ (Dqc)

[a,b]
Ui

for all i
}
.

In particular, for T affine the above prescriptions for t-structures on (Dqc)T agree.
(3) For any G ∈ D�0

qc (T), the functor (g∗T(G) ⊗ −) : (Dqc)T → (Dqc)T is right t-exact,
where gT : XT →T denotes the projection.

(4) Let T′→ S be another morphism with the same assumptions as φ, let f : T′→ T be a
morphism of schemes over S, and let f ′ : XT′→XT be the induced morphism.
(a) f ′∗ : (Dqc)T → (Dqc)T′ is right t-exact.
(b) f ′∗ : (Dqc)T′→ (Dqc)T is left t-exact.
(c) If f is flat, then f ′∗ : (Dqc)T → (Dqc)T′ is t-exact.
(d) If f is affine, then f ′∗ : (Dqc)T′→ (Dqc)T is t-exact.

(5) Assume the projection functor of D has finite cohomological amplitude and the t-structure
on D is S-local. Then for T = S the above t-structure agrees with the one on Dqc from
Lemma 5.1. Moreover, for general T we have

(5.3) (Dqc)
[a,b]
T =

{
F ∈ (Dqc)T

φ′U∗(FU) ∈D[a,b]
qc for any flat morphism

U→T with U affine

}

where φ′U : XU → X is the morphism induced by U→ T
φ
−→ S, and for any fpqc cover

{Ui →T} by affine schemes Ui , we have

(5.4) (Dqc)
[a,b]
T =

{
F ∈ (Dqc)T φ′Ui∗

(FUi) ∈D[a,b]
qc for all i

}
.

Proof. — We prove the theorem in several steps.

Step 1. If T is affine, the prescription for ((Dqc)
�0
T , (Dqc)

�0
T ) defines a t-structure on (Dqc)T such

that parts (1) and (3) of the theorem hold.

This argument of Lemma 5.1 shows the prescription defines a t-structure satis-
fying (1). Since T is affine, the object OT generates Dqc(T)�0 under colimits. But g∗T
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and tensor products commute with colimits, and tensoring with OXT = g∗T(OT) preserves
φ′∗(D�0). So it follows that g∗T(G)⊗ (Dqc)

�0
T ⊂ (Dqc)

�0
T for any G ∈ Dqc(T)�0, i.e., (3)

holds.

Step 2. If T and T′ are affine, part (4) of the theorem holds for the t-structures from Step 1.

Since f ′∗ admits a right adjoint, it commutes with colimits. It follows that
f ′∗((Dqc)

�0
T )⊂ (Dqc)

�0
T , i.e., f ′∗ is right t-exact.

Since f ′∗ is right adjoint to f ′∗, it follows formally that f ′∗ is left t-exact. Note that for
any object F ∈ (Dqc)T we have f ′∗ f ′∗(F)≃ F⊗ f ′∗(OT′). The morphism f ′ is affine, being
the base change of f , and hence f ′∗(OT′) is a sheaf. Therefore by the property (3) proved in
Step 1, it follows that f ′∗(f

′∗φ′∗(D�0))⊂ (Dqc)
�0
T . But since f ′ is affine f ′∗ preserves colimits

(see for instance [Lur18, Proposition 2.5.1.1]), so it follows that f ′∗((Dqc)
�0
T′ ) ⊂ (Dqc)

�0
T .

This proves f ′∗ is also right t-exact, and hence t-exact.
Finally, assume f is flat. Since the functor f ′∗ is conservative and by the above t-

exact, the t-exactness of f ′∗ is equivalent to t-exactness of the functor

f ′∗ ◦ f ′∗ ≃ (f ′∗(OT′)⊗−) : DT →DT.

Note that f ′∗(OT′)≃ g∗T(f∗OT). Since f : T′→ T is a flat morphism of affine schemes, by
Lazard’s theorem f∗OT is a filtered colimit of finite free OT-modules. Hence g∗T(f∗OT) is
a filtered colimit of finite free OXT -modules. Now it follows from the property (1) proved
in Step 1 that the above functor is t-exact.

Step 3. For any fpqc cover {Ui →T} of T by affine schemes Ui , the prescription (5.2) defines a t-
structure on (Dqc)T such that part (1) of the theorem holds.

Let U•→ T be the Čech nerve of the map U =
⊔

Ui → T, i.e., the simplicial
scheme which in degree n is given by the (n+ 1)-fold fiber product of U over T. Then by
fpqc descent for Dqc(−), pullback induces an equivalence

Dqc(T)≃Tot(Dqc(U
•))

where the right side denotes the totalization, i.e., the limit, of the cosimplicial diagram of
∞-categories Dqc(U•). Note that Dqc is compactly generated (by Dperf). Hence by [Per19,
Lemma 4.3] the category Dqc is dualizable as an object of PrCatS (see Remark 3.16). It
follows that the functor from PrCatS to itself given by tensoring with Dqc admits a right
adjoint (given by tensoring with the dual of Dqc), and thus commutes with limits. In
particular, the above equivalence implies that pullback induces an equivalence

(5.5) (Dqc)T ≃Tot((Dqc)U•).

For i0, i1, . . . , in, we write

Ui0,...,in =Ui0 ×T Ui1 · · · ×T Uin .
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Then Un is the coproduct of the Ui0,...,in over all i0, . . . , in. Hence pullback induces an
equivalence

Dqc(U
n)≃

∏

i0,...,in

Dqc(Ui0,...,in).

By the observation above, this implies that pullback induces an equivalence

(5.6) (Dqc)Un ≃
∏

i0,...,in

(Dqc)Ui0,...,in
.

Combining (5.5) and (5.6), we see that (Dqc)T is expressed as a limit of the diagram of
categories (Dqc)Ui0,...,in

.
Note that each Ui0,...,in is affine since T has affine diagonal. Hence by Step 1 each

term (Dqc)Ui0,...,in
carries a t-structure whose truncation functors preserve filtered colimits.

Moreover, the projection morphisms between the Ui0,...,in are flat. Hence by property (c)
verified in Step 2, the pullback functors between the (Dqc)Ui0,...,in

are t-exact. By [GR17,
Chapter I.3, Lemma 1.5.8] their limit (Dqc)T thus carries a t-structure given by

(Dqc)
[a,b]
T =

{
F ∈ (Dqc)T FUi0,...,in

∈ (Dqc)
[a,b]
Ui0,...,in

for all i0, . . . , in
}

,

whose truncation functors preserve filtered colimits. Since the pullback functors between
the (Dqc)Ui0,...,in

are t-exact, the condition FUi0,...,in
∈ (Dqc)

[a,b]
Ui0,...,in

for all i0, . . . , in is equiva-

lent to FUi ∈ (Dqc)
[a,b]
Ui

for all i.

Step 4. The prescription (5.1) defines a t-structure on (Dqc)T such that parts (1) and (2) of the theorem
hold.

Take any fpqc cover {Ui →T} of T by affine schemes Ui , and let U→T be a flat
morphism with U affine. Then {Ui →T} ∪ {U→T} is also an fpqc cover. By Step 3,
both the formula

(5.7) (Dqc)
[a,b]
T =

{
F ∈ (Dqc)T FU ∈ (Dqc)

[a,b]
U and FUi ∈ (Dqc)

[a,b]
Ui

for all i
}

and (5.2) define t-structures on (Dqc)T such that part (1) of the theorem holds. Since the
right side of (5.7) is contained in the right side of (5.2) and both define t-structures, they
coincide. It follows that (5.1) defines a t-structure on (Dqc)T such that parts (1) and (2) of
the theorem hold.

Step 5. Parts (3) and (4) of the theorem hold.

Using (5.2), parts (3), (a), (c), and (d) reduce to the case where T and T′ are affine,
which were handled in Step 1. Part (b) follows from (a) since f ′∗ is right adjoint to f ′∗.

Step 6. Part (5) of the theorem holds.

To show the two t-structures on Dqc agree, by part (2) and Lemma 5.1.(4) it suffices
to show that for any affine open U ⊂ S the t-structure on (Dqc)U constructed in this
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theorem agrees with the one induced by the local t-structure on Dqc from Lemma 5.1.(4).
This follows from the description of the induced t-structure on (Dqc)U in Lemma 5.1.(4).

Finally, by (5.1) and (5.2), the formulas (5.3) and (5.4) reduce to showing that for
φ : T→ S a morphism from an affine scheme T, we have

(Dqc)
[a,b]
T =

{
F ∈ (Dqc)T φ′∗(F) ∈D[a,b]

qc

}
.

The functor φ′∗ is conservative since φ′ is affine, so this follows from (d). ✷

5.2. The bounded coherent case. — Our next goal is to show that under suitable hy-
potheses, the base changed t-structures constructed in Theorem 5.3 induce t-structures
at the level of bounded derived categories of coherent sheaves.

A map A → B of rings is called perfect if it is pseudo-coherent and B has finite
Tor-dimension over A, see [Sta21, Tag 067G]. A morphism of schemes X→ Y is called
perfect if if there exists an affine open cover Y=

⋃
j∈J Vj and affine open covers f −1(Vj)=⋃

i∈Ij
Ui such that the ring map OY(Vj)→ OX(Ui) is perfect for all j ∈ J, i ∈ Ij . For a

discussion of this notion, see [Sta21, Tag 0685]. In other words, a morphism f : X→ Y
is perfect if and only if it is pseudo-coherent and of finite Tor-dimension. Note that if Y
is locally noetherian, then f is pseudo-coherent if and only if f is locally of finite type
[Sta21, Tag 0684]. In particular, if Y is regular of finite Krull dimension, then f is perfect
if and only if f is locally of finite type. We will consider base changes along the following
mild generalization of the class of perfect morphisms.

Definition 5.4. — A map A→ B of rings is called essentially perfect if it is a localization
of a perfect A-algebra. A morphism of schemes X→ Y is called essentially perfect if there exists
an affine open cover Y=

⋃
j∈J Vj and affine open covers f −1(Vj)=

⋃
i∈Ij

Ui such that the ring map
OY(Vj)→OX(Ui) is essentially perfect for all j ∈ J, i ∈ Ij .

Remark 5.5. — As a warning, if Spec(B)→ Spec(A) is an essentially perfect mor-
phism of affine schemes, then A→ B may not be essentially perfect.

If D̃ is a triangulated category with a t-structure (D̃�0, D̃�0) and D ⊂ D̃ is a
triangulated subcategory, we say that (D̃�0, D̃�0) induces a t-structure on D if setting
D�0 = D̃�0 ∩ D and D�0 = D̃�0 ∩ D defines a t-structure. This is equivalent to the
truncation functors of D̃ preserving D. The following analog of [Pol07, Theorem 2.3.5]
in our setting, which holds by the same argument, is a key ingredient for the general base
change result below.

Theorem 5.6. — Let g : X → S be a morphism of schemes which are quasi-compact with
affine diagonal, where X is noetherian of finite Krull dimension. Let D ⊂Db(X) be an S-linear strong
semiorthogonal component whose projection functor is of finite cohomological amplitude, and which is

https://stacks.math.columbia.edu/tag/067G
https://stacks.math.columbia.edu/tag/0685
https://stacks.math.columbia.edu/tag/0684
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equipped with an S-local t-structure. Let φ : T → S be a finite perfect morphism from a scheme T
which is quasi-compact with affine diagonal, such that φ is faithful with respect to g. Then the t-structure
on (Dqc)T from Theorem 5.3 induces a t-structure on DT, which is bounded or tilted-noetherian or
noetherian if the given t-structure on D is.

Now we can prove our main base change result.

Theorem 5.7. — Let g : X → S be a morphism of schemes which are quasi-compact with
affine diagonal, where X is noetherian of finite Krull dimension. Let D ⊂Db(X) be an S-linear strong
semiorthogonal component whose projection functor is of finite cohomological amplitude. Let (D�0,D�0)

be a bounded S-local t-structure on D which is tilted-noetherian locally on S. Let φ : T→ S be an
essentially perfect morphism from a scheme T which is quasi-compact with affine diagonal, such that φ

is faithful with respect to g. Then:
(1) The t-structure on (Dqc)T from Theorem 5.3 induces a bounded T-local t-structure on DT

which is tilted-noetherian locally on T.
(2) If the t-structure on D is noetherian locally on S, so is the induced t-structure on DT.
(3) If φ : T→ S is projective, L is a φ-relatively ample line bundle on T, and LXT denotes its

pullback to XT, then the t-structure on DT satisfies

D
[a,b]
T =

{
F ∈DT φ′∗(F⊗ Ln

XT
) ∈D[a,b] for all n≫ 0

}
.

(4) Let T′→ S be another morphism with the same assumptions as φ, let f : T′→ T be a
morphism of schemes over S, and let f ′ : XT′→XT be the induced morphism.
(a) f ′∗ : DT →DT′ is right t-exact.
(b) If f is flat, then f ′∗ : DT →DT′ is t-exact.
(c) If f is finite, then f ′∗ : DT′→DT is t-exact.

Proof. — We prove the theorem in several steps.

Step 1. If S is affine and φ : T= Pr
S → S is a projective space over S, then the formula

(5.8) D
[a,b]
T =

{
F ∈DT φ′∗(F(n)) ∈D[a,b] for all n≫ 0

}

defines a bounded T-local t-structure on DT which is tilted-noetherian locally on T, and noetherian
locally on T if the given t-structure on D is.

In [AP06, Theorem 2.3.6] it is shown that if D = Db(X), X is smooth and pro-
jective over the spectrum S of a field, and the t-structure on D is noetherian, then (5.8)
defines a bounded noetherian T-local t-structure on DT. We leave it to the reader to
verify that their proof goes through in greater generality: in our setup if S is affine and
the t-structure on D is noetherian, then (5.8) defines a bounded noetherian T-local t-
structure on DT. Since by Lemma 4.15 a t-structure on D or DT is noetherian if and
only if it is noetherian locally on the base, this proves the desired claim in case the given
t-structure on D is noetherian locally on S. From this, the tilted-noetherian case follows
as in the proof of [Pol07, Lemma 3.3.2].
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Step 2. If S is affine and φ : T = Ar
S → S is an affine space over S, then the bounded T-local

t-structure on DT induced by the Pr
S-local t-structure on DPr

S
from Step 1 is given by

D
[a,b]
T =

{
F ∈DT φ′∗(F) ∈D[a,b]

qc

}
.

This holds by the same argument as in [Pol07, Lemma 3.3.4].

Step 3. If S and T are affine and φ : T→ S is perfect, then the t-structure on (Dqc)T from Theo-
rem 5.3 induces a bounded t-structure on DT, which is noetherian if the t-structure on D is.

The morphism φ is of finite type (see [Sta21, Tag 0682]), so it factors through a
closed immersion T →֒ Ar

S. The morphism T →֒ Ar
S is pseudo-coherent by [Sta21, Tag

0683], of finite Tor-dimension by [Sta21, Tag 068X], and hence perfect. Thus the claim
follows from Theorem 5.6 combined with Step 2.

Step 4. If S= Spec(A) and T= Spec(B) are affine and φ : T→ S corresponds to an essentially
perfect map of rings A → B, then the t-structure on (Dqc)T from Theorem 5.3 induces a bounded
t-structure on DT, which is noetherian if the t-structure on D is.

By Step 3 we reduce to the case where B is a localization of A. Then φ : T→ S
is flat, so by Theorem 5.3.(c) the functor φ′∗ : Dqc → (Dqc)T is t-exact. Since the functor
D→DT is essentially surjective by Lemma 3.18, it follows that the t-structure on (Dqc)T

induces a bounded t-structure on DT. To prove noetherianity, we first note that any sub-
object Fi ⊂ F of a fixed object F is already defined over the complement Ui ⊂ S of the
zero locus of some fi ∈ A. Thus we can proceed exactly as in Lemma 4.16.(3) to lift any
possibly infinite filtration of F in AT to a filtration of F̃ in AS, which proves that AT is
noetherian if AS is.

Step 5. Parts (1) and (2) of the theorem hold in general.

First we show that (Dqc)T induces a t-structure on DT. For any a ∈ Z, let τ̂
�a
T de-

note the truncation functor for the t-structure on (Dqc)T. Then we must show that for
any F ∈DT we have τ̂

�a
T (F) ∈DT. Since T is quasi-compact and φ is essentially perfect,

we may choose a finite affine open cover T = ∪Ui and affine opens Vi ⊂ S such that

for each i the morphism Ui →֒ T
φ
−→ S factors through Vi and the corresponding ring

map OS(Vi)→ OT(Ui) is essentially perfect. To show τ̂
�a
T (F) ∈ DT it suffices to show

τ̂
�a
T (F)Ui ∈DUi for each i because pseudo-coherence is a local property and boundedness

can be checked on a finite open cover. We have τ̂
�a
T (F)Ui ≃ τ̂

�a
Ui

(FUi) because the restric-
tion functor (Dqc)T → (Dqc)Ui is t-exact. In view of Theorem 5.3.(5), we thus reduce to
the case of the affine morphism Ui →Vi , which was handled in Step 4. This shows that
(Dqc)T induces a t-structure on DT, and a similar argument shows that this t-structure on
DT is bounded.

Moreover, the t-structure on DT is T-local. Indeed, if U ⊂ T is a quasi-compact
open subset, then U also has affine diagonal and the morphism U→T is perfect. Hence
by what we have already shown, we conclude that (Dqc)U induces a t-structure on DU.

https://stacks.math.columbia.edu/tag/0682
https://stacks.math.columbia.edu/tag/0683
https://stacks.math.columbia.edu/tag/0683
https://stacks.math.columbia.edu/tag/068X


194 A. BAYER, M. LAHOZ, E. MACRÌ, H. NUER, A. PERRY, P. STELLARI

Since the restriction functor (Dqc)T → (Dqc)U is t-exact by Theorem 5.3.(c), so is the
functor DT →DU. Hence the t-structure on DT is T-local.

Further, the t-structure on DT is noetherian locally on T if the t-structure on D is
noetherian locally on S. Indeed, then for each affine Ui ⊂T in the affine cover considered
above, the induced t-structure on DUi is noetherian by Step 4. So by Lemma 4.15 the
claim holds.

Finally, it follows directly from the definitions and the result of the previous para-
graph that the t-structure on DT is tilted-noetherian locally on T.

Step 6. Part (3) of the theorem holds.

The proof of [Pol07, Theorem 3.3.6(ii)] goes through in our setup.

Step 7. Part (4) of the theorem holds.

These claims follow immediately from the corresponding statements in Theo-
rem 5.3.(4). ✷

We make explicit the following immediate consequence of the theorem:

Corollary 5.8. — In the assumptions of Theorem 5.7, assume also that g is flat, that S is regular
of finite Krull dimension. Let s be a point of S and let Ds be the base change category to Specκ(s).

(1) Then (D�0,D�0) induces a bounded t-structure on Ds.
(2) Moreover, if S is irreducible and s ∈ S the generic point, then base change to Ds is t-exact.

Proof. — Let f : s̄ ⊂ S be the inclusion of the closure of s. Since f is finite and
S is regular, it is automatically perfect [Sta21, Tag 068B]. Hence the composition
Specκ(s)→ s̄ → S is essentially perfect, and part (1) is a special case of Theorem 5.7.
Then part (2) follows from flatness, i.e., Theorem 5.7.(b). ✷

Another important consequence of the theorem is base change for t-structures
along field extensions. By a common abuse of notation, when we base change to an affine
scheme Spec(A), we denote DSpec(A) by DA.

Proposition 5.9. — Let X be a noetherian scheme of finite Krull dimension over a field k. Let
D ⊂ Db(X) be a k-linear strong semiorthogonal component whose projection is of finite cohomological
amplitude, and which is equipped with a bounded tilted-noetherian t-structure. Let k ⊂ ℓ be a (not
necessarily finitely generated) field extension. Then:

(1) The t-structure on (Dqc)ℓ from Theorem 5.3 induces a bounded t-structure on Dℓ.
(2) Base change D→Dℓ is t-exact.
(3) For every object E ∈Aℓ there exists a subfield ℓ′ ⊂ ℓ, finitely generated over k, and an object

F ∈Aℓ′ such that E is the base change of F.
(4) If the field extension k ⊂ ℓ is finitely generated, then the induced t-structure on Dℓ is tilted-

noetherian. If further the t-structure on D is noetherian, then so is the induced t-structure on
Dℓ.

https://stacks.math.columbia.edu/tag/068B
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Proof. — Let F ∈Dℓ. Since F ∈ Db(Xℓ) it descends to an object FA ∈ Db(XA) for
some finitely generated k-subalgebra A ⊂ ℓ. By projecting into DA ⊂ Db(XA), we may
assume FA ∈ DA. But by Theorem 5.7 the t-structure on (Dqc)A induces a bounded t-
structure on DA, and by its statement (b) the pullback functor (Dqc)A → (Dqc)ℓ is t-exact.
It follows that the t-structure on (Dqc)ℓ induces a bounded t-structure on Dℓ, and that it
satisfies (2).

To prove (3), we can let ℓ′ be the fraction field of A; then Fℓ′ ∈Aℓ′ as pullback to ℓ

is t-exact and conservative.
If k ⊂ ℓ is finitely generated, then ℓ can be written as the fraction field of a finitely

generated k-algebra. Hence Spec(ℓ)→ Spec(k) is an essentially perfect morphism, so (4)
holds by Theorem 5.7. ✷

6. Flat, torsion, and torsion free objects

In this section, we consider the following situation:

• g : X→ S is a flat morphism of schemes which are quasi-compact with affine
diagonal, where X is noetherian of finite Krull dimension.

• D ⊂ Db(X) is an S-linear strong semiorthogonal component whose projection
functor is of finite cohomological amplitude.

• (D�0,D�0) is an S-local t-structure on D with heart AS.

The significance of g : X→ S being flat is that any morphism φ : T→ S is faithful with
respect to g. Following [AP06], we adapt to our setup the relative notions of flat, torsion,
and torsion free objects. In Section 6.1 and Section 6.2 we discuss these notions in a
general setting, while in Section 6.3 we study in more detail the case where S = C is a
Dedekind scheme, which will be particularly important later in the paper.

6.1. Flat objects. — For any (not necessarily closed) point s ∈ S, we write Ds,
(Dperf)s, and (Dqc)s for the base change categories along the canonical morphism
φ : Spec(κ(s))→ S.

Definition 6.1. — Let φ : T→ S be a morphism, and let E ∈Dqc(XT). Then E is T-flat
if Et ∈ (Aqc)t for every point t ∈ T, where (Aqc)t ⊂ (Dqc)t is the heart of the t-structure given by
Theorem 5.3 applied to the composition Specκ(t)→T→ S.

Remark 6.2. — If D = Db(X) with the standard t-structure, then Definition 6.1
agrees with the usual notion of flatness for an object F ∈ Coh X under either of the
following hypotheses: T is noetherian or XT → T is of finite presentation. Indeed, the
statement reduces to the local affine case, where for T noetherian it holds by the local
criterion for flatness [Sta21, Tag 00MK], and for XT → T of finite presentation we can
reduce to the case where S is noetherian using [Sta21, Tag 00QX].

https://stacks.math.columbia.edu/tag/00MK
https://stacks.math.columbia.edu/tag/00QX
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In Section 6.3.2 below we prove some results about flat objects in the case of a
Dedekind base.

6.2. Torsion and torsion free objects. — In this subsection we assume S is integral. Re-
call that, in accordance with Section 2, if W⊂ S is a closed subscheme, then iW : XW →X
denotes the embedding of the fiber over W.

Definition 6.3. — An object E ∈D is called S-torsion if it is the pushforward of an object in
DZ for some proper closed subscheme Z ⊂ S. We denote by DS-tor the subcategory of S-torsion objects
in D.

Lemma 6.4. — Let K be the function field of S. For E ∈D, we have E ∈DS-tor if and only if
EK = 0, namely there is an exact sequence of triangulated categories

(6.1) DS-tor →D→DK.

Proof. — The statement follows directly from the corresponding statement for
Db(X). ✷

Definition 6.5. — An object E ∈ AS is called S-torsion free if it contains no nonzero S-
torsion subobject. We denote by AS-tor ⊂AS the subcategory of S-torsion objects, and by AS-tf ⊂AS

the subcategory of S-torsion free objects.

Lemma 6.6. — The following hold:
(1) The subcategory AS-tf ⊂AS is closed under subobjects and extensions.
(2) The subcategory AS-tor ⊂AS is closed under subobjects, quotients, and extensions.
(3) The t-structure on D induces one on DS-tor, which is bounded if the given one on D is.
(4) If L is a line bundle on S, then tensoring by g∗L preserves AS-tor and AS-tf.

Proof. — Part (1) follows immediately from the definitions. Let K be the function
field of S. Then Spec(K)→ S is flat, so by Theorem 5.7.(b) the pullback functor D→DK

is t-exact. Using this and Lemma 6.4, parts (2) and (3) follow easily. Part (4) is immediate
as ⊗ g∗L preserves AS, see Lemma 4.11, and DS-tor. ✷

Lemma 6.7. — Let T⊂ S be the zero locus of a regular section of a vector bundle, and let N
be the normal bundle. Then for any E ∈AT, there are isomorphisms

(6.2) Hi
AT

(i∗TiT∗E)∼=

−i∧
g∗TN

∨⊗ E,

for all i ∈ Z. In particular, we always have H0
AT

(i∗TiT∗E)∼= E, and if T is zero-dimensional, so that
N ∼=O⊕dim S

T , then we also have H−dim S
AT

(i∗TiT∗E)∼= E. Finally, iT∗ : AT →AS is fully faithful.
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Proof. — The isomorphism on cohomology objects follows by the t-exactness of iT∗
and the Koszul complex as in [Huy06, Corollary 11.2].

To see the claim about the fully faithfulness of iT∗, we let E,F ∈AT, and observe
that i∗TiT∗E ∈D

�0
T by (6.2). It then follows by adjunction and the i = 0 case of (6.2) that

HomA(iT∗E, iT∗F)∼=HomD(iT∗E, iT∗F)∼=HomDT(i
∗
TiT∗E,F)

∼=HomDT(H
0
AT

(i∗TiT∗E),F)∼=HomDT(E,F)

∼=HomAT(E,F),

as required. ✷

The following is a version of Lemma 4.16.(2) for S-torsion free objects.

Lemma 6.8. — Assume that g : X→ S is flat and S is integral with function field K. Let
L be an ample line bundle on S, and let A,B ∈AS be objects with A being S-torsion free. Given any
isomorphism AK

∼= BK, there exists k ∈ Z and an injective map A⊗ g∗L−k →֒ B inducing the given
isomorphism over K.

Proof. — Since A,B are bounded complexes, the isomorphism is defined over some
open subset U⊂ S, so by [AP06, Lemma 2.1.8], there exists a map A⊗ g∗L−k → B that
induces the isomorphism over K. Let Q ∈ 〈AS,AS[1]〉 be the cone of this map; note
QK = 0. Hence Q ∈ DS-tor and all cohomology objects Hi

AS
(Q) are S-torsion. Since A

is S-torsion free, the long exact cohomology sequence shows H−1
AS

(Q) = 0, proving the
injectivity as claimed. ✷

6.3. Dedekind bases. — In this subsection we assume S=C is a Dedekind scheme.

6.3.1. Torsion objects. — For any non-trivial closed subscheme W ⊂ C, the ideal
sheaf IW is a line bundle. We will abuse notation by writing IW ⊗ (−) for the tensor
product g∗(IW)⊗ (−), which preserves AC. Note that by Theorem 5.6 there is an induced
t-structure on DW whose heart we denote by AW.

Lemma 6.9. — Let W ⊂ C be a 0-dimensional subscheme with ideal sheaf IW. Let AW be
the heart of the induced t-structure on DW given by Theorem 5.6. Then for any E ∈AC we have short
exact sequences

(6.3) 0→ Ann(IW;E)= iW∗H
−1
AW

(EW) →֒ IW ⊗ E ։ IW · E→ 0

and

0→ IW · E →֒ E ։ E/IW · E= iW∗H
0
AW

(EW)→ 0,
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where Ann(IW;E) and IW · E denote the kernel and the image of the canonical map

IW ⊗ E→ E.

Moreover, Hi
AW

(EW)= 0 for i �= −1,0.

Proof. — We take cohomology of the exact triangle IW ⊗ E→ E→ iW∗i∗WE with
respect to AS, using that iW∗ is t-exact by Theorem 5.7.(c). ✷

In the situation of Lemma 6.9, we call the essential image of iW∗ : AW →AC the
subcategory of objects schematically supported over W; it is equivalent to AW by the last claim
of Lemma 6.7.

Corollary 6.10. — Let W⊂C be a 0-dimensional subscheme. Then the subcategory of AC of
objects schematically supported over W is closed under subobjects and quotients.

Proof. — By Lemma 6.9, an object E ∈AC is schematically supported on W if and
only if the map IW ⊗ E → E vanishes. Given a subobject A →֒ E, it follows that the
composition IW⊗A→ A →֒ E vanishes (as it also factors via IW⊗E), and therefore A is
also schematically supported on W. The case of quotients follows similarly. ✷

We say that E ∈AC-tor is set-theoretically supported over a closed point p ∈ C if it
is scheme-theoretically supported over some infinitesimal neighborhood of p.

Lemma 6.11. — Let p ∈ C be a closed point, π be a local generator of Ip and E ∈AC-tor be
an object set-theoretically supported over p. Then E admits a filtration

0= πm+1 · E⊂ πm · E⊂ · · · ⊂ π · E⊂ E

where all filtration quotients π i · E/π i+1 · E are quotients of E/π · E in Ap.

Proof. — By assumption, there exists m such that Im+1
p · E = 0. The local isomor-

phism between OC and Ip induced by π identifies Ii
p · E with π i · E, i.e., the image of

the endomorphism of E induced by π i. Finally, by definition, π i induces a surjection
E/π · E ։ π i · E/π i+1 · E. ✷

6.3.2. Flat objects. — For any point c ∈ C, there is an induced heart Ac on Dc.
Indeed, if c ∈ C is closed then this holds by Theorem 5.6, while if c ∈ C is the generic
point this holds by Theorem 5.7. In particular, suppose E ∈Dqc(X) is an object such that
Ec ∈Dc for every c ∈C; this holds for instance if E ∈D (see Lemma 8.3). Then E is C-flat
in the sense of Definition 6.1 if and only if Ec ∈Ac for every point c ∈C. This observation
will be used without mention below.



STABILITY CONDITIONS IN FAMILIES 199

Lemma 6.12. — Let E ∈AC. Then E is C-flat if and only if E is C-torsion free.

Proof. — If c ∈C is the generic point, then by Corollary 5.8.(2) the pullback functor
D→Dc is t-exact, i.e., Ec ∈Ac is automatic. Thus, E is C-flat if and only if Ec ∈Ac for
all closed points c ∈C.

Now it follows from Lemma 6.9 that E is C-flat if and only if for every closed point
c ∈ C the map Ic ⊗ E→ E is injective in AC. Moreover, Lemma 6.9 also shows that if
this map is not injective for some c, then E is not C-torsion free. Conversely, assume E
has a torsion subobject A →֒ E. We may assume that A is set-theoretically supported
over a closed point c ∈ C. Then there exists a positive integer m so that the natural map
I⊗m

c ⊗ A→ A vanishes. In particular this map I⊗m
c ⊗ E→ E is non-injective as a map in

AC, which implies the same for Ic ⊗ E→ E. ✷

Lemma 6.13. — Let E ∈D be a C-flat object. Then E ∈AC.

Proof. — Since EK ∈ AK by assumption, and since pullback to DK is t-exact by
Corollary 5.8.(2), we have Hi

AC
(E) ∈ AC-tor for all i �= 0. Consider the maximal i such

that 0 �= Hi
AC

(E) ∈ AC-tor and assume i > 0; by the previous lemmas, it is of the form
iW∗(F) for some 0-dimensional closed subscheme W⊂ C. Since the question is local on
C, we may assume it is supported over a single closed point p ∈ C. Then as OW is an
iterated extension of copies of Op, it follows that iW∗EW = E⊗ iW∗OW is a self-extension
of a number of copies of ip∗Ep = E⊗ ip∗Op. Therefore iW∗EW ∈AC, and as iW∗ is t-exact
and conservative, we have EW ∈AW. Therefore, by adjunction

Hom
(
E,Hi

AC
(E)[−i]

)
=Hom (EW,F[−i])= 0,

a contradiction. Similarly, if i < 0 is minimal with Hi
AC

(E) �= 0, and hence of the form
iW∗(F) for F ∈ AW, we observe that since XW ⊂ X is the inclusion of a Cartier divisor
with trivial restriction to itself, we have i!WE= EW[−1] (see e.g. [Sta21, Tag 0AA4]). We
therefore obtain an analogous contradiction from

Hom
(
Hi

AC
(E)[−i],E

)
=Hom(F[−i], i!WE)=Hom(F,EW[−1+ i])

= 0. ✷

We say the heart AC satisfies openness of flatness if for every E ∈D, the set
{
c ∈C : Ec ∈ (Aqc)c

}

is open. Later in Section 10.1 we will study this property in a more general setting (using
Lemma 8.3, our definition there — Definition 10.4 — is easily seen to be equivalent to
the one above under the assumption that the base C is Dedekind). As a consequence of
Lemma 6.13, openness of flatness implies openness of the heart:

https://stacks.math.columbia.edu/tag/0AA4
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Corollary 6.14. — Assume that AC satisfies openness of flatness. Let E ∈ D and assume
Ec ∈Ac for some c ∈C. Then there exists an open neighborhood U⊂C of c such that EU ∈AU.

6.3.3. Torsion theories. — The following property will play an important role later
in the paper.

Definition 6.15. — We say AC has a C-torsion theory if the pair of subcategories
(AC-tor,AC-tf) forms a torsion pair.

Remark 6.16. — It follows from Lemma 6.6.(2) that the heart AC has a C-torsion
theory if and only if every object E ∈AC contains a unique maximal C-torsion subobject
EC-tor ⊂ E. In this case, we denote by EC-tf = E/EC-tor the C-torsion free quotient in AC.
We also note that AC being noetherian implies the existence of a C-torsion theory.

The following lemma can be helpful in proving the existence of a C-torsion theory.

Lemma 6.17. — Let A →֒ E ։ B be a short exact sequence in a C-local heart, and assume
that A and B admit maximal C-torsion subobjects. Then the same holds for E.

Proof. — We may assume that B is C-torsion, as any C-torsion subobject of E will
factor via the preimage of the maximal C-torsion subobject of B; and evidently we may
assume that A is C-torsion free. Let W be the schematic support of B, in the sense of
Lemma 6.9, and consider the short exact sequence Ann(IW;E) →֒ IW ⊗ E ։ IW · E;
recall that IW ·E is the image of the natural map IW⊗E→ E. Since IW ·B= 0, this map
factors via A →֒ E; therefore, IW ·E⊂ A is C-torsion free. Replacing E by E⊗ I−1

W in this
argument, we have found a torsion free quotient of E by a C-torsion subobject. ✷

In fact, EC-tor can be identified somewhat more explicitly as follows.

Lemma 6.18. — Assume E ∈ AC admits a maximal C-torsion subobject EC-tor ⊂ E. Let
W⊂C be the schematic support of EC-tor. Then EC-tor = I−1

W ⊗ iW∗H
−1
AW

(EW).

Proof. — By the choice of W we have IW · EC-tor = 0, so by Lemma 6.9 we find

EC-tor = I−1
W ⊗ iW∗H

−1
AW

((EC-tor)W) .

Moreover, upon restricting the short exact sequence EC-tor →֒ E ։ EC-tf to W, we see
that H−1

AW
((EC-tor)W)=H−1

AW
(EW), giving the claimed equality. Indeed, EC-tf is C-flat by

Lemma 6.12 so we also have Hi
AW

((EC-tf)W)= 0 for i �= 0 by the proof of Lemma 6.13.
✷

Proposition 6.19. — Assume that AC has a C-torsion theory.
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(1) (Nakayama’s Lemma) If E ∈AC satisfies E/Ic · E= 0 for some c ∈ C, then there exists
an open neighborhood c ∈ U ⊂ C such that EU = 0. In particular, if E is also C-torsion
free, then E= 0.

(2) The heart AC satisfies openness of flatness.

Proof. — By Lemmas 6.9 and 6.12, there is a short exact sequence

H0
Ac

((EC-tor)c) →֒H0
Ac

(Ec)։ H0
Ac

((EC-tf)c)= (EC-tf)c .

Hence the assumption in (1) implies (EC-tf)c = 0, and so EC-tf = 0. So E is C-torsion. If its
support contains c, then c is a closed point, and we proceed as in the proof of Lemma 6.12
to show that the canonical map Ic ⊗ E → E cannot be surjective, so that its cokernel
H0

Ac
(Ec) cannot vanish. This contradiction completes the proof of (1).

To prove (2), assume that Ec ∈Ac. Let i be maximal with Fi :=Hi
AC

(E) �= 0, and
assume i > 0. Since i∗c is right t-exact by Theorem 5.7.(b), we deduce that the quotient
Fi/Ic · Fi = ic∗H0

Ac
(Fi

c) vanishes. By (1) we can thus replace C by an open neighborhood
c ∈ U ⊂ C such that Fi

U vanishes; repeating this process, we can choose U to ensure
that Hi

AU
(EU) = 0 for any i > 0. Similarly, if i � 0 is minimal with Fi �= 0, then we

can conclude from Lemma 6.9 that H−1
Ac

((Fi)c)= 0 and thus that Fi has no torsion sup-
ported at c. Indeed, we first observe that for any j and E ∈ D, we can prove by induc-
tion and the final statement of Lemma 6.9 that

(
τ�j+1(E)

)
c
∈ D�j

c . Then the vanishing
of H−1

Ac
((Fi)c) follows from the vanishing of both Hi−1

Ac
(Ec) and Hi−2

Ac

((
τ�i+1(E)

)
c

)
, and

it follows from Lemma 6.9 that Fi has no torsion supported at c. After restricting to a
smaller open neighborhood of c, we may even assume that Fi is C-torsion free. If i < 0,
then

(
τ�i+1(E)

)
c
∈ D�i

c implies that Fi
c = Hi

Ac
(Ec) = 0, so that Fi

U = 0 by (1). Repeat-
ing this process, we obtain an open neighborhood c ∈U⊂ C such that EU ∈AU and is
U-torsion free, and thus flat over U by Lemma 6.12. ✷

Remark 6.20. — Even if AC does not have a C-torsion theory, if E ∈ AC is any
particular object that does contain a maximal C-torsion subobject, then the conclusion of
Proposition 6.19.(1) holds by the same argument.

Note that in [AP06, Section 3] some of the previous results are proven in a more
general setting when S is smooth but not necessarily Dedekind, under the assumption
that AS is noetherian.

7. Inducing local t-structures on semiorthogonal components

In this section, we consider the following situation:

• g : X→ S is a morphism of schemes which are quasi-compact with affine diag-
onal, where X is noetherian of finite Krull dimension.
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• D ⊂ Db(X) is an S-linear strong semiorthogonal component whose projection
functor is of finite cohomological amplitude.

Our goal is to generalize to the relative case the results of [BLMS17, Section 4] on in-
ducing t-structures on semiorthogonal components.

Definition 7.1. — A relative spanning class of D is a set of objects G of D such that if
F ∈D satisfies HomS(G,F)= 0 for all G ∈ G, then F= 0.

This property can be checked fiberwise:

Lemma 7.2. — Assume g : X→ S is flat. Let G be a set of perfect objects in D. Then G is a
relative spanning class if and only if for all closed points s ∈ S the restriction Gs := i∗s G is a spanning
class of Ds.

Proof. — For the forward direction, assume G is a relative spanning class, and let
F ∈Ds be an object which satisfies Homs(Gs,F)= 0 for all G ∈ G. Note that Homs(−,−)

is simply RHom(−,−) regarded as a κ(s)-complex. We must show that F= 0. Consider
the base change diagram

Xs

is

gs

X

g

s
js

S

We have isomorphisms

HomS(G, is∗F)≃ g∗Hom(G, is∗F)

≃ g∗is∗Hom(Gs,F)

≃ js∗gs∗Hom(Gs,F)

≃ js∗Homs(Gs,F),

where the second holds by the local adjunction between i∗s and is∗ and the others are
evident. By assumption this vanishes for any G ∈ G, so is∗F = 0 since G is a relative
spanning class, and thus F= 0.

Conversely, assume Gs is a spanning class of Ds for all s, and let F ∈D be an object
which satisfies HomS(G,F)= 0 for all G ∈ G. We must show that F= 0. For any s ∈ S, we
have HomS(G,F)s ≃Homs(Gs,Fs) by Lemma 3.21 and the flatness of g. By assumption
this vanishes for any G ∈ G, so Fs = 0 since Gs is a relative spanning class, and thus
F= 0. ✷

The following is an easy consequence of the definitions.
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Lemma 7.3. — Let D = 〈D1,D2〉 be an S-linear semiorthogonal decomposition. Let G be a
spanning class of D2. Then for an object F ∈D, we have F ∈D1 if and only if HomS(G,F)= 0 for
all G ∈ G.

The following is a relative version of [BLMS17, Lemma 4.3].

Lemma 7.4. — Assume g : X→ S is proper, and S is noetherian and admits an ample line
bundle. Let AS ⊂D be the heart of a bounded S-local t-structure. Let D = 〈D1,D2〉 be an S-linear
semiorthogonal decomposition. Let G be a relative spanning class of D2 such that there is an inclusion
G ⊂AS ∩D2 ∩Dperf(X) and

(7.1) HomS(G,F) ∈Db(S)�1

for all G ∈ G and F ∈AS. Then

(AS)1 =AS ∩D1 ⊂D1

is the heart of a bounded S-local t-structure on D1, such that the inclusion D1 →D is t-exact.

Proof. — To show (AS)1 is the heart of a bounded t-structure on D1, we check the
conditions of Proposition 4.5. Condition (1) is clearly satisfied.

For condition (2) it suffices to show that for F ∈D1 we have Hq
AS

(F) ∈ (AS)1 for all
q ∈ Z. Note that this will also show Hq

(AS)1
(F)=Hq

AS
(F), so that D1 →D is t-exact. Let q

be the smallest integer such that Hq
AS

(F) �= 0, so that there is an exact triangle

Hq
AS

(F)[−q]→ F→ τ>q(F).

It suffices to show Hq
AS

(F) ∈ (AS)1 for this particular q, because then by induction the
statement follows for all q. By Lemma 7.3 we have Hq

AS
(F) ∈ (AS)1 if and only if

(7.2) HomS(G,Hq
AS

(F))= 0

for all G ∈ G. Since G ∈D2 and F ∈D1 we have HomS(G,F)= 0 (see Remark 3.9), so by
the above exact triangle we have an isomorphism

HomS(G,Hq
AS

(F))≃HomS(G, τ>q(F))[q− 1].

By the assumption (7.1) the left side lies in Db(S)�1, while by Lemma 4.12 the right side
lies in Db(S)>1. Hence both sides vanish, which proves (7.2) for all G ∈ G.

Finally, it follows from Theorem 4.13 that the t-structure (AS)1 ⊂ D1 is S-local.
✷

To formulate a useful situation in which Lemma 7.4 applies, we need the notion
of a relative Serre functor. An S-linear functor SD/S : D→ D is called a relative Serre
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functor for D over S if there are functorial isomorphisms

HomS(F,SD/S(G))≃HomS(G,F)∨

for all F,G ∈D. The case where S is a point reduces to the usual notion of a Serre functor.
For instance, if g : X→ S is a smooth and proper morphism of noetherian schemes, then
the functor

(−⊗ωg[dim(g)]) : Db(X)→Db(X)

is a relative Serre functor by Grothendieck duality. Moreover, if γ : C → D is a right
admissible subcategory and SD/S is a relative Serre functor for D, then it follows easily
from the definitions that C has a relative Serre functor given by SC/S = γ ! ◦ SD/S ◦ γ . In
particular, putting the previous two remarks together, we see that if g : X→ S is a smooth
and proper morphism of noetherian schemes, then any right admissible subcategory of
Db(X) admits a relative Serre functor.

Now we can give the relative version of [BLMS17, Corollary 4.4].

Corollary 7.5. — Assume g : X→ S is smooth and proper, and S is noetherian and admits
an ample line bundle. Let AS ⊂D be the heart of a bounded S-local t-structure. Let D = 〈D1,D2〉

be an S-linear semiorthogonal decomposition. Let G be a relative spanning class of D2 such that there is
an inclusion G ⊂AS ∩D2 ∩Dperf(X) and every G ∈ G satisfies SD/S(G) ∈AS[1], where SD/S

denotes the relative Serre functor of D. Then

(AS)1 =AS ∩D1 ⊂D1

is the heart of a bounded S-local t-structure on D1, such that the inclusion D1 →D is t-exact.

Proof. — Let G ∈ G and F ∈AS. We have

HomS(G,F)≃HomS(F,SD/S(G))∨.

Since SD/S(G) ∈AS[1], Lemma 4.12 gives

HomS(F,SD/S(G)) ∈Db(S)�−1,

and hence

HomS(F,SD/S(G))∨ ∈Db(S)�1.

Therefore the assumptions of Lemma 7.4 are satisfied. ✷

We also have the following fibral variant.
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Corollary 7.6. — Assume that g : X→ S is smooth and proper, and S is noetherian, regular,
and admits an ample line bundle. Let AS ⊂ D be the heart of a bounded S-local t-structure. Let
D = 〈D1,D2〉 be an S-linear semiorthogonal decomposition. Let G be a relative spanning class of D2

such that G ⊂AS and every G ∈ G satisfies SDs(Gs) ∈As[1] for all closed points s ∈ S, where SDs

denotes the Serre functor of Ds and As ⊂Ds is the induced heart given by Theorem 5.6. Then

(AS)1 =AS ∩D1 ⊂D1

is the heart of a bounded S-local t-structure on D1, such that the inclusion D1 →D is t-exact.

Proof. — Note that our assumptions imply that X is regular of finite Krull dimen-
sion, and thus Db(X)=Dperf(X). Let G ∈ G and F ∈AS. For every closed point s ∈ S, we
have

HomS(G,F)s ≃Homs(Gs,Fs)≃Homs(Fs,SDs(Gs))
∨,

where the first isomorphism holds by Lemma 3.21 and the flatness of g, and for the
second we used that Fs,Gs ∈Ds since F and G are perfect. This object lies in Db(κ(s))�1

since Fs ∈D�0
s and SDs(Gs) ∈As[1]. Because this holds for all closed points s, it follows

that HomS(G,F) ∈Db(S)�1. Therefore the assumptions of Lemma 7.4 are satisfied. ✷

Remark 7.7. — The assumptions of Corollary 7.6 imply those of Corollary 7.5 if
the heart AS is noetherian or if the base is Dedekind. Indeed, it follows easily from the
definitions that there is an isomorphism of functors is∗ ◦ i∗s ◦SD/S ≃ is∗ ◦SDs ◦ i∗s . From this
we see that SDs(Gs) ∈ As[1] is equivalent to i∗s SD/S(G) ∈ As[1]. Hence [AP06, Propo-
sition 3.3.2] (in the case AS noetherian) or Lemma 6.13 (in case the base is Dedekind)
implies SD/S(G) ∈AS[1] for all G ∈ G under the assumptions of Corollary 7.6.

Remark 7.8. — In the situation of Corollary 7.6, the formation of the induced
heart commutes with restriction to fibers. In symbols, if s ∈ S is a closed point, then
((AS)1)s = (As)1. This follows easily from the definitions.

We will also need the following observation.

Lemma 7.9. — Assume in the setting of Lemma 7.4 (or Corollary 7.5 or 7.6) that S=C is a
Dedekind scheme C and AC has a C-torsion theory. Then (AC)1 also has a C-torsion theory.

Proof. — It suffices to show that if E ∈ (AC)1 and EC-tor ∈ AC is its maximal C-
torsion subobject in AC, then EC-tor lies in (AC)1. Let W ⊂ C be the support of EC-tor.
Then by Lemma 6.18 we have EC-tor = g∗(I−1

W )⊗ iW∗H
−1
AW

(EW). Note that

iW∗H
−1
AW

(EW)=H−1
AS

(iW∗EW)=H−1
(AS)1

(iW∗EW),
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where the first equality holds by t-exactness of iW∗ and the second by t-exactness of the
inclusion D1 → D and the fact that iW∗EW ∈ D1. Since tensoring with the line bundle
g∗(I−1

W ) is t-exact as an endofunctor of D1, we conclude EC-tor ∈ (AC)1. ✷

Part II. Moduli spaces

8. Moduli of complexes

In [Lie06a], Lieblich showed that for g : X→ S a proper, flat, finitely presented
morphism of schemes, there is an algebraic stack parametrizing “families” of objects in
the bounded derived categories of the fibers of g with vanishing negative self-Exts. In
fact, [Lie06a] handles more generally the case where X and S are algebraic spaces, but
we will not need this. In this section we review Lieblich’s results; we often give references
to [Sta21], which contains a slightly different exposition that we find convenient.

8.1. Relatively perfect objects. — The meaning of a family of objects in the bounded
derived categories of the fibers is made precise by the notion of a relatively perfect ob-
ject. We use the definition from [Sta21, Tag 0DI0], but it agrees with Lieblich’s original
definition, see [Sta21, Tag 0DI9]. Recall from Section 2 that a pseudo-coherent complex
is one that is locally quasi-isomorphic to a bounded above complex of finitely generated
locally free sheaves.

Definition 8.1. — Let g : X→ S be a morphism of schemes which is flat and locally of finite
presentation. Then an object E ∈D(X) is S-perfect if E is pseudo-coherent and locally of finite Tor-
dimension over g−1OS.

Remark 8.2. — If X→ S is a morphism of schemes, then E is locally of finite Tor-
dimension over g−1OS if and only if for any affine open U ⊂ X mapping into an affine
open V⊂ S, the complex RŴ(U,E) is of finite Tor-dimension over OS(V).

The following summarizes the relations between the notions of S-perfect, bounded
coherent, and perfect complexes.

Lemma 8.3. — Let g : X→ S be a morphism of schemes which is flat and locally of finite
presentation.

(1) Assume X is quasi-compact. If E ∈D(X) is S-perfect, then E ∈Db(X).
(2) Assume S is regular of finite Krull dimension. If E ∈Db(X), then E is S-perfect.
(3) If E ∈Dperf(X), then E is S-perfect.

Proof. — Recall from Section 2 that Db(X) is defined as the category of pseudo-
coherent complexes with bounded cohomology. Hence in the situation of (1), it suffices

https://stacks.math.columbia.edu/tag/0DI0
https://stacks.math.columbia.edu/tag/0DI9
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to show that E has bounded cohomology. Since X is quasi-compact this can be checked
locally, where it holds by Remark 8.2.

In the situation of (2), to check E is locally of finite Tor-dimension over g−1OS

we may assume that X = Spec(A) and S = Spec(R). Then we must show the object
RŴ(X,E) ∈Db(A) has finite Tor-dimension over R. But by regularity R has finite global
dimension [Sta21, Tag 00OE], so we conclude by [Sta21, Tag 066P].

Finally, for (3) note that E ∈D(X) is perfect if and only if E is pseudo-coherent and
locally has finite Tor-dimension [Sta21, Tag 08CQ]. Since g : X→ S is flat, E is then
also locally of finite Tor-dimension over g−1OS. ✷

Lemma 8.4 ([Sta21, Tag 0DI5]). — Let g : X→ S be a morphism of schemes which is flat
and locally of finite presentation. Let φ : T→ S be a morphism of schemes. If E ∈D(X) is S-perfect,
then ET ∈D(XT) is T-perfect.

In particular, if E ∈D(X) is S-perfect, and we let T= Spec(κ(s)) for a point s ∈ S,
then Lemma 8.3 and Lemma 8.4 show that the restriction Es of E to the fiber of g over s is
a bounded coherent complex. Therefore we may think of an S-perfect object as a family
of bounded coherent complexes. However, these restrictions Es are not necessarily perfect
complexes, so one should not mistake “S-perfect” to mean a family of perfect complexes.

8.2. Moduli of objects on a proper morphism. — We will consider relatively perfect ob-
jects satisfying the following condition introduced in [Lie06a, Definition 2.1.8, Proposi-
tion 2.1.9].

Definition 8.5. — Let g : X→ S be a flat, proper, finitely presented morphism of schemes. An
S-perfect object E ∈D(X) is universally gluable if for every point s ∈ S we have

Exti(Es,Es)= 0 for i < 0.

We denote by Dpug(X/S)⊂D(X) the full subcategory of universally gluable S-perfect objects.

Now we can define the moduli stack of interest. In this paper, we will regard stacks
as groupoid-valued (pseudo)functors (instead of fibered categories), but otherwise we fol-
low the conventions of [Sta21]. Let (Sch/S) denote the category of all S-schemes, and
let Gpds denote the category of groupoids.

Definition 8.6. — Let g : X→ S be a flat, proper, finitely presented morphism of schemes. We
denote by

Mpug(X/S) : (Sch/S)op →Gpds

the functor whose value on T ∈ (Sch/S) consists of all E ∈ Dpug(XT/T). On morphisms,
Mpug(X/S) is given by pullback.

https://stacks.math.columbia.edu/tag/00OE
https://stacks.math.columbia.edu/tag/066P
https://stacks.math.columbia.edu/tag/08CQ
https://stacks.math.columbia.edu/tag/0DI5
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The main theorem of [Lie06a] is as follows.

Theorem 8.7 ([Lie06a, Theorem 4.2.1]). — Let g : X→ S be a flat, proper, finitely presented
morphism of schemes. Then Mpug(X/S) is an algebraic stack locally of finite presentation and locally
quasi-separated over S, with separated diagonal.

Later we will also need an auxiliary result on representability of Hom functors.

Definition 8.8. — Let g : X→ S be a morphism of schemes. For E,F ∈D(X), we denote by

HomS(E,F) : (Sch/S)op → Sets

the functor given by T �→HomD(XT)(ET,FT).

The following criterion can be proved using the methods of [Lie06a].

Lemma 8.9. — Let g : X→ S be a flat, proper, finitely presented morphism of schemes. Let
E,F ∈D(X). Assume E is pseudo-coherent, F is S-perfect. Then there exist a scheme B, which is affine
and of finite presentation over S, and ξ ∈ HomD(XB)(EB,FB) such that, for every geometric point s̄
over S and ϕ ∈HomD(Xs̄)(Es̄,Fs̄), there exists a κ(s̄)-rational point b of B×S Spec(κ(s̄)) such that
ξb = ϕ.

Furthermore, if for every point s of S we have

Exti(Es,Fs)= 0 for i < 0,

then HomS(E,F) is representable by a scheme which is affine and of finite presentation over S.

Proof. — The second part of the statement is [Sta21, Tag 0DLC]. To prove the
first statement we use a similar argument as in loc. cit., which we now briefly recall.

We can reduce to the case where S is affine. By [Sta21, Tag 0DKY], there exists
L ∈Db(S) such that for every geometric point s̄ over S and for all i we have that

Exti(Es̄,Fs̄)= Exti(Ls̄, κ(s̄)).

We can now consider the exact triangle given by the “stupid” truncation

σ>0L→ L→ σ�0L

where, we can assume that σ>0L is a perfect complex sitting in strictly positive degrees.
In particular, Hom((σ>0L)s̄, κ(s̄))= 0. Hence we get a surjective morphism

Hom((σ�0L)s̄, κ(s̄))։ Hom(Ls̄, κ(s̄)).

Now we can apply the argument in the proof of [Sta21, Tag 0DLC] to the complex
σ�0L. ✷

https://stacks.math.columbia.edu/tag/0DLC
https://stacks.math.columbia.edu/tag/0DKY
https://stacks.math.columbia.edu/tag/0DLC
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9. Moduli of objects in a subcategory

In this section we explain how the results from Section 8.2 extend to moduli of
objects in an admissible subcategory, and prove some general results on boundedness of
sub-moduli problems. We consider the following situation:

• g : X→ S is a flat, proper, finitely presented morphism of schemes which are
quasi-compact with affine diagonal, where X is noetherian of finite Krull di-
mension.

• D ⊂ Db(X) is an S-linear strong semiorthogonal component whose projection
functor is of finite cohomological amplitude.

9.1. Moduli of objects in D.

Definition 9.1. — We denote by

Mpug(D/S) : (Sch/S)op →Gpds

the functor whose value on T ∈ (Sch/S) consists of all E ∈Dpug(XT/T) such that Et ∈Dt for all
t ∈T.

We prove the following result in this section.

Proposition 9.2. — The functor Mpug(D/S) is an algebraic stack locally of finite presentation
over S, and the canonical morphism Mpug(D/S)→Mpug(X/S) is an open immersion.

The key to showing that Mpug(D/S)→Mpug(X/S) is an open immersion is the
following lemma.

Lemma 9.3. — Let T→ S be a morphism from a quasi-compact scheme with affine diagonal,
and let E ∈D(XT) be T-perfect.

(1) E ∈DT if and only if Et ∈Dt for all t ∈ T.
(2) The set

{t ∈T Et ∈Dt}

is open in T.

Proof. — Note that since XT → T is quasi-compact and T is quasi-compact, the
scheme XT is quasi-compact. Thus by Lemma 8.3.(1) we have E ∈Db(XT). Decompos-
ing E with respect to the semiorthogonal decomposition

Db(XT)= 〈DT, (⊥D)T〉
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gives an exact triangle

G→ E→ F

where F ∈DT and G ∈ (⊥D)T. By Theorem 3.17, for any t ∈T the triangle

Gt → Et → Ft

obtained by restriction gives the decomposition of Et with respect to the semiorthogonal
decomposition

Dqc(Xt)= 〈Dt,qc,
⊥Dt,qc〉.

In the above terms, we have E ∈DT if and only if G= 0 and Et ∈Dt if and only if Gt = 0.
Hence part (1) holds since G = 0 if and only if Gt = 0 for all t ∈ T, and part (2) holds
since the set of t ∈ T where Gt = 0 is open. Indeed, both statements follow easily from
Nakayama’s Lemma and from the fact [Sta21, Tag 064U] that the maximal cohomology
sheaf of a pseudo-coherent complex is a quasi-coherent sheaf of finite type. ✷

With this preparation, we can prove the proposition.

Proof of Proposition 9.2. — We show that Mpug(D/S) : (Sch/S)op →Gpds is a stack
in the fppf topology and that the canonical morphism Mpug(D/S) →Mpug(X/S) is
representable by open immersions. The result then follows from the fact that Mpug(X/S)

is an algebraic stack locally of finite presentation over S by Theorem 8.7.
As Mpug(D/S) is a subfunctor of the stack Mpug(X/S), it suffices to show that for

T ∈ (Sch/S) and E ∈ Dpug(XT/T), the condition E ∈Mpug(D/S)(T) can be checked
fppf locally on T. To see that this is true, let k ⊂ ℓ be a field extension for field k with a
morphism Spec(k)→ S. Denote by Dk and Dℓ the base changes of D along Spec(k)→ S
and the induced map Spec(ℓ)→ S, respectively. Then for an S-perfect E ∈ D(X), we
claim that Ek ∈Dk if and only if Eℓ ∈Dℓ. Indeed, by the same argument as in the proof of
Lemma 9.3, this boils down to the fact that the functor Db(Xk)→Db(Xℓ) is conservative.
It follows that the condition E ∈Mpug(D/S)(T) can be checked fppf locally on T, and
therefore that Mpug(D/S) is stack.

It remains to show that Mpug(D/S)→Mpug(X/S) is representable by open im-
mersions. So let T ∈ (Sch/S) with a morphism T →Mpug(X/S). Since Mpug(D/S)

is a stack, checking that second projection Mpug(D/S) ×Mpug(X/S) T → T is an open
immersion reduces to the case where T is affine. Let E ∈Dpug(XT/T) be the object cor-
responding to T→Mpug(X/S). Then the fiber product Mpug(D/S)×Mpug(X/S) T with
its second projection is represented by the set

U= {t ∈T Et ∈Dt}

with its inclusion into T. This is an open immersion by Lemma 9.3, so we are done. ✷

https://stacks.math.columbia.edu/tag/064U
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9.2. Boundedness. — One of our ultimate goals in this paper is to construct well-
behaved substacks of Mpug(D/S) in the presence of a “stability condition on D over S”,
a notion that will be studied in Part IV. In particular, we will be interested in moduli
functors which are bounded, in the following sense.

Definition 9.4. — A subfunctor M⊂Mpug(D/S) is bounded if there exists a pair (B,E)

where B is a scheme of finite type over S and E ∈M(B) is an object such that for every geometric point s̄
over S and E ∈M(κ(s̄)), there exists a κ(s̄)-rational point b of B×S Spec(κ(s̄)) such that Eb

∼= E.

If M ⊂Mpug(D/S) is an open substack, then following [Tod08], boundedness
can be phrased in terms of the intrinsic geometry of M as follows.

Lemma 9.5. — Let M be an open and bounded substack of Mpug(D/S). Then M is an
algebraic stack of finite type over S.

Proof. — Since Mpug(D/S) is an algebraic stack locally of finite presentation over
S by Proposition 9.2, the same holds for M.

Now consider B as in Definition 9.4. Then B→M is surjective by [Sta21, Tag
04ZR], and so M→ S is quasi-compact by [Sta21, Tag 050X]. Hence it is of finite
type. ✷

The following observation will be needed later.

Lemma 9.6. — Assume S is noetherian. Let M⊂Mpug(D/S) be an open substack. Assume
there exist bounded subfunctors M1 and M2 of Mpug(D/S) such that for every geometric point s̄ over
S and every E ∈M(κ(s̄)), there is an exact triangle

E1 → E→ E2

with E1 ∈M1(κ(s̄)) and E2 ∈M2(κ(s̄)). Then M is bounded.

Proof. — For i = 1,2, let (Bi,Ei) be a pair as in Definition 9.4 witnessing the
boundedness of Mi. Let B12 = B1 ×S B2, and let (Ei)B12 ∈ Dpug(XB12/B12) denote the
pullback of Ei ∈Dpug(XBi/Bi). By Lemma 8.9, the functor

HomB12
((E2)B12, (E1)B12[1]) : (Sch/B12)

op → Sets

is covered by a scheme Z which is affine and of finite presentation over B12. By composi-
tion with the morphism B12 → S, we think of Z as a scheme over S. Note that since each
Bi → S is of finite type, so is B12 → S, and hence so is Z→ S.

By definition, there is a universal morphism

α ∈HomD(XZ)((E2)Z, (E1)Z[1]),

https://stacks.math.columbia.edu/tag/04ZR
https://stacks.math.columbia.edu/tag/04ZR
https://stacks.math.columbia.edu/tag/050X
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where (Ei)Z denotes the pullback of Ei along the base change Z→ B12 → Bi . Define E as
the [−1]-shifted cone of α, so that there is an exact triangle

(E1)Z → E→ (E2)Z.

Note that since (E1)Z and (E2)Z are Z-perfect objects of D(XZ), so is E by [Sta21, Tag
0DI3]. Hence by [Sta21, Tag 0DLC] the locus in Z where E is universally gluable is an
open subscheme Z◦ ⊂ Z, i.e., there is an open subscheme Z◦ ⊂ Z characterized by the
property that z ∈ |Z◦| if and only if Exti(Ez,Ez)= 0 for i < 0. Then EZ◦ ∈Dpug(XZ◦/Z◦).
Moreover, for all z ∈ Z we have Ez ∈Dz because the analogous statement is true for (E1)Z

and (E2)Z by Lemma 9.3. Thus EZ◦ corresponds to a morphism

Z◦→Mpug(D/S)

over S. Let B ⊂ Z◦ be the open subscheme given by the preimage of the open substack
M⊂Mpug(D/S). Then the restriction EB lies in M(B).

We claim that the pair (B,EB) witnesses the boundedness of M. Indeed, as ob-
served above Z→ S is of finite type. Since S is noetherian, so is Z. Therefore, the open
immersions B⊂ Z◦ ⊂ Z are of finite type, and the same holds for the composition B→ S.
Further, by the assumption of the lemma and the construction of B, for every geometric
point s̄ over S and E ∈M(κ(s̄)), there is a κ(s̄)-rational point b of B×S Spec(κ(s̄)) such
that Eb

∼= E. ✷

9.3. Simple objects. — Finally, we discuss substacks of Mpug(D/S) parameterizing
objects which are simple in the following sense.

Definition 9.7. — An object E ∈ Dpug(XT/T) is called simple if Hom(Et,Et) = κ(t)
holds for every geometric point t of T.

The above definition is equivalent to Lieblich’s [Lie06a, Definition 4.3.1], which
requires that the automorphism stack of E is given by the multiplicative group over T.
Given a subfunctor M⊂Mpug(D/S), we write sM⊂M for the subfunctor parameter-
izing simple objects of M.

Lemma 9.8. — Let M be an open substack of Mpug(D/S). Then sM is an algebraic stack
locally of finite presentation over S and admits the structure of a Gm-gerbe over an algebraic space sM
locally of finite presentation over S. If, moreover, sM is bounded, then sM and sM are of finite type
over S.

Proof. — The simple objects sMpug(D/S) form an open substack of Mpug(D/S)

by [Lie06a, Lemma 4.3.2] combined with Proposition 9.2. So sM, being the intersec-
tion of M and sMpug(D/S), is an open substack of Mpug(D/S) and therefore locally
of finite presentation over S. Now as in [Lie06a, Corollary 4.3.3], we obtain sM as the

https://stacks.math.columbia.edu/tag/0DI3
https://stacks.math.columbia.edu/tag/0DI3
https://stacks.math.columbia.edu/tag/0DLC


STABILITY CONDITIONS IN FAMILIES 213

Gm-rigidification of sM. If sM is bounded, then it is of finite type over S by Lemma 9.5,
hence sM is also of finite type. ✷

10. Fiberwise t-structures

In this section, we consider the following situation:

• g : X → S is a flat, finitely presented morphism of schemes which are quasi-
compact with affine diagonal, where X is noetherian of finite Krull dimension.

• D ⊂ Db(X) is an S-linear strong semiorthogonal component whose projection
is of finite cohomological amplitude.

In Section 4 we studied the notion of an S-local t-structure on D, which is a com-
patible specification of t-structures over every quasi-compact open U⊂ S. In this section,
we consider the notion of a fiberwise collection of t-structures on D, which is just the
specification of a t-structure over every point s ∈ S; to get reasonable behavior, we focus
on collections where “openness of flatness” holds. If S is regular of finite Krull dimen-
sion, then by base change, i.e., Theorem 5.7, a bounded S-local t-structure on D which
is titled-noetherian locally on S induces a fiberwise collection of t-structures on D. We
study the latter, weaker notion since it is sufficient and well-suited for formulating moduli
problems.

10.1. Fiberwise collections of t-structures. — Let us start with the following.

Definition 10.1. — A fiberwise collection of t-structures on D over S is a collection
τ = (τs)s∈S of t-structures on Ds for every (closed or non-closed) point s ∈ S.

In this setting, we have enough structure to define flat objects, analogously to Def-
inition 6.1.

Definition 10.2. — Let τ be a fiberwise collection of t-structures on D over S, and let T→ S
be a morphism. Let t ∈T and let s ∈ S be its image. We denote by τ̂t the t-structure on (Dqc)t obtained
via Theorem 5.3 by base change of τs along Spec(κ(t))→ Spec(κ(s)), and write (Aqc)t for the
heart of τ̂t . We say an object E ∈Dqc(XT) is T-flat with respect to τ if Et ∈ (Aqc)t for every point
t ∈T.

Note that the pullback of any T-flat object along a morphism T′→T is T′-flat, by
t-exactness of the base change functor along field extensions (Theorem 5.3.(c)).

Remark 10.3. — When they both apply, the notions of T-flatness from Defini-
tions 6.1 and 10.2 agree, and hence we may unambiguously use the term “T-flat”.
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Without any extra conditions, a fiberwise collection of t-structures is not well-
behaved, because there is no compatibility imposed between the t-structures on different
fibers. To remedy this, we consider the following additional conditions.

Definition 10.4. — Let τ be a fiberwise collection of t-structures on D over S. Then τ satisfies
openness of flatness if for every S-perfect object E ∈D(X), the set

{
s ∈ S Es ∈ (Aqc)s

}

is open. Similarly, τ universally satisfies openness of flatness if for every T→ S and every T-
perfect object E ∈D(XT), the set

{
t ∈T Et ∈ (Aqc)t

}

is open.

Remark 10.5. — In Definition 10.4 we only consider relatively perfect objects,
since these are the only type of objects we shall need to consider in our discussion of
moduli problems.

In the next result, we show that in Definition 10.4 it suffices to check openness for
affine schemes T finitely presented over S.

Lemma 10.6. — Let τ be a fiberwise collection of t-structures on D over S. Assume that
for every morphism of finite presentation T → S from an affine scheme T and every T-perfect object
E ∈D(XT), the set

{
t ∈T Et ∈ (Aqc)t

}

is open. Then τ universally satisfies openness of flatness.

Proof. — For T→ S an arbitrary morphism and E ∈D(XT) a T-perfect object we
must show the set

{
t ∈T Et ∈ (Aqc)t

}
is open, assuming this holds for T→ S of finite

presentation with T affine. We may immediately reduce to the case where T is affine. In
this case, by Lemma 10.7 below we can write T = lim Ti as a cofiltered limit of affine
schemes Ti, i ∈ I, which are of finite presentation over S. Assume t ∈ T is a point such
that Et ∈ (Aqc)t . Then we must show there is an open U⊂ T containing t such that for
every u ∈U we have Eu ∈ (Aqc)u.

By Lemma 9.3 we may assume E ∈ DT. The object E descends to a T0-perfect
object E0 ∈D(XT0) for some index 0 ∈ I, see [Sta21, Tag 0DI8]. We have E0 ∈Db(XT0)

by Lemma 8.3.(1), hence we may assume E0 ∈ DT0 by replacing E0 with its projection
into DT0 . If t0 denotes the image of t under the projection T→ T0, then the assumption
Et ∈ (Aqc)t together with Theorem 5.3.(2) shows that (E0)t0 ∈ (Aqc)t0 . Since T0 → S is a

https://stacks.math.columbia.edu/tag/0DI8
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finitely presented morphism from an affine scheme, by assumption this means there is an
open subset U0 ⊂ T0 containing t0 such that for every u0 ∈U0 we have (E0)u0 ∈Au0 . Then
the preimage U⊂ T of U0 under the projection T→T0 is the sought-for neighborhood
of t ∈T. Indeed, Eu ∈ (Aqc)u holds for every u ∈U by Theorem 5.3.(c). ✷

The following lemma, invoked above, says there are “enough” affine schemes of
finite presentation over a quasi-separated scheme.

Lemma 10.7. — Let T→ S be a morphism of schemes with T affine. Then T∼= lim Ti is a
cofiltered limit of affine schemes Ti which are of finite presentation over S.

Proof. — By [Sta21, Tag 09MV], we can write T = lim Ti as a cofiltered limit of
schemes Ti of finite presentation over S with affine transition morphisms. We show that
Ti is affine for all i large enough, which gives the result by omitting the first few terms.
The scheme Ti is quasi-separated, being of finite presentation over the quasi-separated
scheme S. Moreover, as T is affine and thus quasi-compact, it follows from [Sta21, Tag
0CUF] and [Sta21, Tag 01YX] that after shrinking Ti we can assume Ti is quasi-compact
for all i. But then Ti is affine for all i large enough by [Sta21, Tag 01Z6]. ✷

The following result will be useful later in our construction of Quot spaces.

Lemma 10.8. — Let τ be a fiberwise collection of t-structures on D over S which univer-
sally satisfies openness of flatness. Let T→ S be a morphism from a quasi-compact scheme with affine
diagonal. Let E→ F be a morphism of T-perfect and T-flat objects in D(XT). Then the set

{
t ∈T Et → Ft is surjective in (Aqc)t

}

is open.

Proof. — Let G ∈D(XT) be the object determined by the exact triangle

G→ E→ F.

Note that G is T-perfect because E and F are [Sta21, Tag 0DI3], and moreover G ∈DT,qc

by considering its decomposition with respect to the semiorthogonal decomposition

Dqc(XT)= 〈DT,qc, (
⊥D)T,qc〉.

For t ∈T we consider the exact triangle

Gt → Et → Ft

obtained by restriction. By T-flatness we have Et,Ft ∈ (Aqc)t , so the long exact cohomol-
ogy sequence shows that Gt ∈D

[0,1]
t , and Et → Ft is surjective if and only if Gt ∈ (Aqc)t .

Thus the result follows from the assumption that τ universally satisfies openness of flat-
ness. ✷

https://stacks.math.columbia.edu/tag/09MV
https://stacks.math.columbia.edu/tag/0CUF
https://stacks.math.columbia.edu/tag/0CUF
https://stacks.math.columbia.edu/tag/01YX
https://stacks.math.columbia.edu/tag/01Z6
https://stacks.math.columbia.edu/tag/0DI3


216 A. BAYER, M. LAHOZ, E. MACRÌ, H. NUER, A. PERRY, P. STELLARI

Remark 10.9. — When τs is a tilted-noetherian t-structure for every s ∈ S, then the
t-structure on (Dqc)t descends to one on Dt by Proposition 5.9; therefore, for a T-perfect
object E we can replace the condition Et ∈ (Aqc)t by Et ∈At everywhere.

10.2. Integrable collections of t-structures. — In this subsection, we compare the notion
of a fiberwise collection of t-structures to the notion of a local t-structure from Section 4.

Definition 10.10. — Let τ be a fiberwise collection of t-structures on D over S, and let T→ S
be a morphism from a scheme T which is quasi-compact with affine diagonal. We say τ is integrable
over T if there exists a t-structure τT on DT such that for every t ∈ T the t-structure on (Dqc)t induced
via Theorem 5.3 by base change along the composition Specκ(t)→ T agrees with the t-structure τ̂t

from Definition 10.2. In this situation, we say τ integrates over T to the t-structure τT .

The question of whether a given fiberwise collection of t-structures integrates over
a scheme T→ S is subtle. We will be particularly interested in cases where this holds for
T a Dedekind scheme. The following two results in this context will be needed later.

Lemma 10.11. — Let τ be a fiberwise collection of t-structures on D over S. Let C→ S be a
morphism from a Dedekind scheme C. Assume τ integrates over C to a C-local t-structure on DC with
heart AC. Then for an object E ∈D(XC), the following conditions are equivalent:

(1) E ∈AC and E is C-flat.
(2) E is C-perfect and C-flat.

Proof. — If E ∈AC then E is C-perfect by Lemma 8.3.(2), so (1) implies (2). Con-
versely, assume E is C-perfect and C-flat. Then in particular Ec ∈Dc for every c ∈ C, so
by Lemma 9.3.(1) we find that E ∈ DC. (Strictly speaking in Section 9, and thus tacitly
in Lemma 9.3, the morphism X→ S is assumed to be proper, but this assumption is not
used in the proof.) Thus E ∈AC by Lemma 6.13. ✷

Lemma 10.12. — Let τ be a fiberwise collection of t-structures on D over S. Assume τ in-
tegrates over C to a C-local t-structure on DC whose heart AC has a C-torsion theory. Then for a
morphism E→ F in AC, the following conditions are equivalent:

(1) E→ F is surjective as a morphism in AC.
(2) For every point c ∈ C the induced morphism H0

(Aqc)c
(Ec)→ H0

(Aqc)c
(Fc) is surjective in

(Aqc)c, where (Aqc)c ⊂ (Dqc)c is the heart of the t-structure τ̂c from Definition 10.2.

Proof. — Let G ∈AC be defined by the right exact sequence

E→ F→G→ 0

in AC, so that E→ F is surjective if and only if G = 0. But by Proposition 6.19.(1) we
have G = 0 if and only if for every point c ∈ C we have H0

Ac
(Gc) = 0, which by right

t-exactness of the restriction functor D→Dc is equivalent to condition (2). ✷



STABILITY CONDITIONS IN FAMILIES 217

11. Quot spaces

In this section, we work in the following setup:

• g : X→ S is a flat, proper, finitely presented morphism of schemes which are
quasi-compact with affine diagonal, where X is noetherian of finite Krull di-
mension.

• D ⊂ Db(X) is an S-linear strong semiorthogonal component whose projection
functor is of finite cohomological amplitude.

• τ is a fiberwise collection of t-structures on D over S which universally satisfies
openness of flatness.

Our goal is to define Quot functors in this setting, and to show that under good condi-
tions they are algebraic spaces that satisfy valuative criteria. We begin by introducing the
moduli stack of flat objects, which is used in our proof of representability.

11.1. Moduli of flat objects. — We have seen in Section 9.1 that there is an alge-
braic stack Mpug(D/S) locally of finite presentation over S which parametrizes relatively
perfect, universally gluable objects of D. We can use τ to cut out a substack of flat objects.

Definition 11.1. — We denote by

Mτ : (Sch/S)op →Gpds

the functor whose value on T ∈ (Sch/S) consists of all objects E ∈ Dpug(XT/T) which are T-flat
with respect to τ .

Note that above it would be equivalent to require E ∈ D(XT) is T-perfect and
T-flat, since such an object is automatically universally gluable.

Lemma 11.2. — The functor Mτ is an algebraic stack locally of finite presentation over S, and
the canonical morphism Mτ →Mpug(D/S) is an open immersion.

Proof. — The morphism Mτ →Mpug(D/S) is representable by open immersions
since τ universally satisfies openness of flatness. Hence the result follows from Proposi-
tion 9.2. ✷

11.2. Quot spaces. — Let us start with following definition.

Definition 11.3. — Let E ∈D be an S-perfect object. We denote by

QuotS(E) : (Sch/S)op → Sets

the functor whose value on T ∈ (Sch/S) is the set of all morphisms ET →Q in D(X), where:
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(1) Q ∈D(XT) is T-perfect and T-flat with respect to τ .
(2) The morphism H0

(Aqc)t
(Et)→H0

(Aqc)t
(Qt)=Qt in (Aqc)t is surjective for all t ∈ T.

Given T′→T in (Sch/S), the corresponding map

QuotS(E)(T)→QuotS(E)(T′)

takes ET →Q to its pullback ET′
∼= (ET)T′→QT′ along T′→T.

Remark 11.4. — It is straightforward to verify that the morphism ET′→QT′ ob-
tained by pullback in the above definition is indeed in QuotS(E)(T′).

Remark 11.5. — Below we focus on the case where E is S-flat. Then QuotS(E)(T)

has a slightly simpler description, since H0
(Aqc)t

(Et)= Et for any t ∈T.

Proposition 11.6. — Let E ∈ D be an S-perfect and S-flat object. Then QuotS(E) is an
algebraic space locally of finite presentation over S.

The algebraicity of the usual Quot functor of a coherent sheaf can be shown using
algebraicity of the stack of coherent sheaves, see [Lie06b], [Sta21, Tag 09TQ]. We follow
a similar strategy to prove Proposition 11.6, where the role of the stack of coherent sheaves
is replaced by the stack Mτ of flat objects. Towards this, we first prove the following.

Lemma 11.7. — Let E ∈D be an S-perfect and S-flat object. Then QuotS(E) is a sheaf in
the fppf topology on (Sch/S).

Proof. — Let Ti → T be an fppf cover in (Sch/S), and let qi : ETi → Qi be an
object of QuotS(E)(Ti) such that for every i, j the restrictions of qi and qj to Ti ×T Tj

agree. By Theorem 8.7 and Lemma 8.9, these morphisms glue uniquely to a morphism
q : ET →Q in Dpug(XT/T). To finish we must show q : ET →Q is in QuotS(E)(T), i.e.,
for every t ∈ T we have Qt ∈ (Aqc)t and the morphism Et →Qt in (Aqc)t is surjective. But
base change along an extension of fields is t-exact by Theorem 5.3.(c) and conservative,
so these conditions can be checked fppf locally, see Remark 4.9. ✷

Proof of Proposition 11.6. — There is a canonical morphism

QuotS(E)→Mτ

which for T ∈ (Sch/S) sends (ET → Q) ∈ QuotS(E)(T) to Q ∈Mτ (T). It suffices to
show QuotS(E)→Mτ is representable by algebraic spaces and locally of finite presen-
tation. Indeed, then since Mτ is algebraic stack locally of finite presentation over S by
Lemma 11.2, we conclude that QuotS(E) is an algebraic space locally of finite presenta-
tion over S by [Sta21, Tag 05UM] and [Sta21, Tag 04SZ].

https://stacks.math.columbia.edu/tag/09TQ
https://stacks.math.columbia.edu/tag/05UM
https://stacks.math.columbia.edu/tag/04SZ
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So let T ∈ (Sch/S), let T→Mτ be a morphism, and let

Z=QuotS(E)×Mτ
T : (Sch/T)op → Sets

be the fiber product; we must show Z→ T is a locally finitely presented morphism of
algebraic spaces. Let Q ∈Mτ (T) be the object corresponding to T→Mτ . Then for
T′ ∈ (Sch/T) we have

Z(T′)=

{
morphisms ET′→QT′ in D(XT′) such that
Et′→Qt′ is surjective in (Aqc)t′ for all t′ ∈T′ .

}

Hence Z → T factors through the forgetful morphism Z → HomT(ET,Q). Note that
HomT(ET,Q) is an algebraic space of finite presentation by Lemma 8.9, whose hypothe-
ses are satisfied since for every t ∈ T we have Et,Qt ∈ (Aqc)t . Hence the following claim
will finish the proof: Z→HomT(ET,Q) is an open immersion.

To prove the claim, let T′ ∈ (Sch/T), let T′→HomT(ET,Q) be a morphism, and
let

Y= Z×HomT(ET,Q) T′→T′

be the fiber product; we must show Y→ T′ is an open immersion. Since QuotS(E) is
a sheaf in the fppf topology by Lemma 11.7, it follows that Y is too. Hence we may
reduce to the case where T′ is affine. Let f : ET′ →QT′ be the morphism corresponding
to T′→HomT(ET,Q). By Lemma 10.8 the subset

U=
{
t′ ∈T′ ft′ : Et′→Qt′ is surjective

}

is open in T′. The morphism U→T′ represents Y→T′, so we are done. ✷

11.3. Valuative criteria for Quot spaces. — In this subsection, we investigate the valua-
tive criterion for Quot spaces. First we formulate what we mean by valuative criteria; for
later use in the paper, we consider the setting of algebraic stacks.

Definition 11.8. — Let f : X→ Y be a morphism of algebraic stacks. Let R be a valuation
ring with field of fractions K, and let Spec(R)→ Y be a morphism. Then we say f satisfies the
strong existence part of the valuative criterion with respect to Spec(R)→ Y if given any
commutative solid diagram

(11.1)

Spec(K) X

Spec(R) Y
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there exists a dotted arrow making the diagram commute. We say f satisfies the uniqueness part of
the valuative criterion with respect to Spec(R)→ Y if for any solid diagram (11.1), the category
of dotted arrows (see [Sta21, Tag 0CLA]) is either empty or a setoid with exactly one isomorphism class.

Remark 11.9. — The commutativity of the diagram in Definition 11.8 must be
understood in the 2-categorical sense, see [Sta21, Tag 0CL9]. In case X and Y are alge-
braic spaces, this subtlety disappears. Moreover, in this case the uniqueness part of the
valuative criterion just says that there exists at most one dotted arrow in (11.1).

Remark 11.10. — We use the adjective “strong” because the standard “existence
part of the valuative criterion” for algebraic stacks (or spaces) only requires the existence
of a dotted arrow after passing to a field extension of K, see [Sta21, Tag 0CLK].

We will show that under a suitable integrability hypothesis, Quot spaces satisfy the
valuative criteria formulated above.

Proposition 11.11. — Let E ∈D be an S-perfect and S-flat object. Let R be a discrete valua-
tion ring and let Spec(R)→ S be a morphism. Assume that τ integrates over Spec(R) to a bounded
Spec(R)-local t-structure on DR whose heart AR has a Spec(R)-torsion theory. Then the morphism
QuotS(E)→ S satisfies the strong existence and the uniqueness parts of the valuative criterion with
respect to Spec(R)→ S.

Before proving the proposition, we give an alternate description of the Quot func-
tor in the integrable case.

Lemma 11.12. — Let E ∈D be an S-perfect and S-flat object. Let C→ S be a morphism
from a Dedekind scheme. Assume that τ integrates over C to a bounded C-local t-structure on DC whose
heart AC has a C-torsion theory. Then there is an identification

QuotS(E)(C)=

{
quotients EC →Q in AC

such that Q is C-flat.

}

Proof. — Note that EC ∈ AC by Lemma 10.11, since EC is C-perfect and C-flat.
By definition, a C-point of QuotS(E) is a morphism EC → Q in D(XC) such that Q
is C-perfect and C-flat and Ec → Qc is surjective in (Aqc)c for all c ∈ C. Equivalently,
by Lemmas 10.11 and 10.12, Q is a C-flat object of AC and EC → Q is a quotient in
AC. ✷

Proof of Proposition 11.11. — Let K be the fraction field of R. For the strong exis-
tence part of the valuative criterion, by Lemma 11.12 we must show that given a surjec-
tion f : EK →Q in AK with Q a K-flat object, there is a surjection f̃ : ER → Q̃ in AR

with Q̃ an R-flat object, such that f̃ restricts to f . To this end, we first use Lemma 4.16.(2)

https://stacks.math.columbia.edu/tag/0CLA
https://stacks.math.columbia.edu/tag/0CL9
https://stacks.math.columbia.edu/tag/0CLK
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to obtain Q̃ and a surjective map f̃ ′ : ER → Q̃ extending f . After replacing Q̃ with Q̃R-tf,
we may further assume Q̃ is R-torsion free and hence R-flat by Lemma 6.12, proving the
claim.

To show uniqueness, assume we are given two R-flat extensions Q̃1, Q̃2 of Q and
surjections f̃i : ER → Q̃i . By Lemma 6.8, there is an injection i : Q̃1 →֒ Q̃2 ⊗ g∗OR(π k)

for some k � 0 such that after pulling back to K, we have i ◦ f1 = π kf2. Hence the image
of i ◦ f1 − π kf2 is R-torsion; since Q̃2 is R-torsion free by Lemma 6.12, the same holds
true of Q̃2 ⊗ g∗OR(π k) so that this image must zero. It follows that the two morphisms
are equal already over R. Since π k acts injectively on R-torsion free objects, we obtain a
chain of isomorphisms Q̃1

∼= Im i = Imπ k ∼= Q̃2 of quotients of ER. ✷

11.4. Nagata valuative criteria. — Sometimes, we will only know (via Theorem 5.7)
that τ integrates to a bounded Spec(R)-local t-structure when Spec(R)→ S is essentially
of finite type; therefore, we will only assume as much in Definition 20.5. In this section,
we prove that when S is Nagata, it is enough to consider such morphisms in the valuative
criteria for universal closedness, see Lemma 11.21. This will allow us for example to show
universal closedness of moduli spaces of semistable objects in the proof of Theorem 21.24.
Otherwise, this section is completely independent of the rest of the paper.

For the definition of the Nagata property see [Sta21, Tag 032E] (for rings), [Sta21,
Tag 033R] (for schemes), and [Sta21, Tag 0BAT] (for algebraic spaces). This property
holds in essentially all naturally occurring examples. For instance, any quasi-excellent
ring is Nagata [Sta21, Tag 07QV].

Recall that a domain A with field of fractions K is called Japanese if for any finite
extension of fields K⊂ L, the integral closure of A in L is finite over A. A ring A is then
called universally Japanese if for any finite type ring map A→ B with B a domain, the
ring B is Japanese. The key properties we need about Nagata rings are the following.

Lemma 11.13 ([Sta21, Tag 0334]). — A ring is Nagata if and only if it is universally
Japanese and noetherian.

Recall that a ring map A→ B is essentially of finite type if B is the localization of an
A-algebra of finite type. We recall the following result:

Lemma 11.14 ([Sta21, Tag 0334] and [Sta21, Tag 032U]). — If A is a Nagata ring and
A→ B is a ring map essentially of finite type, then B is Nagata.

Lemma 11.15. — Let A be a Nagata local domain with fraction field K. Assume that A is not
a field. Let K⊂ L be a finitely generated field extension. Then there exists a DVR R with fraction field
L which dominates A, such that A→R is essentially of finite type.

Proof. — The following argument is modeled on the proof of [Sta21, Tag 00PH].
If L is not finite over K, choose a transcendence basis x1, . . . , xr of L over K.

Let m ⊂ A[x1, . . . , xr] be the maximal ideal generated by the maximal ideal of A and

https://stacks.math.columbia.edu/tag/032E
https://stacks.math.columbia.edu/tag/033R
https://stacks.math.columbia.edu/tag/0BAT
https://stacks.math.columbia.edu/tag/07QV
https://stacks.math.columbia.edu/tag/0334
https://stacks.math.columbia.edu/tag/0334
https://stacks.math.columbia.edu/tag/032U
https://stacks.math.columbia.edu/tag/00PH
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x1, . . . , xr , and let A′ = A[x1, . . . , xr]m. Then A′ is a local domain which dominates A,
the map A→ A′ is essentially of finite type, and L is finite over the fraction field of A′.
Moreover, A′ is Nagata by Lemma 11.14. Replacing A with A′ we may thus assume L is
finite over K.

By [Sta21, Tag 00P8] we may find a noetherian local domain A′ of dimension 1
with fraction field K which dominates A and such that A→ A′ is essentially of finite type.
Again by Lemma 11.14, A′ is Nagata. Replacing A with A′ we may thus further assume
dim(A)= 1.

Let B⊂ L be the integral closure of A in L. By Lemma 11.13 the ring A is Japanese,
so B is finite over A. Thus we may choose a prime q⊂ B lying over the maximal ideal of
A. Set R= Bq. Then R is a local normal domain of dimension 1 which has fraction field
L and dominates A, and the map A→R is essentially of finite type. By Lemma 11.13 we
see that R is also noetherian, and hence a DVR. ✷

The following notion will be used below.

Definition 11.16. — Let Y be an algebraic space. We say a morphism f : Z → Y from a
scheme Z is essentially (locally) of finite type if it is either (locally) of finite type or if Z is affine and
f factors as

Z= Spec(R[M−1])→ Spec(R)→ Y

where Spec(R)→ Y is a morphism (locally) of finite type and M⊂R is a multiplicative system.

Remark 11.17. — If Y is a locally noetherian scheme, then for any morphism
Spec(R)→ Y locally of finite type, Spec(R) is noetherian and hence Spec(R)→ Y is of
finite type. Thus if Y is a locally noetherian scheme, a morphism Z→ Y from an affine
scheme Z is essentially locally of finite type if and only if it is essentially of finite type.
Since a Nagata scheme Y is locally noetherian by [Sta21, Tag 033Z], we will apply this
observation in the results below whenever Y is a Nagata scheme.

Remark 11.18. — We have chosen definitions that make our results as general
as possible. Note, however, that Definition 11.16 is in a slightly different spirit than our
definition of an essentially perfect morphism in Definition 5.4. One can show that for a
noetherian scheme Y, any essentially locally of finite type morphism Z→ Y that is also
of finite Tor-dimension is essentially perfect, but the converse need not hold.

Lemma 11.19. — Let f : X → Y be a locally of finite type morphism of schemes with Y
Nagata. Let y � y′, y �= y′, be a specialization of points in Y, and let x be a point of X such that

https://stacks.math.columbia.edu/tag/00P8
https://stacks.math.columbia.edu/tag/033Z
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f (x)= y. Then there exists a commutative diagram

Spec(K) X

Spec(R) Y

where R is a DVR with field of fractions K (which may be taken to be κ(x)), the bottom arrow is
essentially of finite type and takes the generic point of Spec(R) to y and the special point to y′, and the
image point of the top arrow is x.

Proof. — We have a commutative diagram

Spec(κ(x)) X

Spec(κ(y)) Spec(OY,y′) Y

Let A be image of the ring map OY,y′→ κ(y). Then A is a local domain with fraction field
κ(y), and A is not a field since y �= y′. By Lemma 11.14 the ring A is Nagata because it is
the quotient of the Nagata ring OY,y′ . The field extension κ(y)⊂ κ(x) is finitely generated
since X→ Y is locally of finite type. Thus applying Lemma 11.15 we obtain a DVR R
with fraction field κ(x) which dominates A, such that A→ R is essentially of finite type.
Thus we obtain a commutative diagram

Spec(κ(x)) X

Spec(R) Spec(A) Spec(OY,y′) Y

with all of the desired properties. ✷

We will need the following lemma in our proof of the Nagata valuative criterion
for universal closedness below.

Lemma 11.20. — Let f : X→ Y be a quasi-compact morphism of algebraic spaces. Assume
that for every locally of finite presentation morphism Z→ Y with Z affine, the base change XZ → Z is
closed. Then f is universally closed.

Proof. — For any algebraic space X, we denote by |X| the underlying topological
space of X, see [Sta21, Tag 03BY]. A morphism of algebraic spaces is called closed if the
induced map on topological spaces is closed.

https://stacks.math.columbia.edu/tag/03BY
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By [Sta21, Tag 0CM9], to prove the lemma it suffices to show that for every locally
of finite presentation morphism Z→ Y of algebraic spaces, the base change XZ → Z is
closed. Choose a surjective étale morphism p : Z′→ Z where Z′ is a disjoint union of
affine schemes Z′i étale over Z. By assumption, the morphism XZ′ → Z′ is closed after
restriction to each affine Z′i , and hence closed. Consider the diagram

|XZ′|

|fZ′ |

|p′|
|XZ|

|fZ|

|Z′|
|p|

|Z|

of continuous maps of topological spaces. We must show that the image under |fZ| of
any closed subset T⊂ |XZ| is closed. Since p : Z′→ Z is a surjective étale morphism, the
topology on |Z| is the quotient topology for the surjection |p| : |Z′| → |Z|, see [Sta21, Tag
03BX]. Hence we must show |p|−1|fZ|(T)⊂ |Z′| is closed. But since |XZ′ | → |Z′|×|Z| |XZ|

is surjective it follows that |p|−1|fZ|(T)= |fZ′||p′|−1(T), which is closed by the observation
above that XZ′→ Z′ is closed. ✷

Lemma 11.21. — Let f : X→ Y be a morphism of algebraic spaces such that:
(1) Y is Nagata.
(2) f is of finite type.
(3) f satisfies the strong existence part of the valuative criterion with respect to any essentially

locally of finite type morphism Spec(R)→ Y with R a DVR.
Then f is universally closed.

Proof. — By Lemma 11.20 it suffices to show that for every locally of finite presen-
tation morphism Z→ Y with Z affine, the morphism XZ → Z is closed. We claim that
XZ → Z inherits properties (1)-(3). Indeed, (1) holds by [Sta21, Tag 035A], (2) is clear,
and (3) follows formally from the fact that Z→ Y is locally of finite presentation.

Thus to prove the lemma, it suffices to assume that Y is affine and show f : X→ Y
is closed. In this situation, X is a quasi-compact algebraic space since f is of finite type
and Y is quasi-compact. Thus by [Sta21, Tag 03H6] we may choose an affine scheme
U and a surjective étale morphism p : U→X. We must show that if T⊂ |X| is a closed
subset of the underlying topological space of X, then |f |(T) is closed in Y. The preimage
|p|−1(T) is closed in U and hence the set of points of an affine closed subscheme V⊂U.
Hence |f |(T) coincides with the image of the morphism of affine schemes V→ Y, which
by [Sta21, Tag 00HY] is closed if and only if it is stable under specialization. In other
words, we must show that specializations of points in Y lift along f ; but this follows from
Lemma 11.19 and property (3). ✷

https://stacks.math.columbia.edu/tag/0CM9
https://stacks.math.columbia.edu/tag/03BX
https://stacks.math.columbia.edu/tag/03BX
https://stacks.math.columbia.edu/tag/035A
https://stacks.math.columbia.edu/tag/03H6
https://stacks.math.columbia.edu/tag/00HY
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Part III. Harder–Narasimhan structures over a curve

In this part of the paper, we develop a theory of Harder–Narasimhan structures
over a curve; this will be the basis of our definition of a stability condition over a general
base scheme in Part IV. With the exception of Sections 12 and 14 where we review the
absolute setting, we work in the following setup.

Setup III.1. — Assume:

• g : X → C is a flat morphism as in the Main Setup and in addition it is projec-
tive, where C is a Dedekind scheme;

• D ⊂ Db(X ) is a C-linear strong semiorthogonal component of finite cohomo-
logical amplitude.

12. Stability conditions and base change

We briefly recall the definition of stability conditions [Bri07, KS08], including the
support property, and Bridgeland’s deformation result. Then, in Section 12.3, we prove
a base change result for numerical stability conditions under arbitrary (not necessarily
finitely generated) field extensions, extending the results of [Sos12].

12.1. Definitions. — Let D be a triangulated category.

Definition 12.1. — A slicing P of D consists of full additive subcategories P(φ) ⊂ D for
each φ ∈R, satisfying:

(1) for all φ ∈R, P(φ + 1)=P(φ)[1];
(2) if φ1 > φ2 and Ej ∈P(φj), then HomD(E1,E2)= 0;
(3) ( HN filtrations) for every nonzero E ∈D there exists a finite sequence of morphisms

0= E0
s1
−→ E1 → ·· ·

sm
−→ Em = E

such that the cone of si is in P(φi) for some sequence φ1 > φ2 > · · ·> φm of real numbers.

We write φ+(E) := φ1 and φ−(E) := φm; moreover, for an interval I⊂R, we write

P(I) :=
{
E : φ+(E),φ−(E) ∈ I

}
= 〈P(φ)〉φ∈I ⊂D.

We also write P(� a) :=P((−∞, a]) or P(> b) :=P((b,+∞)).

Definition 12.2. — Let � be a finite rank free abelian group with a group homomorphism
v : K(D)→�.
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(1) A pre-stability condition on D with respect to � is a pair σ = (Z,P) where P is a
slicing of D and Z : �→C is a group homomorphism, that satisfy the following condition:

for all 0 �= E ∈P(φ), we have Z(v(E)) ∈R>0 · eiπφ.

We will often abuse notation and write Z(E) for Z(v(E)). The nonzero objects of P(φ)

are called σ -semistable of phase φ.
(2) A pre-stability condition σ = (Z,P) with respect to � satisfies the support property if

there exists a quadratic form Q on the vector space �R such that

• the kernel of Z is negative definite with respect to Q, and
• for any σ -semistable object E ∈D, we have

Q(v(E))� 0.

(3) A stability condition (with respect to �) is a pre-stability condition with respect to �

satisfying the support property.

We will briefly review the relevance of the support property for deformations of
stability conditions in Section 12.2. For now we note that an easy linear algebra statement
implies the following.

Remark 12.3. — Assume that Q is negative definite on the kernel of Z. Then for
any C > 0, there can only be finitely many classes with |Z(v)|< C and Q(v)� 0.

It follows that if (Z,P) satisfies the support property, then P(φ) is a finite length
category for every φ ∈R, as the image of objects in P(φ) in R>0 · eiπφ is a discrete set. In
other words, the support property guarantees the existence of a Jordan–Hölder filtration
of a semistable object E, which has stable filtration quotients; we call them the Jordan–
Hölder factors of E.

Definition 12.4. — A stability function Z on an abelian category A is a morphism of
abelian groups Z : K(A)→ C such that for all 0 �= E ∈ A, the complex number Z(E) is in the
semi-closed upper half plane H ⊔R<0 := {z ∈C ℑz > 0, or ℑz= 0 and ℜz < 0}.

For 0 �= E ∈A we define its phase by φ(E) := 1
π

arg Z(E) ∈ (0,1]. An object E ∈A is
called Z-semistable if for all subobjects 0 �= A →֒ E, we have φ(A) � φ(E).

Definition 12.5. — We say that a stability function Z on an abelian category A satisfies the
HN property if every object E ∈A admits a Harder–Narasimhan (HN) filtration: a sequence

0= E0 →֒ E1 →֒ E2 →֒ . . . →֒ Em = E

such that Ei/Ei−1 is Z-semistable for i = 1, . . . ,m, with

φ(E1/E0) > φ(E2/E1) > · · ·> φ(Em/Em−1).
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If P is a slicing, then P((φ,φ + 1]) is the heart of a bounded t-structure for all
φ ∈R; moreover, the slicing induces HN filtrations on A := P((0,1]) with respect to Z.
The converse also holds:

Lemma 12.6 ([Bri07, Proposition 5.3]). — To give a pre-stability condition on D is equivalent
to giving a heart A⊂D of a bounded t-structure, and a stability function Z on A with the HN property.

The support property can be checked at the level of the abelian category, with the
same definition. Thus the above lemma can be rephrased in terms of stability conditions
as well.

Let X be a projective variety over a field k, and let D ⊂Db(X) be a k-linear strong
semiorthogonal component. Then the Euler characteristic

χk(E,F)=
∑

i

(−1)i dimk Hom(E,F[i])

induces a pairing

χk : K(Dperf)×K(D)→ Z.

When the base field is clear from the context, we will always omit it from the notation.
We write Knum(D) for the quotient of K(D) by the null space of χ on the right; similarly
we write, by some abuse of notation, Knum(Dperf) for the corresponding quotient on the
left.

Lemma 12.7. — Both Knum(D) and Knum(Dperf) are free and finitely generated abelian
groups.

Proof. — By definition Knum(D) and Knum(Dperf) are torsion free; we need to show
they are finitely generated. It is enough to prove the statement for Knum(Dperf), as the
pairing χk induces an inclusion Knum(D) →֒Hom(Knum(Dperf),Z). We may also reduce
to the case where D = Db(X), as Knum(Dperf) is a quotient of the image of K(Dperf) in
Knum(Db(X)).

Let π : X̃ → X be an alteration with X̃ regular and projective (see [dJ96,
Theorem 4.1]). If CH∗

num(X̃) denotes the Chow ring modulo numerical equivalence,
then Riemann–Roch shows that for some integer N, Knum(Dperf(X̃)) embeds into
1
NCH∗

num(X̃) ⊂ CH∗
num(X̃) ⊗ Q; in particular, since CH∗

num(X̃) is finitely generated (in
finite characteristic, see e.g. [Ful98, Example 19.1.4]), so is Knum(Dperf(X̃)). On the other
hand, using that

(12.1) χk(π
∗(E),F)= χk(E,π∗(F)) for E ∈Dperf(X) and F ∈Db(X̃),

we see that pullback induces a map Knum(Dperf(X)) → Knum(Dperf(X̃)). To finish the
proof, we show this map is injective. Using again the relation (12.1), we reduce to proving
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the following claim: if α ∈ K(Db(X)), then there exists a class α̃ ∈ K(Db(X̃)) and an
integer d such that π∗(̃α)= dα. This holds by dévissage. Namely, by noetherian induction
it suffices to show that if F is a coherent sheaf on X supported on a closed subset Z⊂X,
then some multiple of [F] ∈K(X) lifts to K(X̃), modulo classes of sheaves supported on
proper subsets of Z. But we can find such a lift by considering the class [OZ̃] ∈K(Db(X̃))

where Z̃⊂ X̃ is a multisection of X̃→X over Z. ✷

Definition 12.8. — We say that a stability condition on D is numerical if the central charge
factors via Z : K(D)→Knum(D)→C.

Remark 12.9. — Concretely, a stability condition is numerical if Z can be written
as

Z( )=
∑

i

ziχ(Fi, ),

for some zi ∈C and Fi ∈Dperf.

12.2. The space of stability conditions. — We continue to fix a free abelian group
� of finite rank with a group homomorphism v : K(D)→ �, and write Stab�(D) for
the set of stability conditions satisfying the support property with respect to �. We will
review the deformation result of [Bri07], made somewhat more effective in [BMS16,
Appendix A], which shows that Stab�(D) is a complex manifold, locally homeomorphic
to Hom(�,C).

We first recall the metric topology on the set of slicings:

Proposition and Definition 12.10 ([Bri07, Section 6]). — Consider two slicings P,Q of D,
and write φ±P(E) and φ±Q(E) for the maximal and minimal phase occurring in the HN filtration of the
object E with respect to P and Q, respectively. Then

d(P,Q) := sup
E∈D

{∣∣φ+Q(E)− φ+P(E)
∣∣ ,

∣∣φ−Q(E)− φ−P(E)
∣∣} ∈R�0 ∪ {+∞}

= sup
φ∈R,E∈P(φ)

{∣∣φ+Q(E)− φ
∣∣ ,

∣∣φ−Q(E)− φ
∣∣}

= inf
φ∈R

{
ǫ ∈R�0 P(� φ)⊂Q(� φ + ǫ)

and P(> φ)⊂Q(> φ − ǫ)
}
,

and this quantity defines a generalized metric on the set of slicings, i.e., it satisfies the triangle inequality
and d(P,Q)= 0 if and only if P =Q.

This induces a topology on Stab�(D) as the coarsest topology such that the two
forgetful maps to Hom(�,C) and to the set of slicings on D are continuous.
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Theorem 12.11 ([Bri07], [BMS16, Proposition A.5]). — The space Stab�(D) of stability
conditions on D is a complex manifold, and the canonical map

Z : Stab�(D)→Hom(�,C), (Z,P) �→ Z

is a local isomorphism.
More precisely, assume that σ = (Z,P) satisfies the support property with respect to the quadratic

form Q. Consider the open subset of Hom(�,C) consisting of central charges whose kernel is negative
definite with respect to Q, and write PZ for the connected component of this open subset that contains Z.
If U ⊂ Stab�(D) is the connected component of Z−1(PZ) containing σ , then Z|U : U→ PZ is a
covering map.

In other words, a path in PZ starting at Z lifts uniquely to a path in Stab�(D)

starting at σ .
We also note the following standard facts about the hearts of stability conditions,

see the example at the end of [Pol07, Section 1] and [AP06, Proposition 5.0.1]:

Lemma 12.12. — Let σ = (A,Z) be a stability condition with respect to �.
(1) The heart A is tilted-noetherian.
(2) If Z is defined over Q[i], i.e., if its image is contained in Q⊕ iQ, then A is noetherian.

The support property combined with some simple linear algebra arguments imply
local finiteness of wall-crossing:

Lemma 12.13 ([Bri08, Section 9], [Tod08, Proposition 2.8 and Lemma 2.9], [BM11, Propo-
sition 3.3]). — Fix a class v ∈�. Then there exists a locally finite set of walls, i.e., real codimension
one submanifolds, Wv ⊂ Stab�(D) with the following properties.

(1) Let W be an intersection of finitely many walls in Wv (where W= Stab�(D), the empty
intersection, is allowed). Let C ⊂ W be a chamber, namely a connected component of
the complement of the union of intersections of W with any other wall. Then the set of σ -
semistable objects of class v is constant for σ ∈ C; the same holds for σ -stable objects.

(2) Up to the normalisation2 Z(v) ∈ R<0, every such wall in Wv is locally described by a
linear equation of the form ℑZ(u)= 0 for some u �= 0, defined over Q. Every chamber C
contains stability conditions with Z defined over Q[i].

Proof. — The case of σ -semistable objects is treated in [Tod08]. From the proof,
one can see that an object that is σ -semistable in a chamber C is either σ -stable for all
σ ∈ C or strictly σ -semistable for all σ ∈ C. ✷

2 This can be achieved via the action of G̃L+2 (R), the universal cover of GL+2 (R); this group has an action on
Stab�(C) covering the action of GL+2 (R) on Hom(�,C)∼=Hom(�,R2).
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12.3. Stability conditions under base change. — Now consider an algebraic variety X
defined over a base field k and a field extension ℓ of k. The pullback D→Dℓ, E �→ Eℓ

induces maps

K(D)→K(Dℓ) and K(Dperf)→K(Dℓ,perf)

that preserve the Euler characteristic pairing.

Lemma 12.14. — Pullback also induces a map ηℓ/k : Knum(Dperf)→ Knum(Dℓ,perf) on
numerical K-groups.

Proof. — We have to show that if E ∈Dperf satisfies χk(E,F)= 0 for all F ∈D, then
we also have χℓ(Eℓ,G) = 0 for all G ∈ Dℓ. Since G is defined over some intermediate
field extension k ⊂ ℓ′ ⊂ ℓ with ℓ′/k finitely generated (as in the proof of Proposition 5.9)
and since pullback along ℓ/ℓ′ preserves the Euler characteristic, it is sufficient to consider
the case where ℓ/k is itself finitely generated. When ℓ/k is finite, the claim follows from
adjunction via

χℓ(Eℓ,G)= χℓ(E,G(k))= dimk(ℓ)χk(E,G(k))= 0,

where G(k) ∈D denotes the pushforward of G ∈Dℓ.
By induction, it suffices to prove the claim for ℓ= k(x). Let R= k[x]. In that case,

we can lift G ∈Dk(x) to an object G̃ ∈DR. Then base change implies

χℓ(Eℓ,G)= rkHomR(ER, G̃)= χk(E, i∗0G̃)= 0

where i0 is the inclusion of the fiber over 0 ∈ A1
k . ✷

Dualizing induces a pushforward map

η∨ℓ/k : Knum(Dℓ) →֒Hom(Knum(Dℓ,perf),Z)→Hom(Knum(Dperf),Z)

→ Knum(D)⊗Q.(12.2)

Proposition and Definition 12.15. — The image Knum(D)ℓ := Imη∨ℓ/k contains Knum(D)

as a subgroup of finite index; conversely, it is contained in Knum(D)k .

Proof. — Since ηℓ/k preserves the Euler characteristic pairing, it follows that
η∨ℓ/k([Fℓ]) = [F] for F ∈ D, and so Knum(D)ℓ contains Knum(D). That it is a finite in-
dex subgroup immediately follows from the definitions and Lemma 12.7. For the second
claim, it is sufficient to show that if k is algebraically closed, and ℓ/k is finitely generated,
then Imη∨ℓ/k is contained in Knum(D). Let R/k be a finitely generated ring with fraction
field ℓ; then the same argument as in the end of the proof of Lemma 12.14, with 0 ∈ A1

k

replaced by any k-rational point of Spec R, proves this containment. ✷
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If Z is the central charge of a numerical stability condition on D, we write Zℓ for
the composition of Z ◦ η∨ℓ/k . Concretely, if Z( )=

∑
i ziχ(Fi, ) is a central charge as in

Remark 12.9, then

Zℓ( )=
∑

i

ziχ((Fi)ℓ, ).

Now fix a Mukai homomorphism v : Knum(D)→� as in Definition 12.2. We let

�ℓ ⊂�⊗Q

be the subgroup generated by � and the image of v extended to Knum(D)ℓ; again, it
contains � as a subgroup of finite index. We write

vℓ : Knum(Dℓ)→�ℓ

for the induced map. If Z factors via a group homomorphism Knum(D)→ �, then Zℓ

factors via the composition Knum(Dℓ)→Knum(D)ℓ →�ℓ:

K(Dℓ)

Zℓ

vℓ

K(D)
( )ℓ

Z

v

Knum(Dℓ)
η∨ℓ/k

Knum(D)ℓ �ℓ C

For an object E ∈D we have the equality

v[E] = vℓ[Eℓ] ∈�, and so Zℓ(Eℓ)= Z(E);

on the other hand, if k ⊂ ℓ is finite, F ∈Dℓ, and F(k) ∈D denotes its pushforward, then

v[F(k)] = dimk(ℓ) · vℓ[F].

Remark 12.16. — As �⊗Q=�ℓ ⊗Q, the difference between the two lattices is
irrelevant when considering central charges. However, we will also use � to keep track of
classes of semistable objects; then the integral structure will become relevant.

Base change for central charges as above, combined with base change for t-
structures as in Proposition 5.9, induces base change for stability conditions for arbitrary
field extensions:

Theorem 12.17. — Let σ := (A,Z) be a numerical stability condition with respect to � on
the strong semiorthogonal component D ⊂Db(X), where X is a variety defined over a field k. Let k ⊂ ℓ

be a (not necessarily finitely generated) field extension. Then:



232 A. BAYER, M. LAHOZ, E. MACRÌ, H. NUER, A. PERRY, P. STELLARI

(1) The pair σℓ := (Aℓ,Zℓ) defines a numerical stability condition on Dℓ.
(2) If there exists a σℓ-semistable object in Dℓ of class v ∈�, then there exists a σ -semistable

object in D of class n · v for some n ∈ Z>0. (In particular, σℓ satisfies the support property
with respect to the same quadratic form as σ .)

(3) An object E ∈D is σ -semistable if and only if the pullback Eℓ ∈Dℓ is σℓ-semistable.
(4) Let E be an object in D. If k ⊂ k and ℓ ⊂ ℓ denote the algebraic closures, then Ek is

σk-stable if and only if Eℓ is σℓ-stable.

The resulting map Stab(D)→ Stab(Dℓ) is a homeomorphism onto a union of
connected components of Stab(Dℓ); however, we omit the proof of this fact. Similar re-
sults were proved in a slightly different setup for finite separable or Galois field extensions
in [Sos12].

Proof. — We start with some general observations. For φ ∈ R, we consider the
corresponding heart Aφ :=P(φ − 1, φ] ⊂D (with A=A1). By base change via Propo-
sition 5.9 (which applies by Lemma 12.12), this induces a heart Aφ

ℓ ⊂Dℓ (with Aℓ =A1
ℓ ).

We use these hearts to define

(12.3) Pℓ(φ) :=
⋂

φ′−1<φ�φ′

A
φ′

ℓ .

To prove that Pℓ is a slicing, we only need to establish existence of HN filtrations, as the
first two properties in Definition 12.1 are evident.

It follows from the corresponding statement in Proposition 5.9 that pullback
f ∗ : D→Dℓ sends P(φ) to Pℓ(φ); in particular, statement (3) will be automatic.

Step 1. Claims (1) and (2) hold for finite field extensions k ⊂ ℓ.

In this case, the hearts Aφ

ℓ are already constructed in Theorem 5.7, and by Theo-
rem 5.7.(c) the pushforward f∗ : Dℓ →D satisfies

(12.4) f∗
(
A

φ

ℓ

)
⊂Aφ and therefore f∗ (Pℓ(φ)) ∈

⋂

φ′−1<φ�φ′

Aφ′ =P(φ).

Since Zℓ(E)= dimk(ℓ) ·Z(f∗E) this immediately implies the compatibility of Zℓ both with
Aℓ, and with Pℓ. It also implies part (2), with n= dimk(ℓ).

It remains to prove the existence of HN filtrations for E ∈Aℓ. For each 0 < φ � 1,
it follows from [Pol07, Lemma 1.1.2] that Aφ

ℓ is obtained by tilting Aℓ at a torsion pair(
T

>φ

ℓ ,F
�φ

ℓ

)
, analogous to the torsion pair

(
T >φ,F�φ

)
in A. These torsion pairs induce

an a priori infinite filtration

(12.5) 0=T>1
ℓ ⊂ · · · ⊂T>φ

ℓ ⊂ · · · ⊂T>0
ℓ = E
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of E in Aℓ. Since

f∗T
>φ

ℓ = f∗
(
Aℓ ∩A

φ

ℓ

)
⊂ T >φ and f∗F

�φ

ℓ ⊂F�φ,

the pushforward of this filtration is induced by the HN filtration of f∗E ∈ A, and thus
finite; since f∗ is conservative, the original filtration in Aℓ also has to be finite. The filtra-
tion quotients have to lie in Pℓ(φ)=F

�φ

ℓ ∩
⋂

φ′<φ T
>φ′

ℓ for appropriate φ, and thus this
is the desired HN filtration.

Step 2. Claims (1) and (2) hold for ℓ= k(x) and Z defined over Q[i].

Let R = k[x]; we write DR and AR,A
φ

R for the triangulated category and hearts
obtained from D and A via Theorem 3.17 and Theorem 5.7, respectively. Any object in
Aℓ is of the form Eℓ for some E ∈AR (see Lemma 3.18). By Lemma 12.12 and Theo-
rem 5.7.(2), AR is noetherian; by Remark 6.16 we may assume that E is R-torsion free,
and thus R-flat by Lemma 6.12. It follows that Ep ∈Ap for all closed points p ∈ Spec R;
since [ip∗Ep] and [Eℓ] define the same class in � (via DR →Dℓ and vℓ), this shows that
Zℓ is compatible with Aℓ. Applying the same argument to Aφ instead of A, we obtain by
the compatibility of Zℓ with all Aφ

ℓ , and thus with Pℓ.
Now consider again the filtration in (12.5). Since Zℓ is compatible with Aℓ and

A
φ

ℓ , and since for all 0 < φ′ < φ < 1, T>φ′

ℓ /T>φ

ℓ ∈ F
�φ

ℓ , we have ℑZℓ(T
>φ′

ℓ /T>φ

ℓ ) > 0
whenever T>φ′

ℓ /T>φ

ℓ �= 0. Since ℑZℓ is discrete, the filtration has to be finite.
Finally, if Eℓ ∈Pℓ(φ), we may choose a representative E ∈A

φ

R that is R-torsion free
as an object in A

φ

R. Then Ep ∈Aφ satisfies Z(Ep) ∈R>0 · eiπφ , and thus it is σ -semistable.
The equality vℓ[Eℓ] = vℓ[ip∗Ep] in � proves claim (2).

Step 3. Claims (1) and (2) hold when Z is defined over Q[i], and ℓ arbitrary.

By Steps 1 and 2, the claim holds when ℓ is finitely generated over k; the general
case follows with the same type of arguments as those used in Proposition 5.9. To prove
the existence of HN filtrations for E ∈Dℓ, we may assume by Proposition 5.9.(3) that E is
obtained by base change from Ek′ for some finitely generated k ⊂ k′ ⊂ ℓ; by construction
of Pℓ(φ) and Pk′(φ), the pullback of the HN filtration in Dk′ induces one in Dℓ. The
compatibility of the central charge Zℓ with Pℓ, and claim (2) of the Theorem follow
similarly from their analogues for Dk′ .

Step 4. Claims (1) and (2) hold in full generality.

Consider a stability condition σ = (Z,P) on D that satisfies the support prop-
erty with respect to a given quadratic form Q. By Theorem 12.11, for any ǫ > 0 there
exists a neighborhood Z ∈ U ⊂ Hom(�,C), depending only on Q, such that U em-
beds into Stab(D) with image containing σ , and such that any two stability conditions
σ1 = (Z1,P1) and σ2 = (Z2,P2) in the image satisfy d(P1,P2) < ǫ. Let UQ ⊂U be the
dense set of central charges defined over Q[i]. For any Z′ ∈ UQ and the corresponding
stability condition σ ′ = (Z′,P ′) on D, we have an induced a stability condition σ ′ℓ on Dℓ

via base change by the previous step.
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We first claim that the resulting map UQ → Stab(Dℓ) is continuous. Indeed, given
two stability conditions σ ′ = (Z′,P ′) and σ ′′ = (Z′′,P ′′) with central charges in UQ, and
with d(P ′,P ′′) < ǫ, we recall from Proposition/Definition 12.10 that this is equivalent to
P ′(� φ)⊂P ′′(� φ+ ǫ) and P ′(> φ)⊂P ′′(> φ− ǫ). Since the construction of the base
change t-structure evidently preserves inclusions, this implies P ′

ℓ(� φ) ⊂ P ′′
ℓ (� φ + ǫ)

and P ′
ℓ(> φ)⊂P ′′

ℓ (> φ − ǫ), and thus d(P ′
ℓ,P

′′
ℓ ) < ǫ.

Since the stability conditions in the image of UQ satisfy the support property with
respect to Q, we can use Theorem 12.11 to extend this map to U→ Stab(Dℓ). It remains
to show that for σ ∈U \UQ, the stability condition σℓ = (Zℓ,Pℓ) obtained via this map
satisfies the description in the Theorem; as observed above, it is enough to show that
Pℓ = Pℓ, where the latter is defined by equation (12.3). Let σ ′ = (Z′,P ′) be a stability
condition with Z′ ∈UQ and d(P,P ′) < ǫ. Then

Pℓ(� φ)⊂P ′
ℓ(� φ + ǫ)⊂Pℓ(� φ + 2ǫ)

for all φ ∈R by the same argument as above; since this holds for all ǫ > 0, and since Pℓ is
a slicing, this shows Pℓ(� φ)⊂Pℓ(� φ). The dual argument shows Pℓ(> φ)⊂Pℓ(> φ).

Since both (Pℓ(> φ),Pℓ(� φ)) and
(
Pℓ(> φ),Pℓ(� φ)

)
define t-structures, this gives

Pℓ =Pℓ as desired.
Finally, to extend claim (2) from UQ to U, let σ ∈U\UQ, and let σ ′ ∈ Stab(Dℓ) be

its image. Then σ ′ is contained in a chamber C in the sense of Lemma 12.13.(2). Let E be
a σ ′-semistable object of class v. Then there is a dense set of stability conditions σ ′′ ∈ C in
the image of UQ; in particular E is also σ ′′-semistable, and the proof of (2) in the previous
cases gives an object F ∈Dk of class n · v that is semistable at the corresponding point of
UQ. Since the set where an object is semistable is closed, F is also semistable with respect
to σ , which proves the claim.

Step 5. Claim (4) holds.

First we observe that one direction is clear. Indeed, a non-trivial Jordan–Hölder
filtration of Ek would pullback to a non-trivial Jordan–Hölder filtration of Eℓ. For the
reverse direction, suppose that E ∈D is such that Ek is σk-stable (and hence Ek′ is σk′ for
any finite field extension k ⊂ k′. Then, following the same overall logic as in steps 1–4,
we need to show the following: if Z is defined over Q[i], and if k ⊂ k′ and k′(x)⊂ ℓ are
finite field extensions, then Eℓ is σℓ-stable. This is shown similarly to Step 2. Under the

assumptions, we can use the G̃L+2 (R)-action on σ to achieve that E ∈ Pk′(1) with Z still
defined over Q[i]; in particular, Ak′ is noetherian by Lemma 12.12. We first choose a
smooth curve C defined over k′ with fraction field ℓ and infinitely many closed points.
If Eℓ is strictly σℓ-semistable, we use Lemma 4.16.(3) to lift its Jordan–Hölder filtration
to a filtration of EC in AC. Let U ⊂ C be the open subset where every factor of this
filtration is torsion free (which exists as Ak′ is noetherian, so that AC is noetherian by
Theorem 5.7.(2), and thus has a C-torsion theory by Remark 6.16). Then this induces a
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non-trivial filtration of Ec ∈ Ac for every c ∈ U; since ℑZc(Ec) = 0, the same is true for
each filtration factor. Thus this is in fact a non-trivial filtration in Pc(1). Since k(c)/k is
a finite field extension, pullback via an embedding k(c) →֒ k contradicts the stability of
Ek . ✷

We note that the property of being σ -stable is not necessarily preserved by pullback,
e.g. for a stable object whose endorphism ring is given by a field extension of k. Conse-
quently, while base change preserves HN filtrations, it does not preserve Jordan–Hölder
filtrations. Therefore, we make the following definition:

Definition 12.18. — In the setting of Theorem 12.17, we say that an object E is geometri-
cally σ -stable if it is stable after base change to the algebraic closure k of k.

By Theorem 12.17.(4), this property is preserved by field extensions.

13. Harder–Narasimhan structures over a curve

The aim of this section is to introduce a notion of Harder–Narasimhan (HN) struc-
tures over a one-dimensional base. It will include stability conditions on the fibers of D,
but additionally provide HN filtrations for every object E ∈D; this strengthens the clas-
sical notion of relative HN filtrations. As in the case of stability conditions, we will often
need the auxiliary notion of weak Harder–Narasimhan structure, which will be done in Sec-
tion 15. In this section, we omit any proofs, as they are essentially the same as for the
case of weak HN structures; instead, we introduce the definitions and state their basic
properties along with some discussion.

13.1. Definitions. — We work in Setup III.1. We remind the reader of the notation
K, p ∈ C, W ⊂ C, DK, Dp, and DW introduced in Section 2. Given a heart AC ⊂D of
a bounded t-structure local over C, we similarly write AK, Ap, and AW for the corre-
sponding hearts, given by Theorem 5.6 and Corollary 5.8, respectively. We also refer to
Section 6.2 for the categories of C-torsion objects DC-tor ⊂D and AC-tor =A∩DC-tor. We
also introduced there the notion of C-torsion free objects AC-tf ⊂ A, which are objects
with no C-torsion subobjects.

The following gives a notion of central charge that is “constant in families”.

Definition 13.1. — A central charge on D over C is a pair (ZK,ZC-tor) where

ZK : K(DK)→C and ZC-tor : K(DC-tor)→C

are group homomorphisms with the following property: for all E ∈D, and all proper closed subschemes
W⊂C, we have

(13.1) ZK(EK)=
1

length W
ZC-tor

(
iW∗EW

)
.
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Since D→DK is essentially surjective, ZK is determined by ZC-tor, and thus (13.1)
becomes a consistency condition for ZC-tor: the right-hand-side should be independent of
W. We think of this as requiring that ZC-tor is constant in families of objects over C.

Example 13.2. — Equation (13.1) is satisfied whenever ZC-tor can be written as a
linear combination of functions of the form χF, for F ∈Dperf(X ), defined by

χF(E) := lengthOC
g∗ (E⊗ F)=

∑

i∈Z

(−1)i lengthOC
Hi

(
g∗(E⊗ F)

)
.

Note that this sum is well-defined: for E ∈DC-tor, each cohomology sheaf of g∗(E⊗F) is a
sheaf with zero-dimensional support. Moreover, since E is bounded, F is perfect, and g is
projective, we have g∗(E⊗F) ∈Db(C). Then, the right-hand-side in (13.1) is independent
of W: indeed, by base change it is equal to the rank of the complex g∗(E⊗ F) over C.

Definition 13.3. — A Harder–Narasimhan structure on D over C consists of a triple
σC = (ZK,ZC-tor,P) where

• P is a slicing of D, and
• (ZK,ZC-tor) is a central charge on D over C,

satisfying the following two properties:
(1) (C-linearity) The slicing P is local over C, i.e., for every open U ⊂ C there exists a

slicing PU of DU such that the pullback sends P(φ) to PU(φ).
(2) (Compatibility) For all φ ∈R and all 0 �= E ∈P(φ), we have either

EK �= 0 and ZK(EK) ∈R>0 · eiπφ, or

E ∈DC-tor and ZC-tor(E) ∈R>0 · eiπφ.

The nonzero objects of P(φ) are said to be σC-semistable of phase φ, and the simple objects of
P(φ) are said to be σC-stable.

Remark 13.4. — Just as in Theorem 4.13 for the case of t-structures, P is local over
C if and only if P(φ) is invariant under tensoring with g∗L for all φ and all line bundles
L on C.

Before giving a concrete example of a HN structure over C, we show how to
construct one from an appropriate t-structure; in other words, we prove an analogue
of [Bri07, Proposition 5.3] (see also Lemma 12.6).

Definition 13.5. — Let AC ⊂ D be the heart of a bounded C-local t-structure. A stability
function on AC over C is a central charge (ZK,ZC-tor) on D over C such that ZK is a stability
function on AK, and ZC-tor is a stability function on AC-tor.
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Example 13.6. — Let X → C be a family of curves, and let OX (1) be a relative
polarization. For E ∈ (CohX )C-tor, let p1(E) and p0(E) be the coefficients of the linear and
constant terms, respectively, of the Hilbert polynomial of E, defined as in Example 13.2
via the length of g∗E(m) as OC-modules. Then

ZC-tor(E) := ip1(E)− p0(E)

defines a stability function on CohX over C.

Definition 13.7. — Given a stability function on AC over C, we define the following central
charge for objects E ∈AC:

ZC(E) :=

{
ZK(EK) if ZK(EK) �= 0,

ZC-tor(E) otherwise.

We then assign to E �= 0 the slope μC(E) ∈R∪ {+∞} by

μC(E) :=

{
+∞ if ℑZC(E)= 0,

−ℜZC(E)

ℑZC(E)
otherwise.

Often we will use the phase φ(E) := 1
π

arg ZC(E) ∈ (0,1] instead of the slope μC(E).

This slope function satisfies the weak see-saw property (see Lemma 15.5). We can
easily construct examples where the strong see-saw property is not satisfied.

Example 13.8. — Let E ∈ AC with EK �= 0 and p ∈ C. Assume that there exists
a quotient ip∗Ep ։ Q ∈ AC-tor such that μC(ip∗Ep) �= μC(Q). Then the surjective map
f : E ։ Q satisfies μC(ker f )= μC(E) �= μC(Q).

Definition 13.9. — An object E ∈ AC is called ZC-semistable if for all proper subobjects
0 �= A →֒ E, we have φ(A) � φ(E/A) (or equivalently, μC(A) � μC(E/A)).

Definition 13.10. — We say that a stability function (ZK,ZC-tor) on AC over C satisfies
the HN property if every object E ∈AC admits a Harder–Narasimhan (HN) filtration: a sequence

0= E0 →֒ E1 →֒ E2 →֒ . . . →֒ Em = E

such that Ei/Ei−1 is ZC-semistable for i = 1, . . . ,m, with

φ(E1/E0) > φ(E2/E1) > · · ·> φ(Em/Em−1).

The objects Ei/Ei−1 are called the HN factors of E.
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Since ip∗ : Ap → AC is exact, fully faithful, and since the image is closed under
subobjects and quotients by Corollary 6.10, ZC-tor automatically induces a compatible
notion of semistability on Ap, and if (ZK,ZC-tor) satisfies the HN property in AC, then so
does Zp := ZC-tor ◦ ip∗ on Ap. Combined with Lemma 12.6, this yields:

Lemma 13.11. — A HN structure σC on D over C induces a pre-stability condition
σp = (Ap,Zp) on Dp for every p ∈C.

By definition, a HN structure also gives a pre-stability condition σK = (AK,ZK)

on DK; therefore, a HN structure σC induces a pre-stability condition σc on Dc for every
point c ∈C.

The usual notion of relative slope-stability for a family of torsion free sheaves asks
that the generic fiber is slope-stable; in contrast, ZC-stability requires stability for all fibers
(see also Remark 15.8):

Lemma 13.12. — Let E ∈ AC be a C-torsion free object. Then E is ZC-semistable if and
only if EK is ZK-semistable and Ep ∈Ap is Zp-semistable for all closed points p ∈C.

Proof. — See Lemma 15.7. ✷

Example 13.13. — Consider slope-stability on a family of curves g : X → C as
in Example 13.6. Let x ∈ X be a closed point, p := g(x) and let F ⊂ X be the fiber
containing x. By Lemma 13.12 the ideal sheaf Ix is not semistable: indeed, the sheaf
ip∗(Ix)p = OF(−x) ⊕ Ox is not semistable. The HN filtration of Ix is given by IF →֒ Ix,
since IF is semistable by Lemma 13.12, and the quotient Ix/IF = OF(−x) is the push-
forward of a semistable sheaf from the fiber and therefore easily shown to be semistable
with respect to ZC-tor in AC-tor.

Note that IF →֒ Ix is also the simplest possible example of a semistable reduction of
a flat family of sheaves; in particular, the notion of HN filtrations with respect to μC will
require semistable reduction as a necessary ingredient, see Proposition 13.16.

Proposition 13.14. — To give a HN structure on D over C is equivalent to giving a heart
AC ⊂D of a bounded C-local t-structure, together with a stability function (ZK,ZC-tor) on AC over
C satisfying the HN property.

Proof. — See the proof of Proposition 15.9.
We only stress that for E ∈ AC, either all of its HN factors Ei with respect to P

are in DC-tor, in which case E ∈DC-tor and ZC-tor(E)=
∑

i ZC-tor(Ei) is in the semiclosed
upper half plane H⊔R<0; or, otherwise, some of its HN factors have ZK(Ei) �= 0, and we
have ZK(EK) ∈H ⊔R<0. Thus, (ZK,ZC-tor) is a stability function on AC over C. ✷
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Remark 13.15. — Let G̃L+2 (R) be the universal cover of the group GL+2 (R) of
real 2 × 2-matrices with positive determinant. From Definition 13.3, it is evident that

G̃L+2 (R) acts on the set of pre-stability conditions on D over C in the same manner as it
acts on the set of stability conditions on a triangulated category. Indeed, let R→ S1 be

the universal cover given by φ �→ eiπφ ; then G̃L+2 (R) can be described as the set of pairs
(G, g) where G ∈GL+2 (R), and g : R→R is a choice of a lift of the induced action of G
on S1. Then

(G, g)(ZK,ZC-tor,P)= (g∗P,G ◦ ZK,G ◦ ZC-tor)

where g∗P(φ)=P(g−1φ).

13.2. Existence of HN filtrations. — Finally, we discuss the existence of HN filtrations.

Proposition 13.16. — Let (ZK,ZC-tor) be a stability function on AC over C. If (ZK,ZC-tor)

satisfies the HN property, then all of the following three conditions are satisfied:
(1) The pair (AK,ZK) satisfies the HN property.
(2) The pair (AC-tor,ZC-tor) satisfies the HN property.
(3) ( Semistable reduction) For any C-torsion free object E ∈AC-tf such that EK ∈AK is

ZK-semistable, there is a ZC-semistable subobject F⊂ E with E/F ∈AC-tor.
Moreover, if AC has a C-torsion theory (AC-tor,AC-tf), then the converse also holds true.

We show the necessity of the three conditions in the following remark, and refer to
Proposition 15.10 for the proof of the converse.

Remark 13.17. — We first comment on the conditions given in Proposition 13.16.
(1) If E ∈AC is ZC-semistable, then by Lemma 13.12 the object EK ∈AK is ZK-

semistable. Moreover, given a HN filtration 0 = E0 →֒ E1 →֒ · · · →֒ Em = E,
then for any i < j we have μK ((Ei/Ei−1)K) > μK

(
(Ej/Ej−1)K

)
if both quotients

are non-zero. Hence, the HN filtration of E in AC induces a HN filtration of
EK ∈ AK, i.e., condition (1) is necessary. On the other hand, given the HN
filtration of EK ∈AK, we can attempt to construct a HN filtration of E ∈AC as
a refinement of a lift of the HN filtration of EK to AC.

(2) Since AC-tor, as a subcategory of AC, is closed under subobjects and quotients,
the inclusion AC-tor ⊂ AC identifies ZC-tor-semistable objects with objects in
AC-tor that are ZC-semistable as objects in AC. In particular, condition (2) is
clearly necessary.

(3) Consider the first step of the HN filtration of such an E. It has to be a ZC-
semistable subobject F⊂ E with μC(F)= μC(E).

Also recall that when AC is noetherian, then the assumption that (AC-tor,AC-tf) is
a torsion pair is automatic, see Remark 6.16. However, it is easy to construct examples
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of hearts local over C that do not satisfy this assumption: for example, consider the heart
BC obtained by tilting at the torsion pair (AC-tor,AC-tf).

14. Weak stability conditions, tilting, and base change

In order to construct stability conditions on surfaces or higher-dimensional vari-
eties, one may use the auxiliary notion of weak stability conditions.3 The procedure will be
analogous for Harder–Narasimhan structures over a curve. In this section, we recall the
definition of weak stability conditions following [BMS16, PT19]. Then we study ana-
logues of operations on stability conditions that become more subtle for weak stability
conditions, namely tilting (Section 14.2) and base change (Section 14.3).

14.1. Definitions. — We begin by recalling the definition of weak stability condi-
tions by following [BMS16, PT19], and review some of the analogues of basic properties
of stability conditions that become more subtle for weak stability conditions.

Definition 14.1. — Let D a triangulated category. A weak pre-stability condition on D

is a pair σ = (Z,P) where P is a slicing of D, and Z : K(D)→C is a group homomorphism, that
satisfy the following condition:

For all 0 �= E ∈P(φ), we have Z(E) ∈

{
R>0 · eiπφ if φ /∈ Z

R�0 · eiπφ if φ ∈ Z.

As in Definition 12.2, we say that σ is a weak pre-stability condition on D with respect to
�, if Z factors through a group homomorphism v :K(D)→�.

Definition 14.2. — A weak stability function Z on an abelian category A is a mor-
phism of abelian groups Z : K(A)→C such that for all 0 �= E ∈A, the complex number Z(E) is in
H ⊔R�0 := {z ∈C ℑz > 0, or ℑz= 0 and ℜz � 0}.

The function Z allows one to define a slope for any 0 �= E ∈A by setting

μZ(E) :=

{
−ℜZ(E)

ℑZ(E)
if ℑZ(E) > 0

+∞ otherwise

and a notion of stability: An object 0 �= E ∈A is Z-semistable if for every proper subobject F, we have
μZ(F)� μZ(E/F).

Definition 14.3. — Given a weak stability function Z on an abelian category A, we define
A0 ⊂A as the subcategory of objects E ∈A with Z(E)= 0.

3 In [BMS16, PT19], this notion is called a very weak stability condition.
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HN filtrations and the HN property for weak stability functions are defined exactly
as in Definition 12.5.

Lemma 14.4 ([PT19, Section 2.1]). — To give a weak pre-stability condition on D is equiv-
alent to giving a heart A⊂D of a bounded t-structure, and a weak stability function Z on A satisfying
the HN property.

Example 14.5. — Let X be a polarized variety over a field, and let pn, pn−1 be the
leading coefficients of the Hilbert polynomial. Then (ipn − pn−1,Coh X) defines a weak
stability condition, and (Coh X)0 is the category of sheaves supported in codimension at
least two.

The analogue of Lemma 12.12 is more involved.

Definition 14.6. — Let B ⊂A be an abelian subcategory of an abelian category A. We say
that B is a noetherian torsion subcategory of A if B is a noetherian abelian category, and if there
exists a torsion pair (B,B⊥) in A.

Remark 14.7. — An extension-closed abelian subcategory B ⊂A is a noetherian
torsion subcategory if and only if for every object E ∈ A any increasing sequence of
subobjects B1 ⊂ B2 ⊂ · · · ⊂ E with Bi ∈ B terminates.

Lemma 14.8 ([PT19, Lemma 2.17]). — Let (A,Z) be a weak pre-stability condition, such
that A0 ⊂A is a noetherian torsion subcategory, and Z is defined over Q[i]. Then A is noetherian.

Proof. — Assume otherwise, and consider a sequence of non-trivial surjections
E1 ։ E2 ։ · · · . Then ℑZ(Ei) is discrete monotone decreasing non-negative function;
hence we may assume it to be constant.

Let Mi →֒ Ei be the maximal subobject with ℑZ(Mi) = 0, which exists by the
existence of HN filtrations. If Ci is the kernel of Ei ։ Ei+1, then ℑZ(Ci)= 0, and so we
have Ci ⊂Mi . Similarly, it follows that the composition Mi →֒ Ei ։ Ei+1 factors via a
surjection Mi ։ Mi+1 with kernel Ci . Hence we get a sequence of non-trivial surjections
M1 ։ M2 ։ · · · .

Arguing again by discreteness of the central charge, we may assume that Z(Mi)

is constant. Then the kernels Di of the composition M1 ։ Mi form a strictly increasing
sequence of subobjects of M1 in A0. Since A0 is assumed to be a noetherian torsion
subcategory, this is a contradiction to Remark 14.7. ✷

Finally, we define the support property for weak pre-stability conditions exactly as
in Definition 12.2, and call σ a weak stability condition if it satisfies the support property
with respect to some v,� and Q.
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Remark 14.9. — If σ is a weak stability condition, then v(A0)= 0. Indeed, every
E ∈A0 is automatically semistable, and thus v(E) is a vector in Ker Z with Q(v(E))� 0.

Remark 14.10. — If σ = (Z,P) is a weak stability condition, and E is semistable
of phase φ ∈R \Z, then E admits a Jordan–Hölder filtration.

Lemma 14.11. — Assume that σ = (A,Z) is a weak stability condition, such that A0 is
a noetherian torsion subcategory. Let μ ∈ R ∪ {+∞}, and let E1 →֒ E2 →֒ E3 →֒ · · · ⊂ E be an
increasing sequence of subobjects of a fixed object with μ(Ei) � μ for all i. Then this sequence terminates.

Proof. — We have μ+(Ei) � μ+(E) and μ(Ei) � μ. From this one can deduce
that the central charges of all HN factors of all Ei are contained in a compact region. If
μ+(E) <+∞ (and thus μ <+∞), this region is the parallelogram with two horizontal
edges and two edges corresponding to slope μ+(E), and with opposite vertices given by
0 and the complex number z determined by ℑz = ℑZ(E) and μ(z) = μ. In the case
μ+(E) = +∞ let F ⊂ E be the first step of the HN filtration; then we can replace 0 by
Z(F) ∈R>0 and μ+(E) by μ+(E/F) in the previous construction of the parallelogram.

It follows by Remark 12.3 that there are only finitely many classes a1, . . . , am ∈�

that can occur as the classes of HN factors of Ei . Since Z(Ei) is contained in the compact
region described in the previous paragraph, and since every Z(Ei) is an integral non-
negative linear combination of the same finite set of complex numbers Z(ak) ∈H ⊔R<0,
k = 1, . . . ,m, this leaves only finitely possibilities for Z(Ei). Therefore, Z(Ei) has to be-
come constant for i � i0. But then Ei/Ei0 is a subobject of E/Ei0 ∈A0 for all i � i0, and
thus the sequence terminates by the assumption that A0 is noetherian. ✷

14.2. Tilting weak stability conditions. — Due to the special role played by objects
with central charge zero, there is in general no analogue for weak stability conditions of

the G̃L+2 (R)-action on stability conditions explained in Remark 13.15. In this subsection,
we explore conditions under which a weak stability condition (A,Z) can nevertheless be
tilted.

Given β ∈R, we can define a pair (T β,Fβ) of subcategories of A given by

(14.1)
T β := 〈E ∈A μ-semistable with μ(E) > β〉 =

{
E : μ−(E) > β

}
,

Fβ := 〈E ∈A μ-semistable with μ(E)� β〉 =
{
E : μ+(E)≤ β

}
.

Existence of HN filtrations combined with the weak see-saw property ensure that
(T β,Fβ) is a torsion pair (see Definition 4.6); we write A♯β = 〈Fβ[1],T β〉 for the corre-
sponding tilted heart.

By [BLMS17, Lemma 2.16] and the proof of [BLMS17, Proposition 2.15], the
following property guarantees that a weak stability condition can be tilted, see Proposi-
tion 14.16 below; we will sketch a proof for completeness.
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Definition 14.12. — A weak stability condition σ = (A,Z) has the tilting property if
(1) A0 ⊂A is a noetherian torsion subcategory, and
(2) for every F ∈ A with μ+(F) < +∞, there exists a short exact sequence F →֒ F̃ ։ F0

with F0 ∈A0 and Hom(A0, F̃[1])= 0.

Example 14.13. — Slope stability of sheaves as in Example 14.5 has the tilting
property, with F →֒ F̃ given by the embedding of a torsion free sheaf into its double dual.

Remark 14.14. — The tilting property implies that for F as in part (2) of Defini-
tion 14.12, any sequence of inclusions F= F0 →֒ F1 →֒ F2 . . . with Fi/F ∈A0 terminates:
since Ext1(Fi/F, F̃)= 0, the inclusion F →֒ F̃ factors via Fi , and thus Fi/F is an increasing
sequence of subobjects of F̃/F ∈A0.

Remark 14.15. — We will see in the proof of Proposition 14.16 that part (2) is
equivalent to the condition that A0 is a torsion subcategory of the heart obtained by
tilting A at the torsion pair (T β,Fβ), for every β ∈R.

Proposition 14.16. — Let σ = (A,Z) be a weak stability condition with the tilting property.

Then σ β :=
(
A♯β, Z

i−β

)
is again a weak stability condition, and (A♯β)0 ⊂ A♯β is a noetherian

torsion subcategory.

We first notice that Z♯β := Z
i−β

is a weak stability function on A♯β . Semistable
objects can then be easily classified: we omit the proof (see, for example, [PT19,
Lemma 2.19]).

Lemma 14.17. — Let E ∈A♯β with E /∈ (A♯β)0. Then E is Z♯β-semistable if and only if
(1) either ℑZ(E)� 0 and E ∈A is a Z-semistable object with Hom(A0,E)= 0,
(2) or ℑZ(E) < 0 and E is an extension

U[1]→ E→V

where U ∈A is a Z-semistable object and V ∈A0; moreover, if either ℑZ♯β(E) > 0 or E
is Z♯β-stable, then Hom(V′,E)= 0, for all V′ ∈A0.

Proof of Proposition 14.16. We only need to check that (A♯β)0 is a noetherian torsion
subcategory: then, using Lemma 14.17, one can use the HN filtration of H0

A(E) and
modify the HN filtration of H−1

A (E) via subobjects and quotients in (A♯β)0 to construct
the HN filtration of E ∈A♯β . Moreover, the Lemma, combined with Remark 14.9, also
shows that the set of classes of semistable objects in � is unchanged, so that σ β satisfies
the support property. (We will spell out a similar argument in more detail in the proof of
Proposition 19.5.)
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By construction, (A♯β)0 = A0; in particular, it is noetherian by assumption. We
need to show it is a torsion subcategory. Let F ∈A♯β . We can write it as an extension

0→M[1]→ F→N→ 0

in A♯β with M ∈ Fβ and N ∈ T β . By assumption, there exists a short exact sequence in
A♯β

0→M0 →M[1]→ M̃[1]→ 0

with M0 ∈A0 and Hom((A♯β)0,M̃[1])= 0.
By replacing F with F/M0, we can assume M = M̃. Hence, any injective mor-

phisms F0 →֒ F in A♯β , with F0 ∈ (A♯β)0, induces an injective morphism F0 →֒N. Since
A0 ⊂A is a noetherian torsion subcategory, there is a maximal such subobject F0 →֒ F,
which proves what we wanted. ✷

Remark 14.18. — When Z is defined over Q[i] and β is also rational, then
Lemma 14.8 implies additionally that Aβ is noetherian.

14.3. Base change for weak stability conditions. — We now explain how to extend our
base change result, Theorem 12.17, to the case of weak stability conditions. Throughout
this subsection we assume that D ⊂ Db(X) is a strong semiorthogonal component of
the derived category of a variety defined over a field k, and let σ = (A,Z) be a weak
stability condition such that A0 ⊂A is a noetherian torsion subcategory, and such that Z
is defined over Q[i].

We first recall the construction of the slicing from the proof of Theorem 12.17.

Definition 14.19. — Consider a field extension k ⊂ ℓ. Let Aφ := P(φ − 1, φ], and write
A

φ

ℓ for the heart in Dℓ obtained from Aφ via base change as in Proposition 5.9. (Since A is noetherian
by Lemma 14.8, Aφ is tilted-noetherian.) We define

(14.2) Pℓ(φ) :=
⋂

φ′−1<φ�φ′

A
φ′

ℓ .

Proposition 14.20. — Let D ⊂ Db(X) be a strong semiorthogonal component of the derived
category of a variety defined over a field k, and let ℓ/k be a field extension. Let σ = (A,Z) be a weak
numerical stability condition on D and assume the following:

(1) A0 ⊂A is a noetherian torsion subcategory, and Z is defined over Q[i].
(2) Either ℓ/k is algebraic, or if C is an affine Dedekind scheme essentially of finite type over k,

and if E ∈DC satisfies EK(C) ∈ PK(C)(φ), then there exists an open subset U⊂ C such
that Ec ∈Pc(φ) for all c ∈U.

Then σℓ = (Aℓ,Zℓ) defines a weak stability condition on Dℓ, with slicing given by Pℓ as in Defini-
tion 14.19. The pullback Dk →Dℓ preserves the properties of being semistable, or geometrically stable,
respectively.
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We will later consider a variant of the openness condition in (2), see Definition 16.3.

Proof. — We follow the proof of Theorem 12.17. Note that by Lemma 14.8, as-
sumption (1) is equivalent to the condition that A is noetherian and Z is defined over
Q[i], and thus by Proposition 5.9(4), it is preserved by base change along finitely gener-
ated field extensions. Also by our definition of essentially of finite type for affine schemes
in Definition 11.16, assumption (2) is automatically preserved under finitely generated
field extensions.

Step 1 carries over without any change. Now consider Step 2, the case of ℓ= k(x),
and again set R= k[x]. Since A and thus AR is noetherian, any object Ek(x) ∈Ak(x) lifts
to an R-torsion free object ER ∈AR, see Remark 6.16. By Lemma 6.12, we have Ec ∈Ac

for all closed points c ∈ A1
k ; since Zk(x)(Ek(x))= Zc(Ec) this proves the compatibility of Zk(x)

with Ak(x).
Our next observation is that if E ∈ Pk(x)(1), then the same argument combined

with condition (2) shows Zk(x)(E)= 0. Conversely, if ER is a torsion free lift of an object
E ∈Ak(x) with ℑZk(x)(E)= 0, then Ec ∈ Pc(1) for all closed points c ∈ A1

k by Step 1, i.e.,
Ec ∈

⋂
0�φ<1 A

φ
c . By Lemma 6.13, this implies ER ∈

⋂
0�φ<1 A

φ

R; since DR → Dk(x) is

t-exact by Theorem 5.7.(b), this implies E ∈
⋂

0�φ<1 A
φ

k(x) =Pk(x)(1).
The existence of the HN filtration now follows exactly as in the proof of Theo-

rem 12.17, and the compatibility of Zk(x) with Pk(x) follows again from assumption (2);
this concludes Step 2.

Step 3 carries over without change. Finally, Step 5 is trivial when ℓ/k is algebraic,
and otherwise becomes easier under our assumption (2): given a Dedekind domain C, a
non-trivial Jordan–Hölder filtration over K(C) induces a non-trivial filtration in Pc(φ)

for the open subset where every Jordan–Hölder factor restricts to a semistable object in
Pc(φ). ✷

15. Weak Harder–Narasimhan structures over a curve

In this section, we introduce the notion of a weak Harder–Narasimhan structure over a
curve. From this section until the end of Part III, we work in Setup III.1.

15.1. Definitions. — The following is the weak version of Definition 13.3.

Definition 15.1. — A weak Harder–Narasimhan structure on D over C consists of a
triple σC = (ZK,ZC-tor,P), where

• P is a slicing of D, and
• (ZK,ZC-tor) is a family of central charges over C

satisfying the following properties:
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(1) (C-linearity) The slicing P is local over C.
(2) (Compatibility) For all φ ∈R and all 0 �= E ∈P(φ), we have either

EK �= 0 and ZK(EK) ∈

{
R>0 · eiπφ if φ /∈ Z

R�0 · eiπφ if φ ∈ Z
, or

E ∈DC-tor and ZC-tor(E) ∈

{
R>0 · eiπφ if φ /∈ Z

R�0 · eiπφ if φ ∈ Z.

We have to keep in mind that for E ∈AC, we no longer have EK = 0 if and only
if ZK(EK)= 0. There is also the following notion of a weak stability function on a local
heart; we will see in Proposition 15.9 that weak HN structures can be constructed via a
local heart with an appropriate weak stability function.

Definition 15.2. — Let AC ⊂ D be the heart of a bounded C-local t-structure. A weak
stability function for AC over C is a pair of central charges (ZK,ZC-tor) on D over C such that
ZK is a weak stability function on AK, and ZC-tor is a weak stability function on AC-tor.

Example 15.3. — Assume that g : X →C has relative dimension n, and let OX (1)

be a relative polarization. For E ∈AC-tor, let pn, pn−1 be the two leading coefficients of the
Hilbert polynomial of E, defined as in Example 13.6. Then

ZC-tor(E) := ipn(E)− pn−1(E)

defines a weak stability function for CohX over C.

Definition 15.4. — Given a weak stability function for AC over C, we define

ZC(E) :=

{
ZK(EK) if EK �= 0

ZC-tor(E) otherwise.

Then the slope μC(E) ∈R∪ {+∞} for E �= 0 is defined as before in Definition 13.7.

This slope function satisfies a weak version of the see-saw property:

Lemma 15.5. — Given a non-trivial short exact sequence A →֒ E ։ B in AC, we have

(15.1) μC(A)� μC(E)� μC(B) or μC(A)� μC(E)� μC(B).

If E ∈AC-tor and ZC(A) �= 0 �= ZC(B), we moreover have μC(A) < μC(B)⇔ μC(E) < μC(B).

Proof. — By Corollary 5.8.(2), pullback to Spec(K) is t-exact. Hence, if EK �= 0, the
weak seesaw property follows from the corresponding property on (AK,ZK). Similarly, if
EK = 0, then E ∈AC-tor, and the weak seesaw property follows from the corresponding
property on (AC-tor,ZC-tor). ✷
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The weak see-saw property still allows us to define ZC-semistability for objects in
AC exactly as in Definition 13.9. HN filtrations and the HN property for weak stability
functions for AC are defined as in Definition 13.10. As in Lemma 13.11, ZC-tor induces
a weak stability function on Ap for every p ∈ C, compatible with semistability and HN
filtrations, and thus:

Lemma 15.6. — A weak HN structure σC on D over C induces a weak pre-stability condition
σp on Dp for every closed point p ∈ C. The pushforward ip∗ preserves semistability, phases and HN
filtrations.

For a stability function on AC over C, ZC-semistability of a C-torsion free object
amounts to semistability of Ep on all fibers p, see Lemma 13.12. In the weak case, however,
we can only detect the existence of destabilizing quotients Ep ։ Q with μ(Ep) > μ(Q);
non-existence of such a quotient is not equivalent to Ep being Zp-semistable, in case Ep

has a subobject in A0
p .

Lemma 15.7. — Let E ∈ AC be a C-torsion free object. Then E is ZC-semistable if and
only if EK is ZK-semistable and iW∗EW ∈AC-tor does not have a destabilizing quotient for all zero-
dimensional subschemes W⊂C or, equivalently, if and only if EK is ZK-semistable and Ep ∈Ap does
not have a destabilizing quotient for all closed points p ∈C.

Let W ⊂ C be a zero-dimensional subscheme, and consider Lemma 6.9 for E
above: since E is torsion free, it shows that iW∗EW = E/IW · E ∈AC-tor.

Proof. — Assume first that E is ZC-semistable. If EK is not ZK-semistable, then we
can apply Lemma 4.16.(2) to a destabilizing subobject AK →֒ EK and lift it to a destabiliz-
ing subobject A →֒ E. We conclude that EK is ZK-semistable. Moreover, for any quotient
iW∗EW ։ Q, the composite map E ։ iW∗EW ։ Q gives μC(Q) � μC(E)= μC(iW∗EW).
Hence iW∗EW does not have a destabilizing quotient.

Conversely, suppose that we have a destabilizing sequence

0→ A→ E→ B→ 0,

with μC(A) > μC(B). Since E is C-torsion free, A is also C-torsion free. If BK �= 0, then
μK(AK)= μC(A) > μC(B)= μK(BK) shows that EK is not ZK-semistable. If B ∈AC-tor,
then let W⊂ C be such that B is supported on W. By Lemma 6.9, we have an isomor-
phism iW∗EW = E/IW · E since E is torsion free, and the surjection E ։ B factors via
E ։ iW∗EW = E/IW · E ։ B. Since μC(iW∗EW)= μC(E) > μC(B), this gives a destabiliz-
ing quotient of iW∗EW.

Finally, assume that Ep ∈Ap, and therefore, ip∗Ep ∈AC-tor does not have a desta-
bilizing quotient for any p ∈ C, but B ∈AC-tor is a destabilizing quotient of E in AC. We
may assume that the subscheme W supporting B contains a single closed point p ∈W; so
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we have IW = Im
p for some m > 0. Then B/Ip ·B is a quotient of ip∗Ep; by the see-saw prop-

erty and the assumptions, it follows that μC(Ip · B) < μC(E). However, Ip · B is naturally

a quotient of Ip ⊗ E/
(

Im−1
p · Ip ⊗ E

)
∼= E/Im−1

p E supported on a subscheme of smaller
length; proceeding by induction, we get a contradiction. ✷

Remark 15.8. — In the context of Lemma 15.7, assume further that AC has a
C-torsion theory. If iW∗EW ∈ AC-tor does not have a destabilizing quotient for all zero-
dimensional subschemes W⊂C, then EK is automatically ZK-semistable.

Otherwise, we can lift the destabilizing surjection EK ։ BK to a surjection E ։ B.
Let W⊂C be any non-trivial closed subset. Since i∗W is right t-exact, we have a sequence
of surjections

E ։ iW∗EW ։ iW∗H0
AW

(BW) ։ iW∗H0
AW

((BC-tf)W)= iW∗ ((BC-tf)W)

where the last equality follows from Lemma 6.12. The composition is destabilizing since
Z ((BC-tf)W)= ZK(BK).

We now state and prove the equivalent of Proposition 13.14.

Proposition 15.9. — To give a weak HN structure on D over C is equivalent to giving a heart
AC of a bounded C-local t-structure, together with a weak stability function (ZK,ZC-tor) on AC over
C satisfying the HN property.

Proof. — Suppose we are given a weak HN structure σC = (ZK,ZC-tor,P). Since
the slicing P is C-local, the same follows for the heart AC := P(0,1]. Moreover, for
E ∈AC, ZC-tor(E) and ZK(EK) are clearly in the semiclosed upper half plane H ⊔R�0;
thus, (ZK,ZC-tor) is a weak stability function on AC over C.

To show that (ZK,ZC-tor) satisfies the HN property, it suffices to show that E ∈P(φ)

is ZC-semistable; then the HN filtration with respect to P gives the HN filtration with
respect to (ZK,ZC-tor). So given E ∈ P(φ), we first show that E has no subobject with
μC(A) > μC(E) using the HN filtration of A with respect to P : indeed, if A1 is the first
step of that filtration, then A1 →֒ A →֒ E would be a chain of inclusions (in particular
non-zero), and thus φ(A1) � φ. This leads to a contradiction both when EK �= 0 and
when E ∈AC-tor. Then one can easily show that E has no quotients with μC(Q) < μC(E)

by an analogous argument; thus E is ZC-semistable, as required.
Conversely, for all φ ∈ (0,1] we define P(φ) to be the category of ZC-semistable

objects E ∈AC with ZC(E) ∈R>0 · eiπφ for φ �∈ Z and ZC(E) ∈R�0 · eiπφ for φ ∈ Z. One
verifies that P is a slicing with the exact same arguments as in the case of weak stability
conditions (or stability conditions as in [Bri07, Lemma 5.3]). ✷

15.2. Existence of HN filtrations. — Our main tool in proving that a given weak
stability function on AC over C satisfies the HN property is the following result.
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Proposition 15.10. — Let (ZK,ZC-tor) be a weak stability function on AC over C. If it
satisfies the HN property, then all of the following three conditions are satisfied:

(1) The pair (AK,ZK) satisfies the HN property.
(2) The pair (AC-tor,ZC-tor) satisfies the HN property.
(3) ( Semistable reduction) For any C-torsion free object E ∈AC-tf such that EK ∈AK is

ZK-semistable, there is a ZC-semistable subobject F⊂ E with E/F ∈AC-tor.
Moreover, if AC has a C-torsion theory (AC-tor,AC-tf), then the converse also holds true.

The explanations in Remark 13.17 show that these conditions are necessary. In
particular, (AK,ZK) and (AC-tor,ZC-tor) are weak pre-stability conditions on DK and
DC-tor, respectively. We start the proof of the converse with the following observation:

Lemma 15.11. — Let (ZK,ZC-tor) be a weak stability function on AC over C, such that AC

has a C-torsion theory (AC-tor,AC-tf) and condition (3) of Proposition 15.10 holds. Then the same
condition holds for all objects E, not necessarily C-torsion free, with EK ∈AK being ZK-semistable.

Proof. — Let F →֒ EC-tf be a semistable subobject as given by assumption (3). We
then apply Lemma 6.8 to the isomorphism (EC-tf)K

∼= EK and obtain an inclusion

F⊗ g∗L−k →֒ EC-tf ⊗ g∗L−k →֒ E. ✷

Let (ZK,ZC-tor) be a (weak) stability function on AC over C. We begin with more
definitions:

Definition 15.12. — We write

μ+C(E) := sup {μC(F) 0 �= F⊆ E} ,

μ−C(E) := inf
{
μC(Q) F ։ Q �= 0

}
.

Definition 15.13. — Assume E ∈AC is not ZC-semistable. A maximal destabilizing sub-
object (mds) of E ∈ AC is a ZC-semistable subobject M →֒ E such that for all F →֒ E we have
μC(F)� μC(M), and μC

(
F/(F∩M)

)
< μC(M) whenever F is not a subobject of M.

This is equivalent to M being ZC-semistable with μC(M) > μC(F′) for all subob-
jects F′ →֒ E/M; in other words, M is the first step of the HN filtration if it exists.

Proof of Proposition 15.10. — Assume conditions (1)-(3) hold and AC has a C-torsion
theory. We want to construct a mds M →֒ E. By assumption (2), we may assume that
EK ∈AK is non-zero. By assumption (1), it has a mds with respect to ZK. Arguing as in
the proof of Lemma 15.7, we may assume it is of the form NK ⊂ EK for some subobject
N⊂ E in AC.
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Since AC has a C-torsion theory, we may assume that N →֒ E is saturated, i.e.,
that E/N is C-torsion free; in particular

EC-tor =NC-tor.

Write μ := μC(N)= μ+K(EK). We distinguish two cases:

(A) EC-tor �= 0, and μ+C(EC-tor) > μ.
In this case, we apply assumption (2) and let M ⊂ EC-tor be the mds in AC-tor; in
particular μC(M)= μ+C(EC-tor). We claim that M is an mds of E in AC. Indeed, given
any subobject F →֒ E, either μC(F) � μ < μC(M) or μC(F) > μ. In the second case,
since μ= μ+K(EK) it follows that F is C-torsion and factors through EC-tor ⊂ E, and
hence μC(F)� μC(M) by the choice of M. Thus μC(F) � μC(M) for any subobject
F →֒ E. Now assume F is not a subobject of M. If F is C-torsion, then F ⊂ EC-tor,
so μC(F/(F ∩M)) < μC(M) follows by the choice of M. If F is not C-torsion, then
FK = (F/(F∩M))K and again we find μC(F/(F∩M))= μK(FK) � μ < μC(M).

(B) EC-tor = 0, or EC-tor �= 0 with μ+C(EC-tor)� μ.
Let F⊂N be the ZC-semistable subobject given by assumption (3) or Lemma 15.11,
respectively. By the existence of HN filtrations in AC-tor, and the resulting torsion pair
as in (14.1), there exists a subobject F ⊆M ⊆ N with μ−C(M/F) � μ > μ+C(N/M).
We claim that M is an mds for E.
Note that MK = NK is ZK-semistable. Thus, if M is not semistable, and if A⊂M is
a subobject with μC(A) > μC(M/A), then either A is C-torsion with μC(A) > μ, or
M/A is C-torsion with μ > μC(M/A). The former case is impossible, as A would
be a subobject of NC-tor = EC-tor and contradict the assumption on μ+C(EC-tor). In the
latter case, consider the short exact sequence

F/(F∩A) →֒M/A ։ M/(F+A).

We have the inequality μC(F/(F ∩ A)) � μ by semistability of F, and also
μC(M/(F+A))� μ−C(M/F) � μ by construction; thus we get a contradiction to
the see-saw property.
Since E/N is C-torsion free by assumption, any subobject F →֒ E/N satisfies
μC(F) = μK(FK) � μ+K ((E/N)K) < μ; so μ+C(E/N) < μ. Combined with the in-
equality μ+C(N/M) < μ, this shows μ+C(E/M) < μ.

We have thus produced a mds for E. To conclude, we need to show that if we replace E
by E/M and repeat the above procedure, the process terminates. Indeed, in case (A) we
preserve EK and reduce the length of the HN filtration of EC-tor, and in case (B) we reduce
the length of the HN filtration of EK. ✷

We will often need A0
C-tor and A0

K to be noetherian torsion subcategories, see Def-
inition 14.6. For example, the following observation extends Lemma 12.12.
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Proposition 15.14. — Assume that the heart AC has a C-torsion theory, and that both
A0

C-tor ⊂AC-tor and A0
K ⊂AK are noetherian torsion subcategories. If there exists a weak HN struc-

ture σC = (AC,ZK,ZC-tor) over C with heart AC such that ZC-tor has discrete image, then AC is
noetherian.

Proof. — Let E1 ։ E2 ։ · · · be an infinite sequence of surjections in AC. Ap-
plying Lemma 14.8 to (AK,ZK), we see that the induced sequence of surjections
(E1)K ։ (E2)K ։ · · · stabilizes, in other words we may assume that the kernel of every
surjection Ei ։ Ei+1 is C-torsion. However, by assumption and Lemma 14.8 applied to
(AC-tor,ZC-tor) we know that AC-tor ⊂AC is a noetherian torsion subcategory; therefore,
see Remark 14.7, this sequence terminates. ✷

16. Semistable reduction

The aim of this section is to study in detail condition (3) in Proposition 13.16 or
15.10. We first show that Langton and Maruyama’s semistable reduction also works in
our context. Then condition (3) follows if semistability satisfies generic openness (see Defi-
nition 16.3). This gives us the first example of an HN structure, namely coherent sheaves.

16.1. The Langton-Maruyama Theorem. — We now state the main result of this sec-
tion. It is the analogue of [HL10, Theorem 2.B.1] (see [Yos99, Lemma 3.4] or [HMS09,
Lemma 2.5]); the proof follows the same lines. The main difference is that we use the ex-
istence of a locally finite type Quot space to circumvent the use of completed local rings;
indeed, our results in Part I do not prove the existence of a heart on base changes to such
rings.

Theorem 16.1 (Langton-Maruyama). — Let (ZK,ZC-tor) be a (weak) stability function on
AC over C such that:

(0) Given a Dedekind scheme D, a dominant map f : D→C essentially of finite type, a closed
point q ∈D and F ∈DD, we have

1

dimκ(f (q)) κ(q)
Zf (q)(f∗Fq)=

1

dimK K(D)
ZK

(
f∗FK(D)

)
.

(1) AC universally satisfies openness of flatness.
(2) (AC-tor,ZC-tor) defines a (weak) stability condition on DC-tor.
(3) If (ZK,ZC-tor) is only a weak stability function, we also assume that (AC-tor,ZC-tor) has

the tilting property.
Let E ∈AC be a C-flat object whose restriction EK ∈AK to the generic fiber is ZK-semistable. If there
is a closed point p ∈ C and a quotient ip∗Ep ։ Q with μC(Q) < μC(ip∗Ep), then there exists a
subobject E′ ⊂ E such that E/E′ ∈AC-tor is supported over the point p, μC(E′) > μC(E/E′), and
μC(Q′)� μC(ip∗E′p) for all quotients ip∗E′p ։ Q′.
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Assumption (0) is a weak version of universal local constancy of central charges, see Def-
inition 20.1.(1), which we study later in the context of families of stability conditions.
Openness of flatness in assumption (1) refers to Definition 10.4 for the collection of fiber-
wise t-structures induced by AC. We remind the reader that under this assumption, Quot
spaces are locally of finite type over C by Proposition 11.6. We will explore the support
property for (AC-tor,ZC-tor), part of assumption (2), in more detail in Section 18.1.

We denote the local ring at p by R, and a generator of its maximal ideal by π .

Proof. — If the claim of the theorem were not true, we could define a descending
filtration

(16.1) · · · ⊂ En+1 ⊂ En ⊂ · · · ⊂ E0 := E,

with En/En+1 a C-torsion object supported over p and μC(En+1) > μC(En/En+1), as fol-
lows. Let Qn be the maximal destabilizing quotient for ip∗(En)p, which exists by condition
(2); this means that we can write the last step of the HN filtration as Fn →֒ ip∗(En)p where
Qn = ip∗(En)p/F is the associated semistable quotient, and μ−C(Fn) > μC(Qn). Then En+1

is defined as the kernel of the composition En ։ ip∗(En)p ։ Qn; namely, En/En+1 =Qn.
Applying ip∗i∗p to En+1 →֒ En ։ Qn, taking cohomology, and using Lemma 6.7 for

Qn gives an exact sequence

(16.2) 0→Qn → ip∗(En+1)p → Fn → 0.

Consider the sequence of maps φn : Qn →֒ ip∗(En+1)p ։ Qn+1, which fit into a se-
quence of commutative diagrams with exact rows and columns

0 Qn

φn

ip∗(En+1)p Fn 0

0 Im(φn) Qn+1 Coker(φn) 0.

0 0 0

Suppose that φn = 0. Then Fn ։ Qn+1, but by definition μ−C(Fn) > μC(Qn+1), so as a
consequence of the see-saw property, Hom(Fn,Qn+1)= 0. Hence φn �= 0.

Then as Qn and Qn+1 are both ZC-semistable, we must have

μC(Qn) � μC(Im(φn))� μC(Qn+1).

By construction, we have μC(Qn) < μC(En+1)= μC(E), so

μC(Q1) � μC(Qn) < μC(E)
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for all n � 1. Similarly, we have 0 < ℑZC(Qn) � ℑZC(E) for all n � 1, so the central
charges {ZC(Qn)} lie in a bounded subset of C. As the Qn are all ZC-semistable, it follows
from Condition (2) (support property on DC-tor) and Remark 12.3 that there are only
finitely many values for ZC(Qn). In particular, the increasing chain μC(Qn) must stabilize,
so we may assume that μC(Qn)= μC(Qn+1) from the outset.

We would like to show that the values ZC(Qn) stabilize as well. To that end, assume
that ℑZC-tor(Im(φn)) < ℑZC-tor(Qn+1), so that ℑZC-tor(Coker(φn)) > 0. Then as

μC(Qn)= μC(Im(φn))= μC(Qn+1)

we must have μC(Coker(φn)) equal to the same number by the see-saw property in AC-tor,
see Lemma 15.5. Again, by definition μ−C(Fn) > μC(Qn+1) = μC(Coker(φn)), so as a
consequence of the see-saw property, Hom(Fn,Coker(φn))= 0. This contradicts the fact
that we have a surjection Fn ։ Coker(φn) by construction, where Coker(φn) �= 0 by our
assumption ℑZC-tor(Im(φn)) < ℑZC-tor(Qn+1). Thus we must have

ℑZC-tor(Q
n)� ℑZC-tor(Im(φn))=ℑZC-tor(Q

n+1) > 0.

But as the ZC(Qn) take only finitely many values, we see that for n≫ 0, ZC(Qn) must
indeed stabilize.

It follows that Ker(φn) must satisfy ZC(Ker(φn)) = 0 for n ≫ 0. But then
Ker(φn)= 0 for n≫ 0 by the ZC-semistability of Qn. So we may assume from the begin-
ning that we have an ascending chain of ZC-semistable C-torsion objects

Q1 ⊂Q2 ⊂ · · · ⊂Qn ⊂Qn+1 ⊂ · · ·

with ZC(Qn)= ZC(Qn+1) for all n � 1.
Now we have Qn+1/Qn ∈ A0

C-tor for all n � 1. Since (AC-tor,ZC-tor) has the tilting
property by Condition (3), this sequence stabilizes, see Remark 14.14.

We can conclude now that φn is an isomorphism for all n≫ 0, and so the exact
sequence (16.2) splits, i.e., ip∗(En+1)p

∼= Fn ⊕ Qn. In particular, the objects Fn are also
constant. Let us set F := Fn and Q :=Qn, for all n≫ 0. Up to replacing E with En, for
n≫ 0, we can assume that our filtration (16.1) has the property that ip∗(En)p

∼= F⊕Q for
all n.

We now restrict to the local ring R=OC,p. Note that by Theorem 5.7 there is an
induced heart on the base change DR, such that the restriction functor D→ DR is t-
exact. We abuse notation by still using E and Q to denote the restrictions of these objects
to DR. We also set Gn := E/En. As En−1/En =Q, there exists an exact sequence

(16.3) 0→Q→Gn →Gn−1 → 0.

Also, by construction, we have πEn−1 ⊂ En, so by induction it follows that π nE ⊂ En.
Therefore, the quotient E ։ Gn factors through E ։ E/π nE ։ Gn so that π n acts as
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zero on Gn. By Lemma 6.9 it follows that Gn is the pushforward of an object in AR/(πn),
which we also denote by Gn.

Moreover, it is not difficult to see from the construction that En−1 is the span of
En and πEn−2 (as subobjects of E). By induction, this shows that En−1 is the span of En

and π n−1E; hence π iGn/π i+1Gn = Ei/Ei+1 =Q, with isomorphisms of the filtration steps
induced by multiplication by π . By Lemma 16.2 below, this shows that Gn is a flat object
in AR/(πn).

By Condition (1) and Proposition 11.6, the Quot space QuotSpec(R)(E) is an al-
gebraic space locally of finite type over Spec(R). The quotients E/π nE ։ Gn give a
compatible system of R/(π n) points of QuotSpec(R)(E). It follows that the Quot space
admits a point finite over K that has the point Ep ։ Q as a specialization. Therefore,
there exists the spectrum D of a DVR over R, an element ED ։ F of QuotSpec R(E)(D)

that on the special fiber q ∈ D is given by a base change of Ep ։ Q, and such that the
composition D→ Spec R→ C is dominant and essentially of finite type. As Eq ։ Fq is
destabilizing, the same holds by condition (0) for E⊕dimK K(D)

K ։ f∗FK. This contradicts the
ZK-semistability of EK. ✷

In the proof, we needed the following standard flatness criterion for modules in our
context:

Lemma 16.2. — Let p ∈ C, let R be its local ring, and write Rn = R/(π n) for the ring
defining the (n− 1)-th infinitesimal neighborhood of p. Then an object B ∈ARn is flat if and only if
multiplication by π induces isomorphisms

B/πB∼= πB/π 2B∼= · · · ∼= π n−1B.

Proof. — Let XRn be the base change of X to Spec(Rn), and write j for the inclusion
Xp →֒ XRn . Since j∗ is exact, it is enough to test whether j∗j∗B = B ⊗ Rn/(π) ∈ ARn .

Using the (2-periodic) minimal resolution Rn/π = · · ·→Rn
·πn−1

−−→Rn
·π
−→Rn and its naive

truncation at �−2, we obtain an exact triangle

j∗j∗B[1]→
(
B

π
−→ B

)
→ j∗j∗B.

Since j∗ is right-exact, it follows that we have H−1
ARn

(j∗j∗B) = 0 if and only if the map

B/π
·πn−1

−−→ Kerπ is surjective, and H−2
ARn

(j∗j∗B) = 0 if and only if it is injective. This is
easily seen to be equivalent to the assumption of the lemma. ✷

In our examples, condition (3) in Theorem 16.1 will follow from a compatibility of
the weak stability condition with the duality functor. Then the existence of HN filtrations
will be implied by the following generic openness property.
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Definition 16.3. — A (weak) stability function (ZK,ZC-tor) on AC over C satisfies generic
openness of semistability if the following condition holds: given E ∈AC a C-torsion free object such
that EK is ZK-semistable, there exists a nonempty open subset U⊂ C such that for all p ∈U and for
all quotients ip∗Ep ։ Q, we have μC(Q)� μC(E).

Remark 16.4. — If (ZK,ZC-tor) is a (weak) stability function on AC over C which
satisfies the HN property, then generic openness of semistability holds. Indeed, if E ∈AC

is C-torsion free such that EK is ZK-semistable, then by Proposition 15.10 there is a ZC-
semistable subobject F ⊂ E with FK = EK. Then there exists a nonempty open subset
U⊂C such that FU = EU, and the claim follows from Lemma 15.7 applied to F.

Corollary 16.5. — With the same assumptions as in Theorem 16.1, assume further that AC

has a C-torsion theory, that (AK,ZK) has the HN property, and that generic openness of semistability
holds. Then the (weak) stability function (ZK,ZC-tor) on AC over C satisfies the HN property.

Theorem 17.1 below shows the existence of a C-torsion theory under the above
hypotheses.

Proof. — We use Proposition 15.10; we only need to verify assumption (3), semi-
stable reduction.

Let E ∈AC be a C-torsion free object such that EK is ZK-semistable. By generic
openness of semistability, there exists a non-empty open subset U ⊂ C such that ip∗Ep

does not have a destabilizing quotient for all closed points p ∈U. Hence, we are left with
finitely many points in C, to which we apply Theorem 16.1. We thus obtain a subobject
F →֒ E such that E/F ∈ AC-tor and ip∗Fp does not have a destabilizing quotient for all
closed points p ∈C. By Lemma 15.7, F is ZC-semistable, as we wanted. ✷

16.2. An example: coherent sheaves. — Let us consider the stability function (ZK,ZC-tor)

on CohX given by slope-stability on the fibers as in Example 15.3. That is, given a flat
morphism g : X → C of relative dimension n and OX (1) a relative polarization, we de-
fine

ZC-tor(E) := ipn(E)− pn−1(E),

where pn and pn−1 are the two leading coefficients of the Hilbert polynomial of E, defined
as in Example 13.6. We define ZK similarly over the generic fiber. As OX (1) is globally
defined, (ZK,ZC-tor) defines a weak stability function for CohX over C. Here the subcat-
egory (CohX )C-tor consists of sheaves supported on fibers of g and (CohX )C-tf consists of
flat families of sheaves on the fibers of g. Moreover, it is clear that a ZC-semistable sheaf
E ∈ (CohX )C-tor is just a sheaf supported on fibers of g that is μ-semistable in the classical
sense [HL10, Definition 1.2.12]. It follows that E ∈ (CohX )C-tf is ZC-semistable if and
only if E is a family of μ-semistable sheaves over C in the classical sense.
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Proposition 16.6. — If the fibers of g : X →C are normal, integral, noetherian schemes, then
the weak stability function (ZK,ZC-tor) on CohX satisfies the HN property.

Proof. — We use Corollary 16.5, for which we must first verify the assumptions of
Theorem 16.1. Assumptions (0) and (1) are standard. As CohX is noetherian, it admits
a C-torsion theory by Remark 6.16, and of course the subcategory (CohX )0

C-tor, which
consists of sheaves supported in codimension at least 2 in fibers, is also noetherian. The
existence of HN filtrations for objects in (CohX )C-tor or CohXK follows exactly as in
the construction of HN filtrations for classical slope-stability, see [HL10, Theorem 1.6.7].
For the support property, we may simply choose Q= 0 and � as in [PT19, Section 3.2],
which verifies assumption (2).

Next we verify assumption (3). Take E ∈ (CohX )C-tor with μ+C(E) < +∞, and
let us assume without loss of generality that E = ip∗E′ for E′ ∈ CohXp. The condi-
tion μ+C(E) <∞ means that E is a torsion free sheaf on Xp, so E →֒ E∨∨ by the in-
tegrality of Xp, where E∨∨ := Hom(Hom(E,OXp),OXp). By the normality of Xp, we
get that E∨∨ is reflexive and the quotient E∨∨/E is supported on Xp in codimension
at least 2. Thus E∨∨/E ∈ (CohX )0

C-tor. The reflexivity of E∨∨ gives the vanishing of
Hom((CohX )0

C-tor,E∨∨[1]), finishing the verification of assumption (3).
Finally, as classical slope-stability satisfies generic openness of semistability by

[HL10, Proposition 2.3.1], the proposition follows from Corollary 16.5. ✷

17. Torsion theories and Harder–Narasimhan structures

17.1. A C-torsion theory via semistable reduction. — The goal of this section is to show
that the existence of a C-torsion theory is automatic in our setting; our proof is similar
to that of semistable reduction, Theorem 16.1. This gives a partial converse to Propo-
sition 6.19, which shows that the existence of a C-torsion theory implies openness of
flatness.

Theorem 17.1. — Let AC be heart of a C-local t-structure on D, with the following assump-
tions:

(1) AC universally satisfies openness of flatness.
(2) For every closed point p ∈C, there exists a (weak) stability condition σp = (Ap,Zp); in the

weak case, we also assume that A0
p ⊂Ap is a noetherian torsion subcategory.

Then AC admits a C-torsion theory.

The crucial ingredient will be the following claim:

Lemma 17.2. — With the same assumptions as in Theorem 17.1, if p ∈ C and E ∈ AC,
then there exists n > 0 such that In

p · E has no torsion subobject supported over p.
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Proof of Theorem 17.1. — Consider E ∈AC. Since AC satisfies openness of flatness,
and since EK ∈ AK, there exists a finite set of closed points p1, . . . , pm such that E is
flat on the complement C \ {p1, . . . , pm}. For each i, let ni be such that Ini

pi · E has no
torsion supported over pi as in Lemma 17.2. Since Ini

pi · E and E are isomorphic on the
complement of pi , one sees easily by induction that

(
In1

p1 · · · · · I
nm
pm · E

)
⊗ I−n1

p1 ⊗ · · · ⊗ I−nm
pm

is a C-torsion free quotient of E whose kernel is C-torsion. ✷

We now turn to the proof of Lemma 17.2. Let π be a local generator of Ip around
p; it acts on any torsion object supported over p. Consider the exact sequence

Ii+1
p · E →֒ Ii

p · E ։ Ii
p · E/Ii+1

p · E

for i � 0. Applying ip∗i∗p , taking cohomology with respect to AC, and using Lemmas 6.7
and 6.9 gives a four term exact sequence

(17.1) 0→ Annπ

(
Ii+1

p · E
)

αi
−→ Annπ(Ii

p ·E)
βi
−→ Ii

p ·E/Ii+1
p ·E

γi
−→ Ii+1

p ·E/Ii+2
p ·E→ 0

where we used the abbreviation Annπ(F)= Ann(Ip;F). In particular, there is a sequence
of surjections

(17.2) E/Ip · E
γ0
−→→ Ip · E/I2

p · E
γ1
−→→ I2

p · E/I3
p · E

γ2
−→→ ·· ·

Our key claim is the following:

Lemma 17.3. — The sequence (17.2) terminates.

Proof. — For i � 0 we define

Fi = Im (Annπ(Ii
p · E)

βi
−→ Ii

p · E/Ii+1
p · E),

Qi =Coker (Annπ(Ii+1
p · E)

α0◦···◦αi
−−−−−→ Annπ(E)),

Ki =Ker (E/Ip · E
γi◦···◦γ0
−−−−→ Ii+1

p · E/Ii+2
p · E).

Note that by construction, all of these objects are scheme-theoretically supported over p,
and hence may be regarded as objects of Ap. Since Annπ(E)= ip∗H

−1
Ap

(Ep) by Lemma 6.9,

the slope of Qi is bounded below by μp(Qi) � μ−p (H−1
Ap

(Ep)). On the other hand, we have
Q0 = F0 =K0 and short exact sequences

Ki−1 →֒Ki ։ Fi and Fi →֒Qi ։ Qi−1.

By induction it follows that Ki and Qi have the same class in K(Dp), and there-
fore the slope μp(Ki) = μp(Qi) satisfies the same bound. Thus our claim follows from
Lemma 14.11. ✷



258 A. BAYER, M. LAHOZ, E. MACRÌ, H. NUER, A. PERRY, P. STELLARI

Proof of Lemma 17.2. — Let Rn = OC/In
p be the n-th infinitesimal neighborhood

of p. By the previous lemma, after replacing E if necessary, we may assume that the se-
quence (17.2) is a sequence of isomorphisms; therefore, we have Annπ(Ii

p ·E)= Annπ(E)

for all i. By Lemma 16.2 this means that Fn := Annπn(E) ∈ARn is a flat object over Rn,
which we assume to be non-zero for contradiction.

Therefore, we get a sequence of compatible morphisms Spec(Rn)→Mτ , where
Mτ is the functor of flat objects with respect to the fiberwise collection of t-structures
induced by AC. By Lemma 11.2, Mτ is an algebraic stack which is locally of finite type
over C. By Artin approximation, there exists a Dedekind domain h : D→Mτ of finite
type over C, together with a point q ∈D, such that D→C is dominant, maps q to p and
is étale at q, and such that h is induced by Fn in the n-th infinitesimal neighborhood of q,
which we can identify with Spec Rn. Let F be the object corresponding to h. We consider
the object HomD(F,ED) ∈Db(D) given by the relative derived sheaf Hom. Then we have

H−1 (K(D)⊗HomD(F,ED))=Hom(FK(D),EK(D)[−1])= 0.

On the other hand, we have

H−1 (Rn ⊗HomD(F,ED))=Hom(Fn,ERn[−1])

=Hom(Fn,H−1
ARn

(ERn))

=Hom(Fn,Fn)

where the second two equalities follow from Lemma 6.9; in particular, this cohomology
sheaf contains Rn as a subsheaf for all n > 0. This contradicts the above vanishing. ✷

17.2. Harder–Narasimhan structures and torsion theories. — In this section, we show
that the existence of a C-torsion theory on the heart descends to the slices of a Harder–
Narasimhan structure, and vice versa.

Definition 17.4. — We say that a (weak) HN structure σC = (ZK,ZC-tor,P) has a C-
torsion theory if for every φ ∈R the category P(φ) admits a torsion pair (P(φ)C-tor,P(φ)C-tf) where
P(φ)C-tor =P(φ)∩DC-tor and P(φ)C-tf =P(φ)⊥C-tor.

Note that while P(φ) is only a quasi-abelian category, the notion of a torsion pair
makes sense: we ask that every object E ∈ P(φ) fits into a strict short exact sequence
EC-tor →֒ E ։ EC-tf, which is just an exact triangle in D such that EC-tor ∈ P(φ)C-tor and
EC-tf ∈P(φ)C-tf.

Lemma 17.5. — Let σC = (ZK,ZC-tor,P) be a (weak) HN structure with associated heart
AC. Assume that E ∈ P(φ) for φ ∈ (0,1], and let W ⊂ C be a closed subset. Then the objects
Ann(IW;E) and IW · E in AC are also semistable of phase φ.
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Proof. — The claim is automatic for IW ·E, as it is both a quotient of IW⊗E and a
subobject of E, which are semistable objects of the same phase.

Now consider A := Ann(IW;E) = iW∗H
−1
AW

(EW); by semistability of IW ⊗ E we
know φ(A) � φ. Semistability of E implies that φ(E/IW · E) � φ. On the other hand,
we have

ZC-tor(E/IW ·E)−ZC-tor(A)= ZC-tor(EW)= length(W) ·ZC(E) ∈R>0 ·eiπφ.

This is only possible if both inequalities are actually equalities. So A ⊂ IW ⊗ E is an
inclusion of objects of the same phase, with the latter being semistable; therefore, A is
also semistable. ✷

Proposition 17.6. — Let σC = (ZK,ZC-tor,P) be a (weak) HN structure with associated
C-local heart AC. Then σC has a C-torsion theory if and only if AC has a C-torsion theory.

Proof. — Assume that σC has a C-torsion theory. We first claim that any object
E ∈ P(φ)C-tf is also torsion free as an object in AC. Indeed, if W is the schematic sup-
port of a torsion subobject of E, then Ann(IW;E) would be a subobject in P(φ)C-tor by
Lemma 17.5. Combined with Lemma 6.17 and the existence of HN filtrations, this shows
that every object in AC has a maximal C-torsion subobject.

Conversely, assume that AC has a C-torsion theory. If E ∈P(φ) for φ ∈ (0,1], then
EC-tor = Ann(IW;E) for W the schematic support of EC-tor by Lemma 6.18. Thus EC-tor

and EC-tf are also objects of P(φ) by Lemma 17.5. This verifies the condition defining the
existence of a C-torsion theory for σC for φ ∈ (0,1], which clearly implies the condition
holds for all φ ∈R. ✷

18. Harder–Narasimhan structures via stability conditions on fibers

18.1. Support property for HN structures. — Condition (2) of Theorem 16.1 included
in particular the assumption that (AC-tor,ZC-tor) satisfies the support property. In this
subsection, we briefly explore the appropriate lattices adapted to the support property on
DC-tor.

Definition 18.1. — A Mukai homomorphism on D over C with respect to � is a pair
(vK, vC-tor) where

vK : K(DK)→� and vC-tor : K(DC-tor)→�

are group homomorphisms with the following property: for all E ∈D, and all proper closed subschemes
W⊂C, we have

(18.1) vK(EK)=
1

length W
vC-tor (iW∗EW) .
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Notice that (18.1) can be equivalently stated as vK(EK) = vC-tor

(
ip∗Ep

)
, for all

closed point p ∈C.

Remark 18.2. — Given a Mukai homomorphism on D over C with respect to �

and a group homomorphism Z : �→ C, we obtain a central charge on D over C by
setting ZK = Z ◦ vK and ZC-tor = Z ◦ vC-tor.

We denote by vp := vC-tor ◦ ip∗ : K(Dp)→�; thus we have defined vc : K(Dc)→�

for every (closed or non-closed) point c ∈C. The following observation is immediate from
the fact that K(DC-tor) is the direct sum of ip∗(K(Dp)) over all closed points p ∈C.

Lemma 18.3. — To give a Mukai homomorphism is equivalent to giving a collection of homo-
morphisms vc : K(Dc)→� such that for E ∈D, the vector vc(Ec) is independent of c ∈C.

Definition 18.4. — We say that a Mukai homomorphism is numerical on fibers if vc factors
via K(Dc)→Knum(Dc) for all c ∈C.

We will discuss Mukai homomorphisms more systematically in Section 21.1.

Definition 18.5. — Fix a Mukai homomorphism (vK, vC-tor) with lattice �. A (weak) HN
structure satisfies the support property with respect to a quadratic form Q on �R if (AC-tor,ZC-tor)

satisfies the support property with respect to vC-tor and Q.

Recall Lemmas 13.11 and 15.6, which associate to a (weak) HN structure σC a
(weak) pre-stability condition σc on Dc for all c ∈C. The support property for σC is equiv-
alent to the collection (σc)c∈C satisfying the support property with respect to a uniform
quadratic form:

Lemma 18.6. — Let σC be a (weak) HN structure with a C-torsion theory. Then σC satisfies
the support property with respect to a quadratic form Q if and only if for every c ∈C, or equivalently for
every closed point c ∈C, the induced (weak) pre-stability condition σc satisfies the support property with
respect to Q and vc.

Proof. — Assume σC satisfies the support property. The claim is automatic for
closed points p from the construction, as the inclusion ip∗ : Ap →AC-tor preserves semi-
stable objects. As for the generic point K, by the existence of a C-torsion theory, every
semistable object EK ∈ AK lifts to a torsion free object E ∈ AC. By Proposition 15.10,
we may assume E is ZC-semistable. If σC is a HN structure, then ip∗Ep is semistable by
Lemma 13.12, and thus Q(vK(EK))=Q(vp(Ep))� 0. In the weak case, we deduce from
Lemma 15.7 that the HN filtration of Ep is of the form E0

p →֒ Ep ։ Ep/E0
p with E0

p ∈A0
p .

By Remark 14.9, it follows that Q(vK(EK))=Q(vp(Ep))=Q(vp(Ep/E0
p))� 0.
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Conversely, assume that the σp uniformly satisfy the support property for all closed
points p ∈ C. Every indecomposable semistable object E ∈AC-tor is set-theoretically sup-
ported over a point p ∈C; we consider the filtration

0= π n+1 · E⊂ π n · E⊂ · · · ⊂ π · E⊂ E

given by Lemma 6.11. Since all filtration quotients π i · E/π i+1 · E ∈ Ap are also quo-
tients of E/π · E of the same the phase, they do not have destabilizing quotients.
Hence Q(vC-tor(E)) � 0 follows from the simple linear algebra argument in [BMS16,
Lemma A.6]. The same linear algebra argument gives the result for the general case of a
decomposable E. ✷

18.2. HN structures via stability conditions on fibers. — To conclude our investigation
of HN structures, we show that under appropriate assumptions, they can be constructed
via stability conditions on fibers.

Theorem 18.7. — Let AC be a C-local heart in D that universally satisfies openness of flatness.
Fix a group homomorphism Z : �→ C, a quadratic form Q on �R, and a Mukai homomorphism
(vK, vC-tor). Assume that the induced pair (ZK,ZC-tor) satisfies condition (0) of Theorem 16.1. Then
the triple σC = (AC,ZK,ZC-tor) = (AC,Z ◦ vK,Z ◦ vC-tor) is a HN structure with a C-torsion
theory and satisfying the support property with respect to Q if and only if

(1) σc = (Ac,Z ◦ vc) gives a pre-stability condition on Dc for all (closed or non-closed) c ∈C;
(2) all the σc satisfy the support property with respect to Q; and
(3) generic openness of semistability holds (Definition 16.3).

Similarly, if σC is a weak HN structure, then (1)-(3) hold. Conversely, if, in addition to (1)-(3), we have
(4) σc has the tilting property (Definition 14.12),

then σC is a weak HN structure with a C-torsion theory and satisfying the support property with respect
to Q. Moreover, σC induces the stability conditions σc.

Proof. — The proof is divided in three steps.

Step 1. (Weak) HN structure with support property and a C-torsion theory ⇒ (weak) stability condi-
tions on the fibers satisfying (1)-(3).

We have already seen, in Lemmas 13.11 (resp. 15.6) and 18.6 that a HN structure
(resp. a weak HN structure) σC induces on the fibers stability conditions (resp. weak stabil-
ity conditions) σc that satisfy the support property with respect to Q. This gives conditions
(1) and (2). Condition (3), generic openness of semistability, holds by Remark 16.4.

Step 2. Stability conditions on the fibers satisfying (1)-(3)⇒ HN structure with a C-torsion theory and
satisfying the support property

Now assume that the σc = (Ac,Z ◦ vc) are stability conditions on the fibers, satisfy-
ing the support property with respect to a uniform quadratic form Q, such that generic
openness of semistability holds. By Theorem 17.1, the heart AC has a C-torsion theory,
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and we will use Corollary 16.5 to prove that σC is a HN structure. Then it follows that
σC has a C-torsion theory by Proposition 17.6 and that σC satisfies the support property
with respect to Q by Lemma 18.6, as required.

We first observe that (ZK,ZC-tor) is a stability function on AC over C. Indeed, ZK is
a stability function on AK by assumption, and by decomposing E ∈AC-tor according to its
set-theoretic support and then using the filtration of Lemma 6.11, it follows that ZC-tor is
a stability function on AC-tor from the fact that Zp is a stability function on Ap. Moreover,
by assumption ZK has the HN property on AK.

Our next claim is that (AC-tor,ZC-tor) has the HN property so that assumption (2)
of Theorem 16.1 is satisfied by Lemma 12.6. Given an object E ∈ AC-tor, it is not dif-
ficult to see that by considering the decomposition of E according to its set-theoretic
support, which is a direct sum of objects set-theoretically supported over distinct closed
points, it suffices to show that HN filtrations exist for objects set-theoretically supported
over a single closed point p ∈ C. Given such an E, we proceed by induction on the
length of its schematic support in C. Let π be a local generator of Ip. Since both
(π · E)⊗ I−1

p and E/π · E have a HN filtration by the induction assumption, and since
both are quotients of E, one can construct a ZC-tor-semistable quotient E ։ Q0 of phase
φ(Q0)=min{φ− (E/π · E) ,φ− (π · E)}. It is not difficult to show from the see-saw prop-
erty, Lemma 15.5, that Q0 is of minimal phase, i.e., every other quotient E ։ Q′ satisfies
φ(Q′) � φ(Q0). Repeating this argument for the kernel E1, we obtain a ZC-tor-semistable
quotient E1 ։ Q1 of minimal phase with kernel E2. As E/E2 is itself a quotient of E,
so that φ(E/E2) � φ(Q0), the see-saw property gives φ(E1/E2) � φ(E/E1). Continuing
in this way gives a decreasing filtration E = E0 ⊃ E1 ⊃ E2 ⊃ . . . such that the filtration
quotients are ZC-tor-semistable with φ(E0/E1)� φ(E1/E2)� . . . .

We need to show that this process terminates. Every central charge ZC-tor(Ei/Ei+1)

of any of the semistable filtration quotients is contained in the parallelogram with adja-
cent edges of angle πφ−(E) and π , and with 0 and ZC-tor(E) as opposite vertices. Since
each Ei/Ei+1 satisfies the support property inequality of σp (by the second part of the
proof of Lemma 18.6), it follows, see Remark 12.3, that there are only finitely many pos-
sible classes vC-tor(Ei/Ei+1). Therefore there is an i with ℑZC-tor(Ei/Ei+1) = 0 for all i,
which is only possible if Ei itself is semistable with ℑZC-tor(Ei)= 0, so the process termi-
nates. Grouping the consecutive i with filtration quotients of equal phase gives the HN
filtration of E. Therefore, (AC-tor,ZC-tor) has the HN property.

The remaining assumptions of Theorem 16.1 and Corollary 16.5 are part of our
hypotheses, so σC is indeed a HN structure as claimed.

Step 3. Weak stability conditions on the fibers satisfying (1)-(4)⇒ weak HN structure with a C-torsion
theory and satisfying the support property

The structure of the arguments carries over exactly, with assumption (4) needed to
ensure that all assumptions of Theorems 16.1 and 17.1 are satisfied. The only additional
argument needed is to show that if σp = (Ap,Zp) has the tilting property for all closed
points p ∈C, then the same holds for (AC-tor,ZC-tor).



STABILITY CONDITIONS IN FAMILIES 263

For both conditions in Definition 14.12, it suffices to consider objects set-
theoretically supported over a single closed point p ∈ C; we let π be a local generator of
its maximal ideal. We first show noetherianity of A0

C-tor. Given E ∈A0
C-tor set-theoretically

supported over p, consider the filtration induced by π , as in Lemma 6.11. Then any
surjection E ։ Q induces surjections π i · E/π i+1 · E ։ π i ·Q/π i+1 ·Q. Since these are
surjections in the noetherian category A0

p , we easily conclude that any sequence of sur-
jections E ։ E1 ։ E2 · · · terminates, i.e., that A0

C-tor is noetherian. A similar inductive
argument, using the same filtration, shows that A0

C-tor is a torsion subcategory.
Next we verify condition (2) of Definition 14.12 for (AC-tor,ZC-tor) for F ∈AC-tor,

μ+(F) < +∞, set-theoretically supported over p. As explained in Remark 14.15, we
must show F[1] has a maximal subobject in A0

C-tor with respect to the heart A♯β

C-tor for
β � μ+(F). It follows that using the short exact sequence π · F →֒ F ։ F/π · F and
induction on the length of the support of F, we can reduce to the case where F is scheme-
theoretically supported over p. In this case, F= ip∗E and by assumption there exists a short
exact sequence E →֒ Ẽ ։ E0 in Ap with E0 ∈A0

p and Hom(A0
p, Ẽ[1])= 0. We claim that

the pushforward by ip∗ of this sequence gives the desired exact sequence for F. It suffices
to show Hom(A0

C-tor, ip∗Ẽ[1])= 0. This reduces to showing that Hom(ip∗T, ip∗Ẽ[1])= 0
for every T ∈ A0

p . Using adjunction and Lemma 6.7, this reduces to showing that
Hom(T, Ẽ)= 0=Hom(T, Ẽ[1]). The first equality holds since μ+(̃E) < +∞, and the
second holds by our choice of Ẽ. ✷

19. Tilting weak Harder–Narasimhan structures over a curve

Recall from Remark 13.15 that the universal cover G̃L+2 (R) of GL+2 (R) acts on
the set of Harder–Narasimhan structures on D over C. In terms of hearts and a family of
stability functions as in Proposition 13.14, this corresponds to tilting the corresponding
heart AC.

As we already saw in the case of weak stability conditions in Section 14.2, this
procedure is much more subtle for weak HN structures, and may not exist in general,
due to the special role of objects with central charge 0, which are arbitrarily defined to
have phase 1 if they are in the heart. In particular, HN filtrations are not preserved under
tilting. In this section, we give a criterion to ensure that a weak HN structure can be tilted,
extending Proposition 14.16.

Consider a weak HN structure σC = (AC,ZK,ZC-tor) on D over C. We write
(T

β

C ,F
β

C) for the torsion pair defined as in (14.1), with μ replaced by μC. The tilted
heart A♯β

C := 〈F
β

C[1],T
β

C 〉 is C-local, since ZC-semistability is invariant under tensoring
with the pullback of a line bundle from C.

We first need a relative analogue of the tilting property defined in Definition 14.12:



264 A. BAYER, M. LAHOZ, E. MACRÌ, H. NUER, A. PERRY, P. STELLARI

Definition 19.1. — Given a weak HN structure σC = (AC,ZK,ZC-tor), we write A0
C ⊂AC

for the subcategory objects E with ZC(F) = 0 for every subquotient F of E. We say that σC has the
tilting property if

(1) A0
C ⊂AC is a noetherian torsion subcategory, and

(2) for every F ∈AC with μ+C(F) <+∞, there exists a short exact sequence F →֒ F̃ ։ F0

with F0 ∈A0
C and Hom(A0

C, F̃[1])= 0.

Remark 19.2. — Let E be an object with EK �= 0 but ZK(EK) = 0, and F ∈ Ap

for some closed point p ∈ C. Then ZC(E ⊕ ip∗F) = 0, but E ⊕ ip∗F ∈ A0
C only holds if

Zp(F)= 0.

Remark 19.3. — Assume that A0
C is a noetherian torsion subcategory, and con-

sider a short exact sequence 0→ A→ E→ B→ 0 of objects in AC with no morphisms
from A0

C. Then if A,B satisfy the condition in (2), the same holds for E. To see this, con-
sider the tilt of AC at the torsion pair (A0

C, (A0
C)⊥): the titled heart contains the objects

A[1],E[1],B[1], and we have to show that each of them has a maximal subobject in A0
C.

Example 19.4. — Consider relative slope stability σC for a smooth family of higher-
dimensional varieties X →C as a weak HN structure as in Example 15.3. Then A0

C con-
sists of sheaves whose support has codimension � 2 in every fiber, and σC has the tilting
property. Indeed, by Remark 19.3, it is enough to consider the case where E ∈ CohX is
either torsion free, or the pushforward E= ip∗F of a torsionfree sheaf F ∈CohXp. In the
latter case, we use the double dual of F as in Example 14.13. In the former case, let E∨∨

be the double dual of E in CohX , and let G ⊂ E∨∨/E be the maximal subsheaf whose
support has codimension � 2 in every fiber. The preimage Ẽ⊂ E∨∨ of G has the desired
property.

Proposition 19.5. — Let AC be the heart of a C-local t-structure on D that satisfies universal
openness of flatness. Let σC = (AC,ZK,ZC-tor) be a weak HN structure on D over C. Assume that:

(1) σC has the tilting property, and
(2) the induced weak stability condition σc has the tilting property for every c ∈C.

Then (A
♯β

C )0 ⊂A
♯β

C is a noetherian torsion subcategory, and σ
♯β

C = (A
♯β

C , ZK
i−β

, ZC-tor
i−β

) is a weak HN
structure.

Proof. — The first claim follows just as in the proof of Proposition 14.16.
We need to prove that the rotated central charge, which we denote by Z♯β

C , satisfies
the HN property on A

♯β

C . We first observe, in analogy with Lemma 14.17, that Z♯β

C -
semistable objects in A

♯β

C are either

(1) ZC-semistable objects of T ♯β

C , or
(2) objects E such that H−1

AC
(E) is a ZC-semistable object of F ♯β

C and H0
AC

(E) ∈A0
C;

in addition, we require ℑZC(E)= 0 or Hom(A0
C,E)= 0.
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The HN filtrations of objects in T ♯β remain unchanged, and thus it remains to
consider objects in F

♯β

C [1]. To be able to proceed by induction, we consider slightly more
generally an object E ∈A

♯β

C with H0
AC

(E) ∈A0
C. Let F=H−1

AC
(E), and consider the last

step G →֒ F ։ Q of the HN filtration of F in AC, with Q being ZC-semistable. Then
E′ = E/G[1] is an object where H−1

AC
(E′) is ZC-semistable and H0

AC
(E′)=H0

AC
(E) ∈A0

C.
Replacing E′ with the quotient Q′ by its maximal subobject in A0

C, we obtain a semistable
quotient of E in A

♯β

C of the same slope as Q[1]. Moreover, the kernel G′ of E ։ Q′ will
again be an object with H0

AC
(G′) ∈A0

C, and the length of the HN filtration of H−1
AC

(G′)

is smaller than that of F. Therefore, this procedure terminates. ✷

Remark 19.6. — We can now explain why the definition of ZC-semistability for a
C-torsion free object E ∈AC requires all fibers Ep to be semistable, rather than just the
general fiber, as e.g. in the definition of relative slope stability. Let E ∈AC be a torsion free
object with μC(E)= β , such that EK is semistable. Let p ∈C be a closed point such that
ip∗Ep admits a destabilizing short exact sequence A →֒ ip∗Ep ։ Q, with A,Q semistable
and μC(A) > μC(ip∗Ep) = μC(E) > μC(Q). If E was defined to be ZC-semistable, then
E[1] ∈A

♯β

C . On the other hand, note that A ∈ T
β

C ⊂A
♯β

C ; if F denotes the kernel of the
surjection E ⊗ I−1

p ։ ip∗Ep ։ Q in AC, then we would obtain a short exact sequence

A →֒ E[1]։ F[1] in A
♯β

C . In other words, despite E being semistable and torsion free in
AC, the shift E[1] would not be torsion free in A

♯β

C . Moreover, the existence of a maximal
torsion subsheaf of E[1] is essentially equivalent to semistable reduction for E; thus we
have instead built semistable reduction into our basic setup of ZC-stability.

Part IV. Stability conditions over a higher-dimensional base

In this part of the paper, we introduce a notion of stability conditions for a category
D over a higher-dimensional base S; its key property will be that it comes equipped with
relative moduli spaces. Throughout, we work in the following setup.

Setup IV.1. — Assume:

• g : X → S is a flat morphism as in the Main Setup and in addition it is projective;
• D ⊂Db(X ) is an S-linear strong semiorthogonal component of finite cohomo-

logical amplitude.

20. Flat families of fiberwise (weak) stability conditions

In this section we introduce the notion of a flat family of fiberwise (weak) stability
conditions, and prove some basic results in this context. In Section 21 we will define the
notion of a (weak) stability condition over a base by further imposing a suitable support
property.
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20.1. Definitions. — Our goal is to provide a notion of a stability condition over S
that is strong enough to yield relative moduli spaces of stable objects, and flexible enough
to allow for deformation results, and constructions via Bogomolov–Gieseker type inequal-
ities. To do so, we will consider various compatibility conditions on fiberwise collections
of stability conditions.

Definition 20.1. — Let σ = (σs = (Zs,Ps))s∈S be a collection of (weak) numerical stability
conditions on Ds for every (closed or non-closed) point s ∈ S. In the weak case, we assume that σs satisfies
the assumptions of Proposition 14.20 for all s ∈ S.

(1) σ universally has locally constant central charges if for every morphism T→ S and
every T-perfect object E ∈ D(XT) such that Et ∈Dt for all t ∈ T, the function T→ C

given by t �→ Zt(Et) is locally constant. In this situation, if T is connected we often write
Z(E), φ(E), and μ(E) for the constant values Zt(Et), φt(Et), and μt(Et).

(2) σ universally satisfies openness of geometric stability if for every morphism T→ S
and every T-perfect object E ∈D(XT), the set

{
t ∈T Et ∈Dt and is geometrically σt-stable

}

is open.
(3) σ universally satisfies openness of lying in P(I) for an interval I ⊂ R if for every

morphism T→ S and every T-perfect object E ∈D(XT), the set

{t ∈T Et ∈Pt(I)}

is open.

The (weak) stability conditions σt appearing in Definition 20.1 are given by the
base change results Theorem 12.17 and Proposition 14.20, and geometric stability is
meant in the sense of Definition 12.18. Further, we note that if T is quasi-compact with
affine diagonal, then by Lemma 9.3 the condition on E ∈ D(XT) in (1) is equivalent to
E ∈DT.

Remark 20.2. — In the situation of Definition 20.1, for any φ ∈ R we obtain a
fiberwise collection of t-structures given by

D�0
s =Ps(> φ), D�0

s =Ps(� φ + 1).

For φ = 0, we call this the fiberwise collection of t-structures underlying σ . Note that for the
interval I = (0,1], universal openness of lying in P(I) is precisely the condition of uni-
versal openness of flatness (in the sense of Definition 10.4) of this fiberwise collection of
t-structures.

Lemma 20.3. — Let σ = (σs = (Zs,Ps))s∈S be a collection of (weak) numerical stability
conditions as in Definition 20.1. Then the properties of universal local constancy of central charges,
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universal openness of geometric stability, and universal openness of lying in P(I) for an interval I⊂ R
can be checked on morphisms T→ S of finite type from an affine scheme.

Proof. — Using parts (3) and (4) of Theorem 12.17 and the analogous statements
in Proposition 14.20, this follows by the argument in the proof of Lemma 10.6. ✷

We next show that for collections of stability conditions, universal openness of ge-
ometric stability implies universal generic openness of semistability in a suitable sense:

Lemma 20.4. — Let σ = (σs = (Zs,Ps))s∈S be a collection of numerical stability conditions
which universally has locally constant central charges and universally satisfies openness of geometric sta-
bility. If T→ S is a morphism from an irreducible, quasi-compact scheme with affine diagonal, and if
E ∈DT is a T-perfect object whose generic fiber EK(T) is σK(T)-semistable, then there exists a nonempty
open subset U⊂T such that Et is σt-semistable for all t ∈U.

Proof. — Let K(T)⊂K be the algebraic closure, and consider the Jordan–Hölder
filtration for EK. By Proposition 5.9.(3), this filtration is defined over a finitely generated
field extension K(T)⊂ L; let Ei

L be the filtration factors, which are by definition geomet-
rically σL-stable. Let f : T′→T be a morphism of finite type such that L=K(T′) as field
extensions of K(T). By Lemma 4.16.(3), we can lift the JH filtration of EL to a sequence
of morphisms

0= F0
T′

f1
−→ F1

T′
f2
−→ · · ·→ Fm

T′ = ET′

in DT′ such that Ei
T′ := cone(fi) is a lift of Ei

L to DT′ . Moreover, in light of [Lie06a,
Proposition 2.2.1], by shrinking T′ we may assume that all Fi

T′ are T′-perfect. By our
assumption on universal openness of geometric stability, by further shrinking T′ we may
assume Ei

t′ is geometrically σt′-stable for all t′ ∈ T′ and for all i. Since the central charges
are universally locally constant, the objects Ei

t′ also have the same phase. It follows that
Et′ is σt′-semistable, and hence Et is σt-semistable for all t ∈ f (T′) by Theorem 12.17.(3).
Since f (T′) contains an open set, this concludes the proof of the lemma. ✷

The following, combined with Definition 21.15 later on, is the main definition of
this paper.

Definition 20.5. — A flat family of fiberwise stability conditions on D over S is a
collection of numerical stability conditions σ = (σs = (Zs,Ps))s∈S on Ds for every (closed or non-
closed) point s ∈ S such that:

(1) σ universally has locally constant central charges.
(2) σ universally satisfies openness of geometric stability.
(3) σ integrates to a HN structure over any Dedekind scheme C→ S essentially of finite type

(see Definition 11.16) over S, i.e., the stability conditions σc for c ∈ C are induced, in the
sense of Lemma 13.11, by a HN structure σC on DC over C.
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We define a flat family of fiberwise weak stability conditions analogously via weak stability
conditions on the fibers, but with some additional assumptions:

(0) For each s ∈ S, the central charge Zs is defined over Q[i], and A0
s ⊂ As (see Defini-

tion 14.3) is a noetherian torsion subcategory (see Definition 14.6).
(2’) In addition to universal openness of geometric stability, σ satisfies the following property:

For any morphism T→ S essentially of finite type with T irreducible and any T-perfect
E ∈DT whose generic fiber EK(T) is σK(T)-semistable, there exists a nonempty open subset
U⊂T such that Et is σt-semistable for all t ∈U.

(3’) For any Dedekind scheme C→ S essentially of finite type over S, the weak stability condi-
tions σc for c ∈ C are induced, in the sense of Lemma 15.6, by a weak HN structure σC

on DC over C with the additional property that A0
C (see Definition 19.1) is a noetherian

torsion subcategory.

Remark 20.6. — Let us elaborate on the conditions appearing in Definition 20.5:
(1) Universal openness of geometric stability in (2) is the main consistency condi-

tion relating the slicings for different fibers and it is necessary for the existence
of moduli spaces of semistable objects, see Theorem 21.24. In Proposition 20.8
below, we show that a flat family of fiberwise (weak) stability conditions auto-
matically satisfies the other compatibility condition introduced above — uni-
versal openness of lying in P(I) for any I ⊂ R. In the case of weak stability
conditions, we initially interpret condition (2’) in the sense of Definition 14.19;
this in combination with condition (0) means that the assumptions of Proposi-
tion 14.20 are satisfied, and thus the notions of universal openness of geometric
stability and lying in P(I) are indeed well-defined.

(2) By Lemma 20.4 condition (2’) automatically holds for a flat family of fiberwise
stability conditions, but in the weak case we need to include generic openness
of semistability as an extra assumption.

(3) If S is of finite type over a field, or more generally a Jacobson scheme, since the
closed points of S are dense in every closed subset of S, σ is determined by σs

for all closed points s: indeed this follows from universal openness of geomet-
ric stability and universal generic openness, once we invoke [Lie06a, Propo-
sition 2.2.1] to lift objects to relatively perfect ones.4 In particular, from (1) it
follows that the central charge at a point s is determined by the central charge
at any specialization of s. The existence of central charges on non-closed points
is a consistency condition for central charges on closed points, generalizing
Definition 13.1. The existence of slicings for non-closed points axiomatizes the
classical notion of generic stability and generic HN filtrations. This notion is
significantly strengthened by condition (3) when the base is a Dedekind scheme.

(4) Clearly, a flat family of fiberwise stability conditions over S induces one over T
for a base change T→ S essentially of finite type.

4 We have learned a related statement for complete DVRs from Fabian Haiden.
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(5) In case S = Spec(k) is a point, a “flat family of fiberwise stability conditions
on D” (and, similarly, “a stability condition on D over k” in Definition 21.15
below) is stronger than the notion of a stability condition on D from Section 12.
Indeed, Definition 20.5 includes openness of stability as a requirement (while
Definition 21.15 will include boundedness).

We single out the following remark for emphasis.

Remark 20.7. — Consider a Dedekind scheme C→ S. The key requirement in
condition (3) of Definition 20.5 is the existence of a t-structure on DC integrating the t-
structures on the fibers Dc induced by the stability conditions σc and universally satisfying
openness of flatness. Indeed, we will see that, given σ , the heart AC universally satis-
fies openness of flatness (Proposition 20.8) and has a C-torsion theory (Corollary 20.10).
Conversely, if a heart AC exists and universally satisfies openness of flatness, then by The-
orem 17.1 it does admit a C-torsion theory; once we impose a support property which
is uniform across all fibers, see Definition 21.15, the existence of a HN structure then
follows from Theorem 18.7 and Lemma 20.4.

In the case of weak stability conditions, the same logic holds if in addition, every
weak stability condition σs has the tilting property, this is preserved under base change,
and A0

C is a noetherian torsion subcategory.
Conversely, a (weak) HN structure on S= C satisfying support property on fibers

induces a flat family of fiberwise (weak) stability conditions only if we additionally require
various base change compatibilities; for example, universal openness of geometric stabil-
ity (and universal generic openness, in the weak stability case) rather than just generic
openness for objects that are semistable over K(C) (see Definition 16.3).

20.2. Universal openness of flatness. — In order to take advantage of the results of
Part II, in particular the existence of Quot spaces shown in Section 11, we have to show
that the fiberwise collection of t-structures underlying a flat family of (weak) stability con-
ditions universally satisfies openness of flatness. More generally (see Remark 20.2), we
show the following.

Proposition 20.8. — Let σ be a flat family of fiberwise (weak) stability conditions on D over
S. Then σ universally satisfies openness of lying in P(I) for any interval I⊂R.

Given a base change T→ S of finite type and a T-perfect object E ∈DT, we obtain
two functions

(20.1) φ+E : T→R∪ {−∞} and φ−E : T→R∪ {+∞}

that assign to t ∈T the maximal and minimal phase φ±(Et) of the HN filtration of Et with
respect to the slicing Pt ; here we set φ± of the zero object to be ∓∞ for convenience.
The key observation underlying Proposition 20.8 is the semicontinuity of these functions.
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Lemma 20.9. — The functions φ+E and φ−E are, respectively, upper and lower semicontinuous
constructible functions on T.

Proof of Proposition 20.8. — By Lemma 20.3, it is enough to prove openness of lying
in P(I) for a finite type base change T→ S and E ∈DT as above. Suppose for concrete-
ness that the interval I is of the form I= (a, b]; the argument is the same for other types
of intervals. Then the set

{t ∈T Et ∈Pt(I)} =
(
φ−E

)−1
(a,+∞)∩

(
φ+E

)−1
(−∞, b]

is open by Lemma 20.9. ✷

Proof of Lemma 20.9. — We first note that φ±E are preserved by arbitrary base
change, as the pullback under base change for field extensions in Theorem 12.17 or
Proposition 14.20 preserves the HN filtration.

Step 1. φ+E and φ−E are constructible functions.

Due to the compatibility with base change, and since T is noetherian, it is enough
to prove that if T is irreducible, then there exists an open set U ⊂ T on which φ±E is
constant. To prove this claim, let 0→ E1 → E2 → ·· · → Em = E be an arbitrary lift to
DT of the HN filtration of Eη, where η ∈ T is the generic point, given by Lemma 4.16.(1).

Let Fi be the cone of the map Ei−1 → Ei ; by construction, the objects (Fi)η are
the HN factors of Eη, and thus semistable. By the generic openness of semistability (see
Lemma 20.4), there exists a nonempty open set U⊂T such that every (Fi)t is semistable
for all points t ∈ U. It follows that the (Ei)t induce the HN filtration of Et for all t ∈ U,
and in particular that φ±E are constant on U.

Step 2. φ+E and φ−E are, respectively, monotone increasing and decreasing under specialization.

As φ±E are preserved by base change, and since we assume S (and thus T) to be
Nagata, it suffices by Lemma 11.19 to consider a DVR R essentially of finite type over
T: if k,K are the special and generic point of Spec R, respectively, we have to show
φ+(Ek) � φ+(EK) and φ−(Ek) � φ−(EK). We may assume EK �= 0, otherwise the claim
is trivial.

By Definition 20.5 assumption (3), the (weak) stability conditions σk and σK are
induced by a (weak) Harder–Narasimhan structure σR over Spec R. Let

0= E0 → E1 → ·· ·→ Em = ER

be the HN filtration of ER with respect to σR. Its base change to the fraction field induces
the HN filtration of EK (in the sense that some filtration quotients might be R-torsion, in-
ducing isomorphisms Ei → Ei+1 after base change to K); therefore we have an inequality
φ+(EK)� φ(E1)= φ+(ER), and likewise φ−(EK) � φ−(ER).
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It remains to prove φ−(ER) � φ−(Ek) and φ+(ER) � φ+(Ek). Since ik∗ is t-exact
with respect to the t-structures obtained from P(> φ) for any φ ∈R, see Lemma 15.6, it
follows that i∗k is right t-exact, and i!k = i∗k [−1] is left t-exact; in other words,

(20.2) Ek ∈Pk[φ
−(ER),φ+(ER)+ 1].

This immediately implies the desired claim for φ+. Indeed, consider the triangle
E1 → ER →G obtained from the HN filtration, and let A be the first HN factor of (E1)k .
Then

φ(A)� φ(E1)= φ+(ER) > φ+(G)� φ+(Gk[−1]).

Hence the composition A→ (E1)k → Ek is non-zero, and so φ+(Ek)� φ(A)� φ+(ER).
An analogous argument reduces the case of φ− to the following claim: if E ∈AR is

σR-semistable, then φ(E)= φ−(Ek). To prove this claim, first suppose ZK(EK) �= 0. Then
Zk(Ek) = ZK(EK) ∈ R>0 · eiπφ . Together with Ek ∈ Pk[φ,φ + 1], this is only possible if
φ−(Ek)= φ as claimed.

Now suppose ZK(EK)= 0. Then φ = 1, so E/πE ∈ Pk(1) by our analysis above;
to conclude, it suffices to prove E/πE �= 0. Assume otherwise. It follows immediately that
Ek =H−1

Ak
(Ek)[1] with Zk

(
H−1

Ak
(Ek)

)
= 0; the same holds for all quotients of E in AR.

Recall from Definition 20.5.(3’) that A0
R is noetherian, so if E were in A0

R, then
it would have a maximal R-torsion subobject which would contradict E/πE= 0 by Re-
mark 6.20. Thus E /∈ A0

R, so there exist quotients E ։ Q1 ։ Q2 with a short exact
sequence A →֒ Q1 ։ Q2 and ZR(A) �= 0. Since ZK((Qi)K) = 0, this is only possible if
A is R-torsion. On the other hand, the surjection H−1

Ak
((Q2)k) ։ A/πA in Ak shows

Zk(A/πA)= 0; via Lemma 6.11 this gives a contradiction. ✷

Finally, as consequence of Proposition 20.8 and Theorem 17.1, we have:

Corollary 20.10. — Let σ be a flat family of fiberwise (weak) stability conditions on D over
S. Let C→ S be essentially of finite type, with C Dedekind, and let AC be the heart of the (weak) HN
structure on DC. Then AC has a C-torsion theory.

20.3. Product stability conditions. — In this subsection, we assume that X0 and S are
of finite type over a field k with X0 projective, and let X = X0 ×Spec k S be the product.
Further, assume that D0 ⊂ Db(X0) is a k-linear strong semiorthogonal component of
finite cohomological amplitude, and D = (D0)S ⊂Db(X) is its base change to S.

By Theorem 12.17, any stability condition σ0 on D0 induces a collection σ of
fiberwise stability conditions on D over S; we call such a σ a product stability condition.
If σ0 universally satisfies openness of geometric stability and the heart of σ0 universally
satisfies openness of flatness, then σ is a flat family of fiberwise stability conditions by
Theorems 18.7 and 5.7. As a partial converse, we have the following result, strengthening
[LPZ18, Proposition 2.6].
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Proposition 20.11. — If S as above is connected and has a k-rational point, then the only flat
families of fiberwise stability conditions on D over S are product stability conditions.

Proof. — Let σ = (σs = (Zs,Ps))s∈S be a flat family of fiberwise stability conditions
on DS over S. By Remark 20.6.(3), σ is determined by σs for all closed points s ∈ S.

Step 1. Assume that S is irreducible, and that s, t ∈ S are two k-rational points. Then σs = σt .

Let F ∈Ps(φ)⊂Ds. We claim that F ∈Pt(φ) and Zs(F)= Zt(F).
Indeed, if we consider E := p∗F, where p : X→X0 is the natural projection, then

E is S-perfect and Et = Es = F, so by Definition 20.5.(1) Zs(F)= Zt(F). Now, suppose that
Et = F is not σt-semistable. Then, if we consider the mds F1 of F with respect to σt , we
have φ(F1) > φ(F). By Definition 20.5.(2), there exist open sets U ∋ s and V ∋ t, such that
F is semistable for all points in U and F1 is semistable for all points in V. Since U∩V �= ∅,
the inequality φ(F1) > φ(F) contradicts the existence of a non-trivial morphism F1 → F.

Step 2. Assume that S is irreducible, and that it contains a point s ∈ S such that σs is obtained by base
change from a stability condition σ0 on D0. Then σ is a product stability condition.

Let t ∈ S; we need to show that σt is equal to the stability condition (σ0)k(t) obtained
by base change from σ0 via the field extension k ⊂ k(t). Let ℓ be a field extension of
k containing both k(t) and k(s). Consider the base change Sℓ := S ×Spec k Specℓ→ S.
Then every irreducible component of Sℓ contains ℓ-rational points sℓ, tℓ mapping to s, t,
respectively. By Step 1, we have

(σt)ℓ = (σs)ℓ = (σ0)ℓ =
(
(σ0)k(t)

)
ℓ
.

By Theorem 12.17, two stability conditions that become equal after base change are
equal. This proves the claim.

Step 3. The general case.

If S is any connected scheme, then by induction on the number of irreducible
components and the previous steps, every irreducible component contains a point t such
that σt is obtained by base change from a stability condition σ0 on D0. By Step 2, the
result follows. ✷

21. Stability conditions over S

In this section we give the definition of a (weak) stability condition over a given
base S. To this end we need to define a suitable support property for a flat family of fiberwise
(weak) stability conditions. This consists of two properties: the existence of a uniform
quadratic form controlling the central charges, and boundedness of geometrically stable
objects. We show that a stability condition over S has well-behaved moduli spaces of
semistable objects.
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21.1. Support property. — So far, we have assumed the support property on each
fiber; to make this notion useful, we will have to assume the existence of a uniform
quadratic form controlling the central charges and classes of semistable objects on all
fibers.

Recall the definition of the numerical K-groups Knum(Ds) underlying Defini-
tion 12.8, the existence of a pushforward map

η∨t/s : Knum(Dt) ։ Knum(Ds)t ⊂Knum(Ds)⊗Q

for every point t over s, see (12.2), and the property Knum(Ds)t ⊂ Knum(Ds)s shown in
Proposition and Definition 12.15. Condition (1) on universal local constancy of central
charges in Definition 20.5 naturally leads to the following.

Definition 21.1. — We define the relative numerical Grothendieck group Knum(D/S)

as the quotient of
⊕

s∈S Knum(Ds)s by the saturation of the subgroup generated by elements of the form

(21.1) η∨t1/f (t1)
[Et1] − η∨t2/f (t2)

[Et2]

for all tuples (f ,E, t1, t2) where f : T→ S is a morphism from a connected scheme T, E ∈D(XT)

is a T-perfect object such that Et ∈Dt for all t ∈T, and t1, t2 ∈T.

Remark 21.2. — Analogous to Lemma 20.3, we would obtain the same group
Knum(D/S) if we only considered morphisms f : T→ S of finite type from a connected
affine scheme in the definition.

Given f : T → S and E as in Definition 21.1, we write [E] for the element of
Knum(D/S) given by the image of [Et] ∈Knum(Dt) under the composition

Knum(Dt)→Knum(Df (t))t →֒Knum(Df (t))f (t) →Knum(D/S)

for any t ∈ T, which is independent of t ∈T by the definition of Knum(D/S).
By the evident universal property of Knum(D/S), for any flat family of fiberwise

(weak) stability conditions there exists a central charge Z : Knum(D/S)→C such that for

all s ∈ S, the central charge Zs factors as Zs : Knum(Ds)→Knum(D/S)
Z
−→C.

Definition 21.3. — Let � be a finite rank free abelian group. A relative Mukai homomor-
phism for D over S with respect to � is a group homomorphism v : Knum(D/S)→�.

Remark 21.4. — A relative Mukai homomorphism v : Knum(D/S)→� is univer-
sally locally constant in the sense that for every morphism T→ S and every T-perfect object
E ∈ D(XT) such that Et ∈Dt for all t ∈ T, the function T→� given by t �→ v([Et]) is
locally constant.
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We will always restrict our attention to flat families of fiberwise (weak) stabil-
ity conditions where Z : Knum(D/S)→ C factors via a relative Mukai homomorphism
v : Knum(D/S)→�. We will frequently use the following choice.

Proposition and Definition 21.5. — There is an Euler characteristic pairing

χ : K(Dperf)×Knum(D/S)→ Z given by χ([F], [E])= χ(Ft,E)

for some point t over S and objects E ∈Dt and F ∈Dperf. We write N (D/S) for the quotient

N (D/S) :=Knum(D/S)/Kerχ,

and call it the uniformly numerical relative Grothendieck group of D over S. If S is quasi-
projective over a field, then N (D/S) is a free abelian group of finite rank.

Proof. — We need to show that χ satisfies the relation given in (21.1). This follows
since χ(Ft1,Et1) and χ(Ft2,Et2) both compute the rank of the object HomT(FT,E) in
Db(T).

To prove the claim on being a free abelian group of finite rank, we first ob-
serve that Knum(D/S) is generated by objects defined over closed points. Therefore,
N (D/S) is a subgroup of the numerical Grothendieck group for compactly supported
objects in Db(X ) considered in [BCZ17, Section 5.1]. Since X is quasi-projective over a
field, we can compactify it and then use directly the argument in the proof of [BCZ17,
Lemma 5.1.1], by using Lemma 12.7 to avoid both the normality and the characteristic
zero assumptions in [BCZ17, Lemma 5.1.1]. ✷

Example 21.6. — Let g : X → S be a smooth family of polarized surfaces with
S connected and whose geometric generic fiber has Picard rank one, and let OX (1)

denote a relatively ample line bundle. Then there is an isomorphism N (Db(X )/S)∼= Z3

induced by the coefficients of the relative Hilbert polynomial with respect to OX (1) as
in Example 15.3 (or, equivalently, the degrees of the Chern character on the fibers with
respect to OX (1)).

Example 21.7 (Yoshioka’s trick). — Consider the previous example in the case where
the base S=C is a curve. We can modify this construction at a single closed point c ∈C
whose fiber Xc has higher Picard rank as follows. Let L⊂Knum(Db(Xc)) be the saturated
subgroup generated by (the restrictions of) OX , OX (1) and the class of a point. Then the
quotient map to Knum(Db(Xc))/L extends to a map Knum(Db(X )/S)→Knum(Db(Xc))/L
by setting it identically to zero for objects supported over any point c′ ∈ C, c �= c′. The
choice of

Knum(Db(X )/S)→N (Db(X )/S)⊕Knum(Db(Xc))/L
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will allow us to deform the central charge specifically for objects supported over c.
This can be generalized to an arbitrary family over C by letting L be the subgroup

of Knum(Dc) generated by all classes of the form η∨t/c[Et] for objects E defined over a
scheme f : T→C with f dominant, t ∈T and f (t)= c.

Example 21.8. — Generalizing Example 21.6, let g : X → S be a flat projective
morphism of relative dimension n, with normal and integral fibers. The coefficients
pn, . . . , p0 of the Hilbert polynomial with respect to OX(1) define, up to normalization, a
morphism N (Db(X )/S)→ Zn+1.

The assignment σ =
(
σs = (ipn− pn−1,CohXs)

)
s∈S

is a flat family of weak fiberwise
stability conditions on Db(X ): condition (2) follows from [HL10, Proposition 2.3.1], while
condition (3’) follows from Section 16.2. Moreover, for each s the subcategory A0

s is the
category of torsion sheaves supported in codimension � 2, which satisfies condition (0)
because CohXs is noetherian. Similarly, to verify condition (3’), we note that A0

C consists
of sheaves whose support intersects every fiber in codimension � 2.

This can be generalized to modules Coh(X ,B) over a sheaf of coherent algebras
B on X (or, more generally, a “sheaf of differential operators” in the sense of [Sim94,
Section 2]); the Hilbert polynomial being the one of the underlying sheaf. In the example
of cubic fourfolds (see Part VI), we will use the case when B is a sheaf of the even parts of
a Clifford algebra.

From now on, we fix � and a relative Mukai homomorphism v : Knum(D/S)→�.

Definition 21.9. — Given a flat family of fiberwise (weak) stability conditions σ , for which
Z factors via v, we let �0 be the saturated subgroup of � generated by v([Et]) for all Et ∈A0

t (see
Definition 14.3) and all points t over S. Let � be the free abelian group �/�0, and v the composition
of v with the quotient map.

Remark 21.10. — If each σs is a stability condition, then �0 = {0} and �=�.

In our definition of the support property for a flat family of fiberwise (weak) sta-
bility conditions, we will need to impose a boundedness assumption on moduli spaces.
The following definition summarizes the relevant moduli spaces we can consider in our
context.

Definition 21.11. — Let σ be a flat family of fiberwise (weak) stability conditions on D over
S. Fix a vector v ∈� and φ ∈R such that Z(v) ∈R>0eiπφ .

(1) We denote by

Mst
σ (v) : (Sch/S)op →Gpds

the functor whose value on T ∈ (Sch/S) consists of all T-perfect objects E ∈ D(XT)

such that for all t ∈ T we have Et ∈ Dt , Et is geometrically σt-stable of phase φ, and



276 A. BAYER, M. LAHOZ, E. MACRÌ, H. NUER, A. PERRY, P. STELLARI

v([Et])= v. An object E ∈Mst
σ (v)(T) is called a family of geometrically σ -stable

objects of class v over T.
(2) We denote by

Mσ (v) : (Sch/S)op →Gpds

the functor whose value on T ∈ (Sch/S) consists of all T-perfect objects E ∈D(XT) such
that for all t ∈ T we have Et ∈Dt , Et is σt-semistable of phase φ, and v([Et])= v. An
object E ∈Mσ (v)(T) is called a family of σ -semistable objects of class v over T.

(3) For an interval I⊂R, we denote by

Pσ (I;v) : (Sch/S)op →Gpds

the functor whose value on T ∈ (Sch/S) consists of all T-perfect objects E ∈D(XT) such
that for all t ∈T we have Et ∈Pt(I)⊂Dt and v([Et])= v.

We will always omit the phase φ from the notation. Note that by Theorem 12.17
and Proposition 14.20 the above prescriptions indeed define functors, i.e., the conditions
considered on E ∈D(XT) are stable under base change. Also note that by definition we
have Mσ (v)=Pσ ([φ,φ];v).

Recall from Section 9 the moduli stack Mpug(D/S) of objects in D.

Lemma 21.12. — Let σ be a flat family of fiberwise (weak) stability conditions on D over
S, and fix a vector v ∈ � and an interval I ⊂ R. Then Mst

σ (v), Mσ (v), and Pσ (I;v) are open
substacks of Mpug(D/S).

Proof. — Since the relative Mukai homomorphism v is universally locally constant
(by Remark 21.4) and σ universally satisfies openness of geometric stability, Mst

σ (v) is
an open substack of Mpug(D/S). Similarly, since σ also universally satisfies openness of
lying in P(I) by Proposition 20.8, Pσ (I;v) (and thus Mσ (v) as a special case) is an open
substack of Mpug(D/S). ✷

Definition 21.13. — Let σ be a flat family of fiberwise (weak) stability conditions on D over
S. We say that σ satisfies boundedness if Mst

σ (v) is bounded in the sense of Definition 9.4 for every
v ∈�.

Remark 21.14. — In Section 21.2 we show that in the case of stability conditions,
we also obtain boundedness of Pσ (I,v) for I of length less than 1, and of certain Quot
spaces.

Now we can finally define the support property, completing our main definition.
We use the notation of Definition 21.9, and write the central charge as the composition
of Z : �→C with the fixed relative Mukai homomorphism v.
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Definition 21.15. — We say that a flat family of fiberwise (weak) stability conditions σ satisfies
the support property with respect to � if:

(4) There exists a quadratic form Q on �R =�⊗R such that
(a) the kernel (ker Z)/�0 ⊂� is negative definite with respect to Q, and
(b) for every s ∈ S and for every σs-semistable object E ∈Ds, we have Q(v(E))� 0.

(5) σ satisfies boundedness.
In this case, we call σ a (weak) stability condition on D over S with respect to �.

Remark 21.16. — If the flat family σ of fiberwise (weak) stability conditions satisfies
the support property, then every σs satisfies the support property as a stability condition
on Ds with respect to Q and the composition Knum(Ds)→Knum(D/S)→�. Similarly,
consider a Dedekind scheme C and a morphism C→ S essentially of finite type. Our
relative Mukai homomorphism induces a Mukai homomorphism v : Knum(DC-tor)→�

by Lemma 18.3, and the induced (weak) stability condition on DC-tor satisfies the support
property by Lemma 18.6.

Remark 21.17. — Let us explain the role of assumption (5) in the support property.
In the absolute case, the support property is the key behind the deformation result for
stability conditions in Theorem 12.11. It implies that under a small deformation of a
central charge, there are only finitely many classes of objects that could destabilize a
given object E. Now consider an object E ∈DC defined over a curve C. To ensure that
openness of stability is preserved, we need to show that unless the generic fiber of E gets
destabilized, each such class can only destabilize Ec for finitely many closed points c ∈C.
This can only be ensured by showing that the set of potentially destabilizing quotients is
bounded; see Section 22 for the full proof.

Example 21.18. — In the setting of Example 21.8, the collection

σ =
(
σs = (Zs := ipn − pn−1,CohXs)

)
s∈S

gives a weak stability condition on Db(X ) over S. Indeed, �0 = ker Z is the saturated
subgroup generated by (pn−2, . . . , p0) and so �∼= Z2. We can therefore choose any non-
negative quadratic form Q on �R to satisfy (a) and (b). Boundedness is [Lan04, Theo-
rem 4.2].

As before, this generalizes to the case Coh(X ,B); as remarked in [Lan04, Sec-
tion 4], boundedness can be proved over an arbitrary base S with the same argument as
in [Sim94, Proposition 3.5].

Remark 21.19. — The action of G̃L+2 (R) on stability conditions on the fibers,
and on HN structures over curves (see Remark 13.15), preserves all properties in Defini-
tions 20.5 and 21.15, and thus acts on the set of stability conditions over S.
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21.2. Boundedness results. — Now we show that the boundedness of a flat family of
fiberwise stability conditions leads to boundedness of other moduli functors.

Lemma 21.20. — Let σ be a stability condition on D over S. Let I ⊂ R be an interval of
length less than 1, and v ∈�. Then Pσ (I;v) is a bounded (in the sense of Definition 9.4) algebraic
stack of finite type over S; in particular, so is Mσ (v).

Proof. — Let φ0, φ1 be the endpoints of (the closure of) I, and consider an object
E ∈Pt(I) of class v for a point t over S; let t denote the algebraic closure of t. Then every
stable factor (i.e., a Jordan–Hölder factor of one of its HN factors) of Et with respect to σt

has central charge in the parallelogram with angles πφ0 and πφ1 and with 0 and Z(v) as
opposite vertices. By Remark 12.3, this means that as t ranges over all points over S, there
are only finitely many possible classes occurring as stable factors of Et . Combining this
with the boundedness of σ for stable objects—condition (5) in Definition 21.15—, and the
fact that Pσ (I;v) ⊂Mpug(D/S) is open by Lemma 21.12, we conclude by Lemma 9.6
that Pσ (I;v) is bounded. Thus by Lemma 9.5, Pσ (I;v) is an algebraic stack of finite type
over S. ✷

Recall from Section 11 that given a fiberwise collection of t-structures τ universally
satisfying openness of flatness, we have defined a moduli stack Mτ of flat objects in D, as
well as a Quot space QuotS(E) for any object E ∈Mτ (S). Note that if σ is a flat family of
fiberwise (weak) stability conditions on D over S, then by Proposition 20.8 the fiberwise
collection of t-structures underlying σ universally satisfies openness of flatness.

Lemma 21.21. — Let σ be a stability condition on D over S. Let E ∈Mτ (S) where τ is
the fiberwise collection of t-structures underlying σ . For φ ∈ (0,1), let Quot�φ

S (E) be the subfunctor
of QuotS(E) which assigns to T ∈ (Sch/S) the set of (ET → Q) ∈ QuotS(E)(T) satisfying
φ(Qt) � φ for all t ∈ T. Then Quot�φ

S (E) is an algebraic space of finite type over S, and the
morphism Quot�φ

S (E)→ S is universally closed.

Proof. — The canonical morphism Quot�φ

S (E)→ QuotS(E) is representable by
open immersions because σ universally has locally constant central charges. Since
QuotS(E) is an algebraic space locally of finite type over S by Proposition 11.6, it fol-
lows that Quot�φ

S (E) is too.
Next we prove that Quot�φ

S (E) is in fact of finite type over S. Recall the function
φ−E defined in (20.1). By Lemma 20.9, φ−E is a constructible function on the noetherian
topological space S, and hence has a minimum φ0 > 0. In particular, given a T-point
(ET →Q) ∈Quot�φ

S (E)(T) and a point t ∈ T, every stable factor of the base change
Qt to the algebraic closure has phase � φ0. Since we also have ℑZ(Q) � ℑZ(E) and
φ(Q)� φ, it follows that every stable factor of Qt has central charge in the parallelogram
with angles πφ0 and π and with 0 and z as opposite vertices, where z ∈C is the complex
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number of phase φ such that ℑz=ℑZ(E). By Remark 12.3 it follows that there is a finite
set Ŵ ⊂� of classes occurring as stable factors of Qt ; moreover, this set Ŵ depends only
on E, φ, and Z, and hence works uniformly for any (ET → Q) ∈ Quot�φ

S (E)(T) and
t ∈T. As the central charge of Q lies in the triangle with vertices 0, z, and w, where w is
complex number of phase φ0 such that ℑw =ℑZ(E), the set of sums of classes in Ŵ whose
central charge lie in this triangle is another uniform finite set Ŵ′, which contains all of the
possible classes of Q. Therefore, the morphism Quot�φ

S (E)→Mτ sending ET →Q to
Q factors through the canonical morphism

∐
v∈Ŵ′ Pσ ([φ0,1];v)→Mτ . The proof of

Proposition 11.6 shows that the morphism Quot�φ

S (E)→
∐

v∈Ŵ′ Pσ ([φ0,1];v) is of finite
type. The target of this morphism is of finite type over S by Lemma 21.20, hence so is
Quot�φ

S (E).
By combining condition (3) of Definition 20.5, Corollary 20.10, and Proposi-

tion 11.11, we find that the morphism QuotS(E) → S satisfies the strong existence
part of the valuative criterion with respect to any essentially of finite type morphism
Spec(R) → S with R a DVR. By universal local constancy of the central charges
of σ , the same holds for Quot�φ

S (E) → S. Thus Lemma 11.21 shows the morphism
Quot�φ

S (E)→ S is universally closed. (Note that Spec(R)→ S is essentially of finite type
if and only if it is essentially locally of finite type, see Remark 11.17.) ✷

21.3. Relative moduli spaces. — In this section, we show that in our setting, relative
moduli spaces of semistable objects are well-behaved. First we prove that if σ is a stability
condition on D over S, then the moduli stack Mσ (v) is quasi-proper over S, that is, it sat-
isfies the strong existence part of the valuative criterion. The proof is essentially the same
as [AP06, Theorem 4.1.1], and is the reason we require the existence of HN structures
after base change to Dedekind schemes. In characteristic zero, we further use [AHLH18]
to show that it admits a good moduli space Mσ (v) (in the sense of Alper) which is proper
over S.

Lemma 21.22. — Let σ be a stability condition on D over S. Then for every v ∈�, the mor-
phism Mσ (v)→ S satisfies the strong existence part of the valuative criterion for any DVR essentially
of finite type over S.

Proof. — Let Spec(R)→ S be a morphism from a DVR that is essentially of finite
type, let K be its field of fractions, k its residue field, and assume we are given a lift
Spec(K)→Mσ (v), corresponding to a σK-semistable object in DK of class v. We may
assume that it is the base change EK of ER ∈DR.

By assumption, we have a HN structure σR on DR over Spec R satisfying the sup-
port property. Since the HN filtration of ER induces the one of EK, we may assume that
ER is σR-semistable. By Corollary 20.10 and Proposition 17.6 we can assume that it is
R-torsion free. By Lemma 13.12, its special fiber Ek is σk-semistable. ✷

We recall the notion of a good moduli space from [Alp13].
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Definition 21.23. — Let Y be an algebraic stack over S. We say that Y admits a good
moduli space if there exist an algebraic space Y over S and an S-morphism π : Y→ Y such that:

(1) π is quasi-compact and the functor π∗ : QCohY→QCohY is exact; and
(2) the natural map OY → π∗OY is an isomorphism.

Theorem 21.24. — Let σ be a (weak) stability condition on D over S, and let v ∈�.
(1) Mst

σ (v) is an algebraic stack of finite type over S.
(2) If σ is a stability condition, then Mσ (v) is an algebraic stack of finite type over S. Moreover,

if Mσ (v)=Mst
σ (v), then it is a Gm-gerbe over its coarse moduli space Mσ (v), which is

an algebraic space proper over S.
(3) Suppose further that S has characteristic 0. If σ is a stability condition, then Mσ (v) admits

a good moduli space Mσ (v) which is an algebraic space proper over S.

Proof. — Claim (1) follows immediately from Lemma 9.5 and the definitions. Now
let us assume that σ is a stability condition. We have already seen in Lemma 21.20
and Proposition 20.8 that the functor Mσ (v) is bounded and an open substack of
Mpug(D/S), and hence an algebraic stack of finite type over S again by Lemma 9.5.

If Mσ (v) =Mst
σ (v), then every object E ∈Mσ (v) is simple (see Definition 9.7),

as every stable object over an algebraically closed field has only trivial endomorphisms.
The Gm-structure over its coarse moduli space follows from Lemma 9.8.

Lemma 11.21 and Lemma 21.22 show that Mσ (v) is universally closed over S.5

Now consider an étale covering M̃→Mσ (v) from a scheme M̃ that admits a uni-
versal family. The pullback of the diagonal in Mσ (v)×S Mσ (v) to M̃×S M̃ is the locus
where the two pullbacks E1,E2 of the universal family have isomorphic fibers. Since the
fibers are stable of the same phase, this is also the locus where there exists a non-trivial
morphism between the fibers of E1,E2, which is represented by a closed immersion. Since
the property of being a closed immersion is étale local on the base, this shows that Mσ (v)

is separated over S.
Finally, to prove (3) we use the recent groundbreaking result [AHLH18]. By

[Alp13, Proposition 7.9], we can reduce to the case where S is affine. In this case, we
can argue exactly as in the proof of [AHLH18, Theorem 7.25] to obtain that Mσ (v)

admits a separated good moduli space Mσ (v). To show properness, we can directly use
[AHLH18, Proposition 3.43(3)] together with Lemma 21.22. ✷

We finish this section by extending the Positivity Lemma, [BM14b, Theorem 4.1],
which gives a numerically positive divisor class on every fiber of Mσ (v), in the case where
semistability and stability coincide. We show that it is induced by a divisor class on Mσ (v)

when the central charge factors via the uniformly numerical relative Grothendieck group

5 Recall that we assume in the Main Setup that S is Nagata, so checking the valuative criterion on DVRs essentially
of finite type over S is sufficient.



STABILITY CONDITIONS IN FAMILIES 281

N (D/S) of D over S given by Proposition and Definition 21.5, and that it descends to
good moduli spaces.

The group N1(Mσ (v)/S) of relative real numerical Cartier divisors on Mσ (v)

over S is the quotient of the group of real Cartier divisors on Mσ (v) modulo those that
have degree zero on every curve C →Mσ (v) contracted to a point in S. A class in
N1(Mσ (v)/S) has a well-defined degree on every such curve; hence we can talk about
relatively nef or relatively strictly nef classes that pair non-negatively, or positively, with every
such contracted curve, respectively.

Theorem 21.25. — In the setting of Theorem 21.24, assume that the Mukai morphism to �

factors via N (D/S). Let Mσ (v) be either the coarse moduli space (when semistability and stability
coincide) or the good moduli space (in characteristic 0). Then there is a relative real numerical Cartier
divisor class ℓσ ∈ N1(Mσ(v)/S), naturally associated to σ , that is relatively nef. Moreover, we have
ℓσ .C = 0 if and only if C is a curve of S-equivalent objects (i.e., if C is contracted in the morphism
Mσ (v)→Mσ (v)). It descends to a relative numerical Cartier divisor class lσ ∈N1(Mσ (v)/S) that
is relatively strictly nef.

Proof. — In order to simplify notation, we first apply the action of C ⊂ G̃L+2 (R),
the universal cover of C∗ ⊂GL+2 (R), so that we may assume that Z(v)=−1. We assume
for simplicity that Z is defined over Q[i]; once we prove Theorem 22.2, the general
case can be reduced to that one as every wall of Stab(D/S) is defined over Q. From the
definition of N (D/S) and our assumption on the Mukai morphism, there exists F ∈Dperf

and a ∈Q such that ℑZ( ) = aχ([F], ); by linearity it is enough to consider the case
a= 1.

Now recall that the numerical Cartier divisor class ℓσs is determined by

ℓσs .C=ℑZs(vs(pXs∗EC)),

where C→Mσs(v) is a curve in the moduli stack, EC ∈ DC is the associated family of
σs-semistable objects, and pXs∗ : DC →Ds is the pushforward. In the notation above, we
have ℓσs .C= χ(Fs, pXs∗EC).

Noting that χ(Fs,E) = ℑZs(E) = 0 for any object E ∈ Ds with vs(E) = v, it fol-
lows that the (dual of the) determinant line bundle construction can be applied to F:
namely, if F̃ denotes the pullback of F to Mσ (v)×S X , and E is the universal family, then
HomMσ (v)(̃F,E) is a complex of rank zero, and its determinant

LF := det(HomMσ (v)(̃F,E))

is a line bundle whose degree on a curve C as above agrees with ℓσs .C by adjunction (see
also [BM14b, Proposition 4.4] for an analogous argument). We can thus define ℓσ by

ℓσ := [LF] ∈N1(Mσ (v)/S).
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As ℓσ |Mσs
= ℓσs by construction, its claimed positivity properties are purely a statement

on fibers, given by [BM14b, Positivity Lemma 3.3].
It remains to show that it descends to a class on the coarse or good moduli space;

we will prove the latter case. By [Alp13, Theorem 10.3], it is enough to show that
stabilizer groups of geometric points of Mσ (v) with closed image act trivially on LF.
Such a point corresponds to a polystable object E = ⊕iE

⊕mi
i where Ei ∈ Ds are dis-

tinct stable objects of the same phase, for some geometric point s over S; in particu-
lar, ℑZs(Ei) = 0. Its stabilizer group is

∏
i GL(mi, κ(s)); each factor acts on LF|E via

detχ(Fs,Ei) = detℑZs(Ei) = 1. ✷

22. Deforming stability conditions over S

The goal of this section is an analogue of Bridgeland’s deformation result for sta-
bility conditions, Theorem 12.11, for the case of stability conditions over S.

We continue to fix a group homomorphism v : Knum(D/S) → �, and let
Stab�(D/S) denote the set of stability conditions on D over S with respect to �.

Definition 22.1. — We define the topology on Stab�(D/S) as the coarsest topology such that
the canonical map

Stab�(D/S)→ Stab�(Ds), σ �→ σs

is continuous for every s ∈ S.

Theorem 22.2. — The space Stab�(D/S) of stability conditions on D over S is a complex
manifold, and the forgetful map

Z : Stab�(D/S)→Hom(�,C),

is a local isomorphism.
More precisely, assume that σ satisfies the support property with respect to the quadratic form Q,

and write PZ ⊂Hom(�,C) for the connected component containing Z of the set of central charges whose
kernel is negative definite with respect to Q. Then there is an open neighborhood σ ∈U⊂ Stab�(D)

such that Z|U : U→ PZ is a covering.

We follow the proof strategy in [Bay19]. As pointed out in Remark 21.19, G̃L+2 (R)

acts on Stab�(D/S), lifting the action of GL2(R) on Hom(�,C)∼=Hom(�,R2). There-
fore, we can use the same simplification as in [Bay19] and only treat the case of a purely
real variation of the central charge. This implies that the hearts As on the fibers, as well
as the local hearts AC for Dedekind schemes C→ S in condition (3), remain unchanged.

More precisely, we can assume by [Bay19, Section 7] that Q has signature
(2, rk�− 2), that Z and Q satisfy the normalization of [Bay19, Lemma 4.2], and con-
sider a deformation of the form W = Z + u ◦ p where p is the orthogonal projection
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�R →Ker Z (with respect to Q), and u : Ker Z→R is a linear map with operator norm
(with respect to the standard norm on R, and the norm ‖·‖ induced by −Q on Ker Z)
satisfying ‖u‖< 1; since it is sufficient to prove the theorem for small deformations of Z,
we may later choose a smaller bound ‖u‖< δ. We also note that by the normalization in
[Bay19, Lemma 4.2] |W(v)− Z(v)|� ‖u‖ |Z(v)| for all v with Q(v)� 0.

Let ς denote the collection of stability conditions on the fibers with central charge
W, where each ςs = (W,Qs) is induced from σs = (Z,Ps) via Theorem 12.11. To show
that ς is a stability condition on D, we only need to show that properties (2)–(3) of Defi-
nition 20.5 and (4)–(5) Definition 21.15 are also satisfied for ς .

We begin with a standard argument comparing the slicings at each point. For any
φ ∈ (0,1), let ǫ ∈ [0, 1

2 ] be such that sinπǫ

sinπφ
= ‖u‖; then 0 < φ − ǫ < φ + ǫ < 1.

Lemma 22.3. — For all s ∈ S we have Qs(φ)⊂Ps[φ − ǫ,φ + ǫ].

Proof. — Let E ∈ Qs(φ) and let A ⊂ E be the first step of its HN filtration with
respect to Z. Then as Q(A) � 0,

φ � φ(W(A))� φ
(
Z(A)+ ‖u‖ |Z(A)|

)
.

The last term depends only on φ(Z(A)), and the law of sines in the triangle 0,Z(A),
Z(A) + ‖u‖ |Z(A)| shows that it equals φ for φ(Z(A)) = φ + ǫ. Therefore, we have
φ+(E)= φ(Z(A))� φ+ ǫ. An analogous argument with the maximal destabilizing quo-
tient of E shows φ−(E)� φ − ǫ. ✷

Proof of Theorem 22.2. — Since each ςs satisfies the support property with respect
to the same quadratic form as σs, property (4) will be automatic. Also, (1) holds by con-
struction of Knum(D/S).

By Proposition 20.8, P[φ − ǫ,φ + ǫ] is an open substack of Mpug(D/S); to prove
that ς satisfies (2), it thus remains to show that Mst

ς(v) ⊂ P[φ − ǫ,φ + ǫ] is an open
substack. So consider an object E ∈DT with Et ∈Pt[φ− ǫ,φ+ ǫ] for all t ∈T. Applying
Lemma 22.3 to a quotient Et ։ Q after base change to the algebraic closure At , we see
that any such quotient that is W-semistable with φ(W(Q))� φ satisfies φ(Z(Q))� φ+ǫ.
In particular, any such quotient occurs in the Quot scheme Quot�φ+ǫ

T (E) featured in our
Grothendieck Lemma 21.21.

Since the class of objects in Knum(D/S) is locally constant in families, the condition
φ(W(Q))� φ picks out a union of finitely many connected components of Quot�φ+ǫ

T (E).
The union of their images in T is the locus where E is not geometrically W-stable.
The image of each component is closed by universal closedness of the Quot scheme
in Lemma 21.21. Therefore, openness of geometric stability holds for ς , verifying (2).

Now fix v ∈ �. By Lemma 22.3, we have Mς(v) ⊂ P([φ − ǫ,φ + ǫ];v). The
latter is bounded by Lemma 21.20, hence also the former, establishing condition (5).
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Finally, given a Dedekind scheme C→ S essentially of finite type over S, the fiber-
wise collection of t-structures on Dc for c ∈ C induced by σ integrates to a C-local heart
AC, in the sense of Definition 10.10; it universally satisfies openness of flatness by Propo-
sition 20.8. Since the hearts Ac on the fibers are the same for σc and ςc, the same holds
for ς . We conclude with Theorem 18.7. ✷

23. Inducing stability conditions over S

Let D ⊂ Db(X ) be an S-linear strong semiorthogonal component of finite co-
homological amplitude, with a relative exceptional collection E1, . . . ,Em (see Defini-
tion 3.19). We write D = 〈D1,D2〉 for the S-linear semiorthogonal decomposition given
by Lemma 3.25 with D2 = 〈αE1(D

b(S)), . . . , αEm(D
b(S))〉. The goal of this section is a

criterion to induce a stability condition on D1 over S from a weak stability condition on
D over S; this generalizes the absolute case treated in [BLMS17, Proposition 5.1]. Recall
that we already studied how to induce local t-structures on D1 in Section 7.

We consider the saturated subgroup generated by the image of v

(23.1) �1 := 〈v(Knum(D1/S))〉 ⊂�.

Also recall the subgroup �0 ⊂� introduced in Definition 21.9, generated by classes of
semistable objects with vanishing central charge.

Theorem 23.1. — In Setup IV.1, assume further that the morphism g : X → S is smooth. Let
σ = (σs = (Zs,As))s∈S be a weak stability condition on D over S. Assume the following conditions:

(1) (Ei)s ∈As for all i and s ∈ S.
(2) SDs((Ei)s) ∈As[1] for all i and s ∈ S, where SDs denote the Serre functor of Ds.
(3) v(Ei) /∈�0 for all i.
(4) �0 ∩�1 = 0.
(5) For all v ∈�, the set

{
F ∈Mσ (v′) : v′ ∈ v+�0, χ(Ei,F) � 0 for all i = 1, . . . ,m

}

is bounded.
For each s ∈ S, let As,1 be the heart in (D1)s given by Corollary 7.6, and let Zs,1 be the central charge
given by the restriction of Zs along K((D1)s)→K(Ds). Then the collection

σ 1 =
(
(σs)1 = (Zs,1,As,1)

)
s∈S

is a stability condition on D1 over S with respect to �1.

Proof. — By [BLMS17, Proposition 5.1], σ 1 =
(
(σs)1 = (Zs,1,As,1)

)
s∈S

is a collec-
tion of numerical stability conditions. We need to check that σ 1 satisfies the conditions
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(1)-(5) in Definitions 20.5 and 21.15. To simplify notation, we assume throughout the
proof that there is only one exceptional object E; the general case holds by similar argu-
ments.

Step 1. σ 1 universally has locally constant central charges, i.e., condition (1) holds.

This is automatic because the central charges of σ 1 are the restrictions of those
of σ .

Step 2. The fiberwise collection of t-structures τ 1 underlying σ 1 universally satisfies openness of flatness.
Moreover, for any Dedekind scheme C→ S essentially of finite type over S, τ 1 integrates over C to a
bounded C-local t-structure whose heart has a C-torsion theory.

By Proposition 20.8 the fiberwise collection of t-structures underlying σ universally
satisfies openness of flatness, so by construction the same follows for σ 1. Let AC be the
heart of the HN structure on DC that integrates σ over C. Since by assumption Ec ∈Ac

for all c ∈ C, Lemma 6.13 shows EC ∈AC. Now Corollary 7.6 applies to show (AC)1 is
the heart of a bounded C-local t-structure on D1, which by Remark 7.8 integrates τ 1 over
C. Finally, (AC)1 has a C-torsion theory by Theorem 17.1.

Step 3. σ 1 satisfies condition (4) in the support property.

The existence of the uniform quadratic form Q on (�1)R with properties (a) and
(b) follows directly from the proof of [BLMS17, Proposition 5.1], as the construction of
the quadratic form on each fiber given there depends only on the slopes of the exceptional
objects.

Step 4. σ 1 satisfies the following boundedness property: given v ∈ �1 and 0 < φ0 < φ1 � 1, there
exists a scheme B of finite type over S and a τ 1-flat object F̃ ∈ (D1)B, such that every geometric point of
Pσ 1

([φ0, φ1],v) is of the form F̃b̄ for some geometric point b̄ of B.

Indeed, under the simplifying assumption that we have only one exceptional object
E, let

φ− :=min
(
φ0, φ

−(E)
)
,

let v ∈�1, let s̄ be a geometric point of S, and let F ∈ Pσ 1
([φ0, φ1],v)(s̄). By [BLMS17,

Remark 5.12], we have F ∈ Pσ ([φ−,1]). Now consider any short exact sequence
A →֒ F ։ A′ in A corresponding to a Harder-Narasimhan filtration step of F with re-
spect to σs̄. The class of A′ in �/�0 is bounded by the support property. Moreover,
as in the proof of Corollary 7.6 we see that Extk(E,A′) = 0 for k � 2, and similarly
Ext1(E,A′)= Ext2(E,A)= 0. Therefore, χ(E,A′) � 0, and the set of such A′ is bounded
by assumption (5). This in turn implies that the set of classes v(A) ∈� of A, and hence
also the set of A itself is bounded. Using Lemma 9.6 one concludes the proof of Step 4.

Step 5. σ 1 universally satisfies openness of geometric stability and satisfies boundedness, i.e., conditions
(2) and (5) hold.
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By Lemma 20.3, to show (2) it suffices to show that if T→ S is finite type morphism
from a connected affine scheme and F ∈D(XT) is a T-perfect object, then the set

U=
{
t ∈ T Ft ∈ (D1)t and is geometrically σ1,t-stable

}

is open. By Step 2 the fiberwise collection of t-structures τ 1 underlying σ 1 universally
satisfies openness of flatness, so we may assume Ft ∈At,1 for all t ∈ T, i.e., F ∈Mτ 1

(T).
By [BLMS17, Remark 5.12], if Ft is geometrically σ1,t-stable, then we have

φ−σt
(Ft)� φ0 :=min(φσ1,t(Ft),φ

−(ET)),

and thus Ft ∈ Pσt(φ0,1]. By Proposition 20.8, σ universally satisfies openness of lying in
P(φ0,1], so we may therefore assume Ft ∈Pσt(φ0,1] for all t ∈T.

Let QuotT,τ 1
(F)→ T denote the Quot space of F with respect to the fiberwise

collection of t-structures τ 1. As in Lemma 21.21, for any φ ∈ (0,1) we let Quot≤φ

T,τ 1
(F)

be the subfunctor of QuotT,τ 1
(F) which assigns to a scheme T′ ∈ (Sch/T) the set of

all (FT′ → Q) ∈ QuotT,τ 1
(F)(T′) satisfying φ(Qt′) � φ for every t′ ∈ T′. We claim

that Quot≤φ

T,τ 1
(F) is an algebraic space of finite type over T, and that the morphism

Quot≤φ

T,τ 1
(F)→T is universally closed.

Indeed, using the same arguments as in the proof of Proposition 11.6 it is enough
to know that the quotients occurring in Quot≤φ

T,τ 1
(F) belong to a bounded τ 1-flat family

of objects; since each such quotient lies in Pσ 1
(φ0,1](v) for some v ∈�1, and since the

set of possible v is finite by the same arguments as in Lemma 21.21, this follows from the
previous steps.

The non-geometrically stable locus of F is the union of the images of all connected
components of Quot≤φ(F) except those where the quotient Q satisfies v(Q) = v(F);
hence it is closed by Proposition 11.11, and thus being geometrically stable is open in T.

To conclude Step 5, we note that universal openness of geometric stability, com-
bined with the weaker boundedness statement in Step 4, immediately implies bounded-
ness of σ 1.

Step 6. σ 1 integrates to a HN structure along any Dedekind scheme C→ S essentially of finite type
over S, i.e., condition (3) holds.

This follows from the previous steps, as explained in Remark 20.7. ✷

Part V. Construction

24. Main construction statements

The main goal of Part V is to construct stability conditions for families of surfaces,
or of threefolds that individually admit stability conditions. The first step is to show that
we can tilt the weak stability condition given by slope-stability on the fibers in order to
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obtain a relative version of tilt-stability (see Section 25); for threefolds, we have to tilt a
second time in order to produce a stability condition over the base (see Section 26).

In more detail, we formulate slope stability as a weak stability condition with heart
Coh X, and central charge depending on ch0, ch1 only. We use this to obtain a new heart
Cohβ X via tilting. Using the classical Bogomolov–Gieseker inequality6, one then con-
structs a weak stability condition, called tilt-stability, with heart Cohβ X and with central
charge depending on ch0, ch1, ch2. Tilting again produces a heart Aα,β . Assuming a con-
jectural Bogomolov–Gieseker type inequality for tilt-stable objects in Cohβ X, proposed
in [BMT14], one can then produce an actual stability condition with heart Aα,β .

Generalizing each of these steps to families of threefolds will lead to the following
result; the existence of moduli spaces generalizes [PT19, Theorem 1.5] to the relative
setting.

Theorem 24.1. — Let g : X → S be a polarized flat family of smooth projective varieties.
(1) If the fibers of g are either one-dimensional, or two-dimensional satisfying the classical

Bogomolov–Gieseker inequality, then the standard construction of stability conditions on curves
or surfaces produces a stability condition σ on Db(X ) over S.

(2) If the fibers of g are three-dimensional and additionally satisfy the conjectural Bogomolov–
Gieseker inequality of [BMT14, BMS16], then the construction of stability conditions pro-
posed in [ibid.] produces a stability condition σ on Db(X ) over S.

In each of these situations, given a vector v ∈ � for the corresponding choice of �, the relative moduli
space Mσ (v) exists as an algebraic stack of finite type over S, and the map Mσ (v)→ S satisfies
the strong valuative criterion of universal closedness. If Mσ (v)=Mst

σ (v), then Mσ (v) has a coarse
moduli space Mσ (v), proper over S. Finally, in characteristic 0, Mσ (v) always admits a good moduli
space Mσ (v)→ S which is proper over S.

We in fact prove a slightly stronger version of (1) in Proposition 25.3, and a weak
version of (2) but for arbitrary dimension, and without assuming the conjectural inequal-
ity, in Proposition 26.1. The latter will be crucial for us in the case of cubic fourfolds in
Part VI.

Remark 24.2. — The construction of stability conditions via tilting depends on
two globally defined Q-divisors ω and B on X , with ω relatively ample. As in [BMS16],
we assume that ω and B are parallel, namely

ω= αH and B= βH,

where H = c1(OX (1)) is the polarization. Using [PT19, Section 3] one can extend our
arguments to B and ω not necessarily parallel.

6 The classical Bogomolov–Gieseker inequality [Rei78, Bog78, Gie79] holds in characteristic zero. In positive char-
acteristic it holds e.g. for varieties that can be lifted to characteristic zero, see [Lan15, Theorem 1]; the weaker version of
[Lan04] is not enough to define tilt-stability.
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25. Tilting slope-stability in families

In this section we show that the notion of tilt-stability from [BMT14] works in
families. We will divide the construction into two steps. We first rotate slope-stability and
show that this gives a family of weak stability conditions as well. Then we use deformation
of families of weak stability conditions to prove the analogue statement for tilt-stability.
When specialized to families of curves or surfaces, this will prove part (1) of Theorem 24.1.

We continue to work in Setup IV.1, with the additional assumptions that g : X → S
is a smooth projective morphism of relative dimension n � 3. We fix a relatively ample
divisor OX (1).

Since g : X → S is smooth, instead of working with the relative Hilbert polynomial
as in Example 21.8 we can work with Chern characters. To make this precise, observe
that the Chern characters on the fibers, when paired with the appropriate power of the
relative ample class H= c1 (OX (1)), yield maps, for all s ∈ S,

chXs : Knum(Db(Xs))→Qn+1.

These maps are locally constant in families, and thus they factor through a map

chX /S =⊕
n
i=0 chX /S,i : Knum(Db(X )/S)→Qn+1.

By the Hirzebruch-Riemann-Roch theorem, the image of chX /S coincides with the image
of the Hilbert polynomial; we denote it by �.

Consider the weak stability condition

σ :=
(
σs =

(
i chX /S,0− chX /S,1,CohXs

))

on Db(X ) over S given by slope-stability on each fiber; its properties can be verified as
in Example 21.18. The weak stability conditions σs have the tilting property, and, for
every Dedekind domain C, the HN structure σC has the tilting property as well, see
Examples 14.13 and 19.4.

If n � 2, we let �0 ⊂� be the subgroup generated by the image of chX /S,2⊕ chX /S,3

and, if n= 3, we let �
♯

0 ⊂�0 be the one generated by the image of chX /S,3. We write η

for the class of a point, which generates �
♯

0. Finally, we denote by � := �/�0 and by

�
♯
:=�/�

♯

0.

25.1. Rotating slope-stability in families. — Let β ∈Q. To simplify the notation, we
write

chβ

X /S( )= chX /S

(
e−βH ·

)
∈�Q.

For every s ∈ S we define

σ ♯β
s :=

(
Zs = i chβ

Xs,1
+ chβ

Xs,0
,Cohβ Xs

)
,
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where Cohβ Xs is the tilt of CohXs at the slope β , defined as in Section 14.2.

Proposition 25.1. — The collection σ ♯β := (σ ♯β
s ) is a (weak) stability condition on Db(X )

over S with respect to �. Moreover, if n= 3 and we fix v ∈�, then Mst
σ ♯β (v+ bη)= ∅ for b≫ 0.

Remark 25.2. — In the case of slope-stable torsion free sheaves, the analogue of
the last claim follows from boundedness: for every slope-stable sheaf E of class v+ bη, the
kernel of any surjection E ։ T for T a sheaf of length b will be stable of class v; thus the
dimension of Mst

σ (v) is at least 3b.

Proof. — For n= 1 this was already observed in Remark 21.19, so we assume n � 2.
As shown in Proposition 14.16, σ ♯β

s is a weak stability condition on Db(Xs) for
all s ∈ S. There is nothing to prove for Definition 21.15.(4). Conditions (0) and (3’) in
Definition 20.5 follow from Propositions 14.16 and 19.5, respectively, and condition (1) is
immediate.

Recall from Lemma 14.17 the classification of σ ♯β
s -semistable objects E ∈Cohβ Xs:

(1) if chXs,0(E) � 0, then E is a torsion free slope-semistable sheaf, or a torsion
sheaf with support either pure of codimension one, or of codimension � 2;

(2) if chXs,0(E) < 0, then E is an extension

(25.1) U[1]→ E→V

where U is a torsion free slope-semistable sheaf and V is a torsion sheaf sup-
ported in codimension � 2. Moreover, if either chβ

Xs,1
(E) > 0 or E is σ ♯β

s -stable,
then Hom(V′,E) = 0, for all sheaves V′ ∈ CohXs supported in codimension
� 2; in particular, U is reflexive.

We use this to show openness in the sense of conditions (2) and (2’) for geometrically
stable/semistable objects of the form (25.1). Standard arguments show openness of the
condition that H−1 is torsion-free, and that H0 is supported codimension two. Using a
flattening stratification for Hi(E) shows that the semistable locus is constructible, since
being reflexive or semistable is open in flat families of sheaves. It remains to show that
the unstable locus is closed under specialization. This is easy to show for both the Hom-
vanishing from sheaves supported in codimension two and the slope-semistability of H−1:
in both cases, we first lift the destabilizing sheaf from the generic point to the appropriate
DVR, and then extend the morphism to one that specializes to a non-zero morphism.

To finish the proof, we will simultaneously prove the second claim of the proposi-
tion and boundedness in the sense of Definition 21.15.(5) by proving that

∐
b�0 M

st
σ ♯β (v+

bη) is bounded. First we consider the case in which chXs,0(E) � 0. Torsion sheaves can
never be strictly σ ♯β -stable; thus the claim follows directly from boundedness of slope-
stable sheaves, [Lan04, Theorem 4.2], and Remark 25.2.
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Thus we are left to consider the case chXs,0(E) < 0. After modifying β slightly
if necessary (which will not affect stability of objects of class v + bη), we may assume
chβ

Xs,1
(E) > 0. Let Ds =Hom(−,OXs)[1]. By [BLMS17, Lemma 2.19], for such E there

is an exact triangle

E♯ →Ds(E)→W[−1]

where E♯ is a torsion free slope-stable sheaf and W is supported in codimension 3. More-
over, for all i = 0, . . . ,3, chXs,i(Ds(E))= (−1)i+1 chXs,i(E). Hence

chXs,i(E
♯)= (−1)i+1 chXs,i(E), for all i = 0,1,2, and

chXs,3(E
♯)= chXs,3(E)+ chXs,3(W)� chXs,3(E).

Since E♯ is a torsion free slope-stable sheaf, the first case in [Lan04, Theorem 4.4]
shows that it belongs to a bounded family. This also implies that chXs,3(W) can only
take finitely many values, and so W also belongs to a bounded family. By Lemma 9.6,
the same holds for Ds(E). Since the morphism g is smooth, the duality functor exists in
families and commutes with base change; therefore, E also belongs to a bounded family,
as we wanted. ✷

25.2. Tilt-stability in families. — Let α,β ∈ Q, α > 0. We now deform the weak
stability condition σ ♯β of Section 25.1 with respect to α.

For every s ∈ S we define

σ α,β
s :=

(
Zα,β

s = i chβ

Xs,1
+

α2

2
chβ

Xs,0
− chβ

Xs,2
,Cohβ Xs

)
.

We can now prove the following.

Proposition 25.3. — Assume that the Bogomolov–Gieseker inequality holds for slope-stable
sheaves on the fibers of g : X → S, namely for all s ∈ S and for all σs-stable sheaves E

�s(E) := chXs,1(E)2 − 2 chXs,0(E) chXs,2(E)� 0.

Then the collection σ α,β := (σ α,β
s ) is a (weak) stability condition on Db(X ) over S with respect to �

♯
.

Moreover σ α,β
s has the tilting property, for all s ∈ S, and for any base change C→ S from a Dedekind

scheme C, the HN structure σ
α,β

C has the tilting property as well. Finally, if n= 3 and we fix v ∈�,
then Mst

σα,β (v+ bη)= ∅ for b≫ 0.

Combined with Theorem 22.2 in case n = 1,2, this in particular gives Theo-
rem 24.1.(1).

Proof. — The proof is a relative version of [PT19, Section 4.5]. The extension can
be done analogously as in the proof of Theorem 22.2; the difference is that at σ∞,β := σ ♯β
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we start with the weak stability condition given in Proposition 25.1. The key observation
is the following:

Claim 1. Given v ∈�
♯
, then for σ α,β-semistable objects E ∈Cohβ Xs of class v, there are only finitely

many possible classes in �
♯

of HN factors of E with respect to σ∞,β .

This claim is purely a statement on fibers, and is shown for example in the proof
[BMT14, Theorem 7.3.1] or [BMS16, Theorem 3.5]; see also [PT19, Lemma 2.26]. The
implied finiteness of wall-crossing as α →∞ also shows that the Bogomolov–Gieseker
inequality is preserved: for each wall-crossing, it follows by simple linear algebra, see
[BMS16, Lemma A.6].

Applying the strong boundedness statement of Proposition 25.1 to each HN fac-
tor of E, in combination with the previous claim then immediately gives the following
refinement.

Claim 2. Given v ∈�, then for σ α,β-semistable objects E ∈Cohβ Xs of class v, there are only finitely
many possible classes in � of HN factors of E with respect to σ∞,β .

Boundedness as in Definition 21.15.(5), as well as the stronger boundedness
claimed in the last statement of the Proposition, follow immediately; see also [PT19,
Corollary 4.18].

The condition on (0) and the second part of (3’) in Definition 20.5 follow triv-
ially from the corresponding properties of σ ♯β , as Zα,β( )= 0 for objects of Cohβ Xs or
Cohβ XC is a stronger condition than Z♯β( )= 0, and as the property of being a noethe-
rian torsion subcategory is clearly preserved by passing to a smaller subcategory.

We now want to show universal openness of geometric stability; we can restrict
to phases φ with 0 < φ < 1 (as σ α,β -semistable objects of phase 1 are the same as σ ♯β -
semistable objects). Lemma 22.3 applies literally in our situation, which means we can
restrict to the situation where E ∈Db(XT) is contained in P♯β[φ−ǫ,φ+ǫ]. After possibly
replacing T be an open subset, we can further assume Et ∈P

♯β
t [φ−ǫ,φ+ǫ], for all t ∈T.

To show openness of geometric stability, note that we have already verified as-
sumption (1) of Proposition 14.20 above; therefore, we can base change to the algebraic
closure t and argue as in the proof of Theorem 22.2 to deduce it from boundedness of the
Quot space Quot�φ+ǫ

T (E). This is defined analogously as in Grothendieck Lemma 21.21
as the subfunctor of the Quot space such that Quot�φ+ǫ

T (E)(T′) parametrizes quotients
ET′ → Q that satisfy φ(Qt) � φ + ǫ for all t ∈ T′, where the phase is calculated with
respect to the weak stability condition σ ♯β . By Claim 2, the classes of possible quotients
are finite in �. Hence, the Quot space is bounded, and we can conclude the proof of (2)
in Definition 20.5.

Property (1) in Definition 20.5 is immediate. The proof of universal generic open-
ness, namely property (2’) in Definition 20.5, now follows as in the proof of Lemma 20.4
when the phase is in (0,1) (and so JH filtrations exist), since as we observed σ α,β

s can be
base changed over any field extension and, for phase 1, it follows from the corresponding
property of σ ♯β

s .
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To prove part (3), or the remaining part of (3’) in Definition 20.5, we use semistable
reduction and Theorem 18.7. Let C be a Dedekind scheme. Then, by Proposition 25.1
and Proposition 20.8, the tilted category Cohβ XC universally satisfies openness of flat-
ness. As we observed before, σ α,β

c has the tilting property and so the assumptions of The-
orem 18.7 are met, thus giving a HN structure σ

α,β

C . Finally, as in the sheaf case discussed
in Example 19.4, by using the dual functor DC on Db(XC) and Remark 19.3, it is not
hard to check that σ

α,β

C also has the tilting property. ✷

26. Tilting tilt-stability in families of threefolds

In this section we consider the case of families of threefolds and we show that
the double-tilt construction from [BMT14] works in families. As before, we first rotate
tilt-stability, and show that this provides a family of weak stability conditions. Then we
deform to complete the proof of part (2) of Theorem 24.1.

We keep the notation and setup of Section 25, to which we add the following
assumptions: the morphism g : X → S has relative dimension n= 3 and the Bogomolov–
Gieseker inequality holds for slope-stable sheaves on its fibers.

26.1. Rotating tilt-stability in families of threefolds. — Let α,β, γ ∈Q with α > 0. Let
uγ ∈C be the unit vector in the upper half plane such that γ =−

ℜuγ

ℑuγ
.

For every s ∈ S we define

σ α,β♯γ
s :=

(
Zα,β♯γ

s =
1

uγ

· Zα,β
s ,A

γ

α,β,s

)
,

where Aγ

α,β,s is the tilted category of Cohβ Xs at tilt-slope γ .

Proposition 26.1. — The collection σ α,β♯γ := (σ α,β♯γ
s ) is a weak stability condition on

Db(X ) over S with respect to �
♯
.

Proof. — The argument is very similar to Proposition 25.1.
By [BLMS17, Proposition 2.15], for all s ∈ S, σ α,β♯γ

s is a weak stability condition
on Db(Xs). The classification of σ α,β♯γ

s -stable objects is identical to the one in the proof
of Proposition 25.1, where the role of chβ

Xs,0
and chβ

Xs,1
is replaced by the real and imag-

inary parts of Zα,β♯γ
s , respectively. Moreover, the objects Vs in case (2) (in the proof of

Proposition 25.1) are torsion sheaves supported on points.
Now, the proof works exactly in the same way as in Proposition 25.1. Here we use

the derived dual functor D2,s :=Hom(−,OXs)[2] and the fact that D2,s(Es) is directly a
σ α,β♯γ

s -stable object in A
γ

α,β,s in the proof of property (5) in Definition 21.15. ✷
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Let X be a Fano threefold of Picard rank 1 over an algebraically closed field k.
Let us denote by Ku(X) its Kuznetsov component as defined in [Kuz09] and [BLMS17,
Section 6]. By Lemma 3.25, the definition behaves nicely for smooth families.

By [BLMS17, Theorem 1.1], if X is not a complete intersection of a quadric and a
cubic in P5, then Bridgeland stability conditions exist on Ku(X). The construction is done
by rotating tilt-stability and by inducing stability. By Proposition 26.1 and Theorem 23.1,
these two steps work in families as well; see also Section 30.2 where a similar (more
involved) argument is used in the cubic fourfold case. Hence, we obtain the following
result.

Corollary 26.2. — Let X → S be a smooth family of Fano threefolds of Picard rank 1 which
are not complete intersections of a quadric and a cubic in P5. Let Ku(X /S) denote the relative Kuznetsov
component. Then the space of numerical stability conditions on Ku(X /S) over S is non-empty.

26.2. Bridgeland stability in families of threefolds. — Let α,β, a, b ∈Q such that α > 0
and

a >
1

6
α2 +

1

2
|b|α.

We keep the notation in the previous section and fix γ = 0. For s ∈ S, we set

Aα,β,s :=A
γ=0
α,β,s,

Za,b
α,β,s := i

(
chβ

Xs,2
−

α2

2
chβ

Xs,0

)
+ a chβ

Xs,1
+b chβ

Xs,2
− chβ

Xs,3
,

and

σ
a,b
α,β :=

(
σ

a,b
α,β,s =

(
Za,b

α,β,s,Aα,β,s

))
.

We can now prove the following which is the family version of [BMS16, Theo-
rem 8.2].

Proposition 26.3. — Assume that the generalized Bogomolov–Gieseker inequality holds for tilt-
stable objects on the fibers of g, namely for all s ∈ S and for all σα,β,s-stable objects E

(26.1) ∇β,s(E) := 4 chβ

Xs,2
(E)2 − 6 chβ

Xs,1
(E) chβ

Xs,3
(E)− α2�s(E)� 0.

Then the collection σ
a,b
α,β is a stability condition on Db(X ) over S with respect to �.

Proof. — The proof is the relative version of [PT19, Section 4.6]. The extension
can be done analogously as in the proof of Proposition 25.3, the limit case being Propo-
sition 26.1. ✷
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By Theorem 22.2 this completes the proof of Theorem 24.1.(2); in particular, we
can take α,β, a, b ∈R.

Remark 26.4. — The generalized Bogomolov–Gieseker inequality (26.1) was first
proven for P3 in [Mac14] and, soon after, for the smooth quadric hypersurface in P4 in
[Sch14]. The case of Fano threefolds of Picard rank one was treated in [Li19b]. The case
of abelian threefolds is covered independently by [MP16] and [BMS16] (the full support
property is now also known, see [OPT18]). Recently, the case of the quintic threefolds
has finally been settled in [Li19a]. For other cases with higher Picard rank, we refer to
[BMSZ17, Piy17, Kos18, Kos20]. Unfortunately, the inequality does not hold in general,
at least for higher Picard rank, see [Sch17], as well as [Kos18, Appendix A] and [MS19b].

27. Stability conditions from degeneration

As an application of Proposition 25.3, one can use degeneration to prove the gen-
eralized Bogomolov–Gieseker inequality. The following is a variation of [Kos20, Propo-
sition 3.2].

Proposition 27.1. — Let g : X →C be a smooth family of polarized threefolds over a Dedekind
scheme C of characteristic zero, and fix a point 0 ∈ C. Consider an arbitrary Q-divisor B on X . Let
B0 (resp. Bη) be the restriction of B to the special fiber X0 := g−1(0) (resp. the general fiber Xη). If the
generalized Bogomolov–Gieseker inequality holds for tilt-stable objects on X0 with respect to B0, i.e., for
all σα,B0-stable objects E

∇B0(E) := 4 chB0
X0,2

(E)2 − 6 chB0
X0,1

(E) chB0
X0,3

(E)− α2�0(E)� 0,

then it also holds for tilt-stable objects on Xη with respect to Hη, Bη.

Proof. — Assume that there exists a tilt-stable object Eη on Xη violating the in-
equality. We consider the relative tilt stability condition σ α,B coming from the analogue
of Proposition 25.3 for non parallel classes αH and B (see Remark 24.2) and the relative
moduli space Mσα,B(v) over C with Chern character v as the Chern character of a C-flat
lift E of Eη to X .

Since Mσα,B(v) is proper over C (by Theorem 24.1, based on Theorem 21.24.(2))
and non-empty at the generic point, it is non-empty on the special fiber X0, which is a
contradiction. ✷

Remark 27.2. — The proof of [Kos20, Proposition 3.2] gives the following vari-
ants. If C = A1

k , and if all fibers Xb for b �= 0 are isomorphic (as in the case of a toric
degeneration), then the generalized Bogomolov-Gieseker inequality for X0 implies the
same inequality for all Xb. Without this assumption, we obtain the result for very general
b ∈ C, as any counterexample lives in a moduli space Mσ (v) proper over C, and there
are countably many choices for v.
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28. Donaldson–Thomas invariants

As pointed out in [PT19], an immediate application of properness of the relative
moduli space is that counting invariants of Donaldson–Thomas type arising from moduli
spaces of stable objects in the derived category are actually deformation-invariant.

Let X be a smooth projective Calabi–Yau threefold with H1(X,OX)= 0 over the
complex numbers. We assume that the generalized Bogomolov–Gieseker inequality holds
for tilt-stable objects in Db(X); for example, by [Li19a], this holds for the quintic three-
fold. We consider the open subset Stab†(Db(X)) of the space of stability conditions on
Db(X) constructed in [BMT14, BMS16] via the generalized Bogomolov–Gieseker in-
equality (or a variant of it).

For a stability condition σ ∈ Stab†(Db(X)) and a numerical class v∈Knum(Db(X)),
we consider the moduli stack Mσ (v). In the case Mσ (v)=Mst

σ (v) the results of [HT10]
show that the coarse moduli space Mσ (v) has a symmetric perfect obstruction theory, and
so a zero-dimensional virtual class [Mσ (v)]vir and a Donaldson–Thomas invariant

DTσ (v) :=

∫

[Mσ (v)]vir
1 ∈ Z.

We can use Theorem 21.24.(2) and Theorem 24.1 together with [PT19, Remark 5.4]
(which is based on [BF97] and [HT10, Corollary 4.3]) to deduce the invariance of
DTσ (v) under complex deformations of X. In particular, by [Li19a], we get the following
result:

Theorem 28.1. — The Donaldson–Thomas invariants DTσ (v) counting stable objects on a
smooth quintic threefold X, with respect to σ ∈ Stab†(X), are deformation-invariant.

Part VI. Moduli spaces for Kuznetsov components of cubic fourfolds

29. Main applications to cubic fourfolds

Let X ⊂ P5 be a smooth cubic fourfold. Its Kuznetsov component is the admissible
subcategory defined by

Ku(X) :=O⊥
X ∩OX(H)⊥ ∩OX(2H)⊥ ⊂Db(X),

where H denotes the hyperplane class. The goal of this final part of the paper is to de-
scribe the structure of moduli spaces of stable objects in Ku(X). We will work over the
complex numbers throughout. Many of our arguments can be adapted to positive charac-
teristic (and have interesting applications in that setting that will be discussed elsewhere),
but the strongest results can be proved over C.
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The category Ku(X) shares many properties with the derived category of K3 sur-
faces. Its foundations were developed in [Kuz10, AT14, Huy17]; see [Huy19, MS19a]
for surveys of those results. In particular, we recall:

(1) Ku(X) is a 2-Calabi–Yau category: Hom(E,F)=Hom(F,E[2])∨.
(2) The topological K-theory of Ku(X), along with the faithful functor Ku(X)→

Db(X) and the Hodge structure on H4(X,Z) equips Ku(X) with an extended
Mukai lattice, which we denote by H̃(Ku(X),Z): as a lattice, it is isomorphic to
H∗(S,Z), for any K3 surface S; it carries a weight two Hodge structure with
h2,0 = 1; and it admits a Mukai vector v : K(Ku(X))→ H̃(Ku(X),Z) satisfying
(v(E), v(F))=−χ(E,F).

The Mukai lattice embeds into Ktop(X)⊂H∗(X,Q) as the right orthogonal com-
plement of the classes of OX,OX(H),OX(2H). We denote the sublattice of integral
(1,1)-classes by H̃Hdg(Ku(X),Z) and the image of the Mukai vector by H̃alg(Ku(X),Z);
the latter is isomorphic to Knum(Ku(X)). The rational Hodge conjecture for cubic four-
folds (proved in [Zuc77]; see also [CM78] for a short proof) shows that H̃Hdg(Ku(X),Q)

is isomorphic to H̃alg(Ku(X),Q). By the integral Hodge conjecture [Voi07], the two
groups are actually isomorphic over Z. While the rational Hodge conjecture will be used
later in the proof of Lemma 30.4, the integral version is not needed in our argument, and
in fact it will also follow from our results (see Corollary 29.8).

By [BLMS17, Theorem 1.2 and Remark 9.11], one can explicitly describe a non-
empty connected open subset Stab†(Ku(X)) in the space of numerical Bridgeland sta-
bility conditions on Ku(X) (with respect to the lattice H̃Hdg(Ku(X),Z) and the Mukai
vector); it is the covering of a certain period domain, which is defined analogously to
the case of K3 surfaces, treated in [Bri08]. We can then extend [Bri08, Theorem 1.1] as
follows.

Theorem 29.1. — The open subset Stab†(Ku(X)) is a connected component in
Stab(Ku(X)).

The connected component Stab†(Ku(X)) is realized as a covering

η : Stab†(Ku(X))→P+
0 ,

where P+
0 is a period domain defined as follows. We take P ⊂ H̃Hdg(Ku(X),C) as the

open subset consisting of those vectors whose real and imaginary parts span positive-
definite two-planes. With � := {δ ∈ H̃Hdg(Ku(X),Z) : (δ, δ)=−2}, we set

P0 :=P \
⋃

δ∈�

δ⊥,

which has two connected components; we let P+
0 be the one containing the image under

η of the examples of stability conditions constructed in [BLMS17, Theorem 1.2].
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Let v ∈ H̃Hdg(Ku(X),Z) be a non-zero primitive class, and let σ ∈ Stab†(Ku(X)).
Theorem 29.1 relies on our second main result, which concerns the existence and non-
emptiness of the moduli space Mσ (Ku(X),v) of σ -stable objects in Ku(X) with Mukai
vector v. It is the analogue of a long series of results [Bea83, Muk84, Muk87, O’G97,
Huy97, Yos01] on moduli spaces of sheaves on K3 surfaces, the last one being [Yos01,
Theorems 0.1 and 8.1].

Theorem 29.2. — Let X be a cubic fourfold. Then

H̃Hdg(Ku(X),Z)= H̃alg(Ku(X),Z).

Moreover, assume that v ∈ H̃Hdg(Ku(X),Z) is a non-zero primitive vector and let σ ∈Stab†(Ku(X))

be a stability condition on Ku(X) that is generic with respect to v. Then
(1) Mσ (Ku(X),v) is nonempty if and only if v2 � −2. Moreover, in this case, it is a

smooth projective irreducible holomorphic symplectic variety of dimension v2+2, deformation-
equivalent to a Hilbert scheme of points on a K3 surface.

(2) If v2 � 0, then there exists a natural Hodge isometry

θ : H2(Mσ (Ku(X),v),Z)
∼

−−−−→

{
v⊥ if v2 > 0

v⊥/Zv if v2 = 0,

where the orthogonal is taken in H̃(Ku(X),Z).

Here generic means that σ is not on a wall: since v is primitive, this means that
stability and semistability coincide for objects of Mukai vector v.

The embedding v⊥ →֒ H̃(Ku(X),Z) identifies the latter with the Markman–
Mukai lattice of Mσ (Ku(X),v), which determines the birational class of Mσ (Ku(X),v)

by Markman’s global Torelli theorem [Mar11, Corollary 9.9]; moreover, the Hodge
classes of H̃(Ku(X,Z) control the Mori cone by [BHT15, Mon15].

Remark 29.3. — Assume now that v is not primitive, i.e., v= mv0, for some m > 1,
and σ a v-generic stability condition. Then the previous theorem implies immediately
that the moduli space Mσ (Ku(X),v) is non-empty if v2

0 �−2; conversely, if v2
0 <−2, one

can show easily by induction on m that Mσ (Ku(X),v) is empty. If the good moduli space
Mσ (Ku(X),v) is normal, one can prove further that Mσ (Ku(X),v) is an irreducible
proper algebraic space (by using a similar argument as in [KLS06, Theorem 4.4]). More-
over, either dim Mσ (Ku(X),v)= v2 + 2 and Mst

σ (Ku(X),v) �= ∅, or m > 1 and v2 � 0.

Theorem 29.2 is proved by deformation to the case where Ku(X) is known to be
equivalent to the derived category of a K3 surface. Such deformation arguments rely on
relative moduli spaces of Bridgeland stable objects, given by the following result.
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Theorem 29.4. — Let X → S be a family of cubic fourfolds, where S is a connected
quasi-projective variety over C. Let v be a primitive section of the local system of the Mukai lattices
H̃(Ku(Xs),Z) of the fibers, such that v is algebraic on all fibers. Assume that, for a closed point s0 ∈ S
not contained in any Hodge locus, there exists a stability condition τs0 ∈ Stab†(Ku(Xs0)) that is generic
with respect to v, and whose central charge Zs0 : H̃Hdg(Ku(Xs0),Z) → C is invariant under the
monodromy action induced by the inclusion H̃Hdg(Ku(Xs0),Z)⊂H∗(X,Q).

(1) If S= C is a curve, then there is an algebraic space M̃(v), and a smooth proper morphism
M̃(v)→C that makes M̃(v) a relative moduli space over C: the fiber over any point c ∈C
is a coarse moduli space Mσc(Ku(Xc),v) of stable objects in the Kuznetsov component of the
corresponding cubic fourfold for some stability condition σc.

(2) There exist a non-empty open subset S0 ⊂ S, a quasi-projective variety M0(v), and a smooth
projective morphism M0(v)→ S0 that makes M0(v) a relative moduli space over S0.

(3) There exists an algebraic space M(v) and a proper morphism M(v)→ S such that every
fiber is a good moduli space Mσs(Ku(Xs),v) of semistable objects.

In all cases, we can choose σ such that Mσs0
(Ku(Xs0),v)=Mτs0

(Ku(Xs0),v).

Note that every fiber of M̃(v)→C is projective, but the morphism itself might not
be. In contrast, we expect that the morphism M(v)→ S is always projective.

For a very general cubic fourfold, H̃Hdg(Ku(X),Z) is isomorphic to the lattice A2

generated by two roots λ1,λ2 with (λ1,λ2)=−1 and λ2
1 = λ2

2 = 2; for example, we can
set

(29.1) λ1 = v(p(OL(1))) and λ2 = v(p(OL(2))),

where L is a line in X and p is the left adjoint of Ku(X) →֒Db(X). Applying the theorem
above to classes in A2 yields the following result.

Corollary 29.5. — For any pair (a, b) of coprime integers, there is a unirational locally complete
20-dimensional family, over an open subset of the moduli space of cubic fourfolds, of smooth polarized
irreducible holomorphic symplectic manifolds of dimension 2n + 2, where n = a2 − ab + b2. The
polarization has either degree 6n and divisibility 2n if 3 does not divide n, or degree and divisibility 2

3n
otherwise.

It may be worth pointing out that, as observed for example in [Add16], an even
integer 2n has the form 2n= 2(a2 − ab+ b2) if and only if it satisfies Hassett’s condition:

(∗∗) 2n is not divisible by 4, 9 or any odd prime p≡ 2 (mod 3).
By [Has00, Theorem 1.0.2], integers satisfying (∗∗) are related to cubic fourfolds with
Hodge-theoretically associated K3 surfaces discussed in Corollary 29.7.

Example 29.6. — Let S be the moduli space of cubic fourfolds. If we choose
v = λ1 + λ2 in Theorem 29.4, then by [LPZ18] S0 = S, and M(v) is the relative Fano
variety of lines over S. For v= 2λ1 + λ2, still by [LPZ18] (see also [LLMS18]), we have
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that S0 ⊂ S is the complement of cubics containing a plane, and M0(v) is the family of
irreducible holomorphic symplectic eightfolds constructed by Lehn, Lehn, Sorger and
van Straten [LLSvS17]. Finally, for v= 2λ1+ 2λ2, in [LPZ20] the authors obtain an al-
gebraic construction of a 20-dimensional family of 10-dimensional O’Grady spaces com-
pactifying the twisted intermediate Jacobian fibration of the cubic hyperplane sections,
birational to the one constructed in [Voi18].

Recall from Hassett’s work on cubic fourfolds, [Has00], that there is a countable
union of divisors of special cubics with a Hodge-theoretically associated K3 surface.
In our notation, a cubic is contained in one of Hassett’s special divisors if and only if
H̃Hdg(Ku(X),Z) contains a hyperbolic plane.

Corollary 29.7. — Let X be a cubic fourfold. Then X has a Hodge-theoretically associated K3
surface if and only if there exists a smooth projective K3 surface S and an equivalence Ku(X)≃Db(S).

This (literally) completes a result by Addington and Thomas, [AT14, Theo-
rem 1.1], who proved that every divisor described by Hassett contains an open subset
of cubics admitting a derived equivalence as above. A version of the corollary also holds
for K3 surfaces with a Brauer twist, completing a result by Huybrechts [Huy17, The-
orem 1.4]; the corresponding Hodge-theoretic condition is the existence of a square-
zero class in H̃Hdg(Ku(X),Z) (see Proposition 33.1). Partial results were also obtained in
[Kuz10, Mos18].

As pointed out to us by Voisin, the non-emptiness of moduli spaces also produces
enough algebraic cohomology classes to reprove her result on the integral Hodge con-
jecture for cubic fourfolds; we also refer to [MO20, Corollary 0.3] for a different recent
proof:

Corollary 29.8 ([Voi07, Theorem 18]). — The integral Hodge conjecture holds for X.

Remark 29.9. — In [Per20] our argument for proving the integral Hodge con-
jecture for cubic fourfolds has been further developed and generalized. In particular, a
version of the integral Hodge conjecture is proved for suitable CY2 categories, without
the use of stability conditions.

Our results also provide the full machinery of [BM14a], describing the birational
geometry of Mσ (Ku(X),v) in terms of wall-crossing, but we will not discuss the details
here.

Let us discuss the line of argument in the proofs of Theorems 29.1, 29.2 and 29.4.
The key point is to generalize a deformation argument by Mukai, and show that the
deformation of simple objects in the Kuznetsov components along a deformation of cubic
fourfolds is unobstructed as long as their Mukai vector remains algebraic; combined with
openness of stability this shows smoothness of the relative moduli space. The existence of
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the family of stability conditions is explained in Section 30, while the above deformation
argument is in Section 31. The proofs of all results are then in Section 33.

30. Stability conditions on families of Kuznetsov components

In this section we recast Kuznetsov’s work in [Kuz08] in the relative setting along
the lines of [BLMS17]. The aim is to construct stability conditions on families of Kuznet-
sov components of cubic fourfolds.

30.1. The Kuznetsov component in families. — In this section we study Kuznetsov com-
ponents for families of smooth cubic fourfolds. We start by reconsidering the results in
[Kuz08] and [BLMS17, Section 7] for families of cubic fourfolds. The proofs discussed
here are very close to those presented in [BLMS17], hence we will be concise.

Let g : X → S be a family of cubic fourfolds, where S is a quasi-projective variety
over C. We let OX (1) denote the relative very ample line bundle.

Lemma 30.1. — There exist an admissible subcategory Ku(X ) →֒ Db(X ) and a strong
S-linear semiorthogonal decomposition of finite cohomological amplitude

Db(X )= 〈Ku(X ), αOX
(Db(S)), αOX (1)(D

b(S)), αOX (2)(D
b(S))〉,

where αOX (n)(Db(S)) := g∗Db(S)⊗OX (n).

Proof. — This follows immediately from Lemma 3.25, since OX ,OX (1),OX (2) is
a relative exceptional collection in Db(X ). ✷

Let us assume further that the family g : X → S comes with a family L⊂ X over
S of lines contained in the fibers of g

(30.1) PS(g∗OL(1))=L X PS(g∗OX (1))

S

such that, for all s ∈ S, the line Ls is not contained in a plane in Xs.

Example 30.2. — Given any family g : X → S of cubic fourfolds, we can always
find a base change g′ : X ′→ S′ satisfying this existence of an appropriate family of lines.
For example, we can take S′ to be the open subset F0(X /S) of the relative Fano variety
of lines F(X /S) in X consisting of all lines which are not contained in planes inside the
fibers of g. The base-change S′→ S can also be taken to be finite.
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Let P̃S → PS(g∗OX (1)) be the blow-up along L. We denote by ε : X̃ → X the
strict transform of X via this blow-up (or equivalently the blow-up of X along L). Con-
sider the projective bundle PS(g∗IL(1)) which, for simplicity, we denote by P3

S, even
though it is not trivial. We let P̃S → P3

S be the P2-bundle induced by the projection from
L, whose restriction to X̃ induces a conic fibration q : X̃ → P3

S.
As in [Kuz08, Section 3], we denote by BS

0 (resp. BS
1 ) the sheaf on P3

S of even
(resp. odd) parts of Clifford algebras corresponding to this fibration and, for all m ∈ Z,

BS
2m+1 = BS

1 ⊗OP3
S
(m) and BS

2m = BS
0 ⊗OP3

S
(m).

According to [Kuz08, Theorem 4.2] there is a strong S-linear semiorthogonal de-
composition of finite cohomological amplitude

Db(X̃ )= 〈	(Db(P3
S,B

S
0)), q∗Db(P3

S)〉.

Here 	 : Db(P3
S,B

S
0)→Db(X̃ ) is the fully faithful Fourier–Mukai functor whose kernel

is explicitly described in [Kuz08, Section 4] (it corresponds to 	−1,0 in [Kuz08, Propo-
sition 4.9]), but such an explicit description is not needed in this paper. Denote by � its
left adjoint.

Proposition 30.3. — The functor � ◦ ε∗ : Ku(X )→ Db(P3
S,B

S
0) is fully faithful and it

induces a strong S-linear semiorthogonal decomposition of finite cohomological amplitude

Db(P3
S,B

S
0)=

〈
�(ε∗Ku(X )), αBS

1
(Db(S)), αBS

2
(Db(S)), αBS

3
(Db(S))

〉
.

Proof. — The result follows by repeating line by line the same proof as in
[BLMS17, Proposition 7.7] in the relative setting above. ✷

30.2. Existence of stability conditions in families. — The next step consists in construct-
ing stability conditions on Ku(X ) over S in the sense of Definitions 20.5 and 21.15.

Let g : X → S be a family of cubic fourfolds over a connected quasi-projective va-
riety S over C. Assume that g : X → S is equipped with a family L→ S of lines which are
not contained in planes in the fibers of g. Let G :=Mon(g) be the monodromy group of g.
Its action on H∗(Xs,Q) preserves, and thus acts on, H̃(Ku(Xs),Z), for all s ∈ S; for very
general s ∈ S, it also preserves Hodge classes on Xs (see [Voi13, Theorem 4.1]), and hence
acts on H̃Hdg(Ku(Xs),Z). The sublattice Fix(G) := H̃Hdg(Ku(Xs),Z)G, for s ∈ S a very
general point, is then naturally identified with a saturated sublattice of H̃Hdg(Ku(Xs),Z),
for all closed s ∈ S, by parallel transport.

Let M be a saturated sublattice of Fix(G) containing A2 generated as in (29.1), and
denote by M∨ the dual of M. By assumption, we have a sequence of natural homomor-
phisms

vs : Knum(Ku(Xs)) →֒ H̃Hdg(Ku(Xs),Z) →֒ H̃Hdg(Ku(Xs),Z)∨→M∨,
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for all closed points s ∈ S. These homomorphisms determine a relative Mukai homomor-
phism in the sense of Definition 21.3.

Lemma 30.4. — There is a relative Mukai homomorphism v : Knum(Ku(X )/S)→M∨,
such that for any closed point s ∈ S the composition

Knum(Ku(Xs))→Knum(Ku(X )/S)
v
−→M∨

is equal to vs. If S is smooth, v factors via a homomorphism N (Ku(X )/S)→M∨ out of the uniformly
numerical relative Grothendieckgroup of Ku(X ).

Proof. — For any non-closed point s ∈ S we define a homomorphism

vs : Knum(Ku(Xs))s →M∨

as follows:

(1) For [F] ∈ Knum(Ku(Xs))s, choose a finite type morphism f : T → S from a
connected C-variety T with a point t ∈ T such that f (t) = s, and a T-perfect
object E ∈D(XT) such that Eu ∈Ku(Xu) for all u ∈T and η∨t/s[Et] = [F] (recall
Proposition and Definition 12.15).

(2) For [F], T, and E as in (1), choose a closed point q ∈T, let p= f (q), and set

vs([F])= vp(η
∨
q/p[Eq]).

We first explain why the choice in (1) is always possible. Write [F] = η∨K/κ(s)[E]
where K/κ(s) is a finite field extension and EK ∈ Ku(XK); choose a finite type mor-
phism f : T → S from a smooth irreducible C-variety with fraction field K realizing
the given field extension K/κ(s); finally, extend EK ∈ Ku(Xt) to an object E ∈ Ku(XT)

(Lemma 3.18), which by the smoothness of T and Lemma 8.3(2) is automatically T-
perfect.

To prove independence of all choices, and that the vs induce a homomorphism
from the relative numerical K-group Knum(Ku(X )/S), we instead prove the stronger
statement that they induce a homomorphism out of the uniformly numerical relative
Grothendieck group N (Ku(X )/S) when S is smooth; the statement in the general case
follows by replacing S with a resolution of singularities.

Thus it is enough to show that for S smooth, and s ∈ S a very general closed point,
the composition

K(Ku(X )perf)⊗Q = K(Ku(X ))⊗Q→K(Ku(Xs))⊗Q

vs
−→ H̃Hdg(Ku(Xs),Q)→M⊗Q
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is surjective, where the last map is given by orthogonal projection. This in turn is follows
from the surjectivity of the composition

K(Db(X ))→K(Db(Xs))→H∗
Hdg(Xs,Q),

where we use the morphism H∗
Hdg(Xs,Q)→M⊗Q that is compatible with the projec-

tion Db(X )→ Ku(X ). Finally, the surjectivity of the last map is a consequence of the
rational Hodge conjecture [Zuc77] for the very general fiber of X → S. Indeed, the only
non-trivial statement is the surjectivity onto H2,2(Xs,Q). The rational Hodge conjecture
implies that classes of the form ch2(I), for I an ideal sheaf of a surface in Xs, where I is in
a component of the relative Hilbert scheme that dominates S, generate H2,2(Xs,Q). Tak-
ing a finite base change T→ S admitting a rational section to the component containing
I, extending the pullback of the universal ideal sheaf to XT in an arbitrary manner, and
pushing forward along XT →X produces an object in Db(X ) whose restriction to Xs has
class proportional to [I] ∈K(Db(Xs)). This proves the claim. ✷

Proposition 30.5. — In the above setup, there exists a stability condition σ on Ku(X ) over S
with respect to M∨.

Proof. — We first consider the case M = A2. By Proposition 30.3, we can realize
Ku(X ) as an admissible subcategory of Db(P3

S,B
S
0). For any s ∈ S, as in [BLMS17, Defi-

nition 9.1], we can define a twisted Chern character chBs
0
: Knum(Db(P3

s ,B
s
0))→Q4; this

induces a global morphism

chBS
0
:=

∏
chBs

0
: Knum(Db(P3

S,B
S
0)/S)→Q4.

In analogy to the notation in Section 25 we set:

� := im
(

chBS
0

)
�0 := im

(
chBS

0 ,2⊕ chBS
0 ,3

)
�

♯

0 := im
(

chBS
0 ,3

)

� :=�/�0 �
♯
:=�/�

♯

0.

By Example 21.8 we have a weak stability condition σ 1 on Db(P3
S,B

S
0) with re-

spect to the lattice �. Propositions 25.1 and 25.3 also apply in the twisted setting that
we are considering here; the required Bogomolov inequality is given by [BLMS17, The-
orem 8.3]. Thus we get a weak stability condition σ α,β on Db(P3

S,B
S
0) over S with re-

spect to �
♯
, which coincides fiberwise with the weak stability conditions constructed in

[BLMS17, Proposition 9.3]. We can rotate one more time by Proposition 26.1 getting the
weak stability condition σ α,β♯γ .

Finally, we can apply Theorem 23.1 and get a stability condition on Ku(X ) over
S with respect to the lattice �1 := chBS

0
(Knum(Ku(X )/S)); the boundedness assumption

23.1.(5) follows from the analogue of the boundedness statement in Proposition 25.3. By
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[BLMS17, Proposition 9.10], we have �1 = A2, thus completing the proof in the case
M= A2.

Now consider the case of a lattice M containing A2. Let P(M) ⊂ Hom(M∨,C)

be the set of central charges such that ℑZ and ℜZ span a positive definite two-plane
in M⊗R. Let � ⊂ H̃(Ku(Xs),Z), for some arbitrary s ∈ S, be the set of (−2)-classes
δ that are not orthogonal to A2. (This excludes classes that would become algebraic
only over the Hassett divisor C2, see [Has00, Definition 3.1.3 and Section 4.4].) Let
P0(M)⊂ P(M) be the open subset where ℑZ,ℜZ are not orthogonal to any δ ∈�; by
standard arguments, e.g. as in [Bri07, Section 8], this is an open subset, and it contains the
central charge of the stability condition we constructed above for M= A2. Now consider
the Mukai vector v′ ∈ H̃Hdg(Ku(Xs′),Z) of any stable object in any fiber Ku(Xs′); either
parallel transport (which does not change its class in M∨) identifies it with a class in �,
or it satisfies v′2 � 0. In both cases, it is not contained in the kernel of any central charge
in P0(M). The same arguments as in [Bri07, Section 8] therefore imply the support
property with respect to M for any stability condition with central charge in P0(M). ✷

Remark 30.6. — One can also show, just as in [Bri07, Section 8], that Theo-
rem 22.2 implies the existence of an open set in StabM(Ku(X )/S) that covers a connected
component of P0(M).

Remark 30.7. — It will be crucial for us to be able to modify slightly the lattice M at
a closed subset, similar to the case of a one-dimensional base considered in Example 21.7.
Let S′ ⊆ S be a closed subvariety of S which is an irreducible component of the Hodge
locus of the family g (see [CDK95]). Consider the base changed family g′ : X ′ → S′.
Let G′ := Mon(g′) and consider a saturated sublattice M′ ⊆ Fix(G′), such that M′ is
orthogonal to all classes that remain algebraic along all of S. We can then modify the
morphism v to a map

v′ : Knum(Ku(X )/S)→M∨⊕M′∨,

by setting the second component to be zero for s /∈ S′. Since the full support property
holds on each fiber of g, the statement in Proposition 30.5 holds true with respect to the
image of v′ inside (M⊕M′)∨.

For example if S is a curve and S′ is a finite set of closed points in the Hodge locus
of S, we can choose M′ :=

⊕
s∈S′ H̃Hdg(Ku(Xs),Z).

Finally, we specialize to families over a one-dimensional base. Let g : X → C be
a family of cubic fourfolds, where C is a quasi-projective irreducible curve. Assume that
g comes with a family L→ C of lines not contained in a plane and that the fixed locus
M of the monodromy group G of g is H̃Hdg(Ku(Xc),Z), for c a very general point of C.
Let v be a primitive section of the local system of the Mukai lattices H̃(Ku(Xc),Z) of the
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fibers, such that v is of Hodge type on all fibers Xc. In particular, in our case, this means
that A2 and v are contained in M.

Proposition 30.8. — Under the assumptions above, let c0 ∈ C be a closed point and let
τc0 ∈ Stab†(Ku(Xc0)) be a stability condition which is v-generic. Then there exist a lattice M′ ⊇M
and a stability condition σ on Ku(X ) over C with respect to (M′)∨ such that:

(1) σc is v-generic for all c ∈C;
(2) σc0 is a small deformation of τc0 satisfying Mσc0

(Ku(Xc0),v)=Mτc0
(Ku(Xc0),v);

(3) if c0 ∈ C is a smooth point and the central charge Zc0 of τc0 factors via M∨, then there is
an open neighborhood U⊂C of c0 such that the central charge of σ restricted over U factors
through N (Ku(XU)/U).

Note that, if we are in the setting of Theorem 29.4.(1), then up to taking a finite
cover C′→ C we can always assume that the assumptions in Proposition 30.8 are satis-
fied, as well as the one in part (3) (see [Voi13, Theorem 4.1]).

Proof. — By Proposition 30.5 there exists a stability condition σ ′ on Ku(X ) over
C with respect to M∨ such that σ ′c is v-generic for c in a non-empty subset of C. Let
C′ be the subset of C where σ ′c is not v-generic. By openness of geometric stability and
boundedness of the relative moduli space C′ is a finite set. For each c ∈ C′ there is (by
the support property) a finite set in H̃Hdg(Ku(Xc),Z) of Mukai vectors of Jordan–Hölder
factors of objects in Mσ ′(v). We now apply Remark 30.7 to enlarge the lattice M to
M′ :=M⊕c∈C′ Mc such that these classes are no longer proportional to v in M∨⊕M∨

c ; for
c= c0 we just take Mc0 such that the central charge Zτc0

is defined over it. By Remark 30.6,
there exists a deformation σ of σ ′ such that (1) and (2) are satisfied.

Under the additional assumption in (3), we do not need to modify M in the fiber
over c0 and thus we can apply directly Lemma 30.4. ✷

Remark 30.9. — Consider the analogous situation over a higher-dimensional base
S. Then S′ ⊂ S becomes a closed subset, contained in finite union of Hodge loci S′i .
Assume that the monodromy group for each S′i acts trivially on the Mukai vectors of
Jordan–Hölder factors of objects in Mσ (v) occurring along S′i . Then we can apply ex-
actly the same procedure as above and again produce a stability condition over S that is
v-generic on all fibers.

31. Generalized Mukai’s theorem

The result of this section is the following generalization to Ku(X) of well-known
results by Mukai [Muk84] and Inaba [Ina11] for K3 surfaces.

Let g : X → S be a smooth family of cubic fourfolds, where S is reduced and of
finite type over C. Let v be a primitive section of the local system given by the Mukai lat-
tices H̃(Ku(Xs),Z) of the fibers over s ∈ S(C), such that v is of Hodge type on all fibers.
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Consider the locally of finite type algebraic stack sMpug(Ku(X )/S)(v)→ S parameter-
izing simple universally gluable S-perfect objects in Ku(X ) with Mukai vector v. This is
a Gm-gerbe over a locally of finite type algebraic space ρ : sMpug(Ku(X )/S)(v)→ S, see
Lemma 9.8.

Theorem 31.1 (Mukai). — The morphism ρ : sMpug(Ku(X )/S)(v)→ S is smooth.

Remark 31.2. — A generalization of Theorem 31.1 was proved in [Per20], where
Ku(X ) is replaced by any “family of CY2 categories” over S. In fact, the proof of The-
orem 31.1 below incorporates some clarifications and corrections from [Per20] to the
argument from the first version of this paper, in particular the use of the T1-lifting theo-
rem to reduce to split square-zero extensions in the deformation argument.

The proof of Theorem 31.1 involves a combination of Mukai’s original argument
and the methods of [KM09], which in turn build on ideas of Buchweitz and Flenner. We
start by recalling a result on the deformation theory of objects in the derived category;
for a more complete treatment of this subject and related arguments, see [HT10, Lie06a,
HMS09, AT14].

Let Y → Spec R be a smooth projective morphism, and let Y0 → Spec R0 be
its base change along R → R0 = R/I where I ⊂ R is a square-zero ideal. Note that
Y → Spec R is a deformation of Y0 → Spec R0 over R, and recall that the set of iso-
morphism classes of such deformations of Y0 forms a torsor under H1(TY0/Spec R0 ⊗ I).
If R→ R0 is a split square-zero extension, i.e. admits a section R0 → R, then there is
a trivial deformation of Y0 over R given by base change along the section, so the set
of deformation classes is canonically identified with H1(TY0/Spec R0 ⊗ I) with the trivial
deformation corresponding to 0. In this case, we write

κ(Y) ∈H1(TY0/Spec R0 ⊗ I)∼= Ext1(�Y0/R0, I)

for the element corresponding to the deformation Y→ Spec R, called the Kodaira–Spencer
class. Further, recall that for any object E0 ∈Dperf(Y0) there is a canonical element

A(E0) ∈ Ext1(E0,E0 ⊗�Y0/R0)

called the Atiyah class. The following is then the main result of [HT10], simplified to the
case where the structure morphism is smooth and the square-zero extension is split.

Theorem 31.3. — Let Y→ Spec R be a smooth projective morphism, let R→R0 =R/I be
a split square-zero extension, and let Y0 → Spec R0 be the base change of Y . For any E0 ∈Dperf(Y0),
there exists an object E ∈Dperf(Y) such that EY0

∼= E0 if and only if

κ(Y) ·A(E0)= 0 ∈ Ext2(E0,E0 ⊗ I),

in which case the set of isomorphism classes of such E forms a torsor under Ext1(E0,E0 ⊗ I).
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Proof of Theorem 31.1. — First we claim that it is enough to prove the theorem when
the base S is smooth. Indeed, first note that for any morphism S′→ S with based changed
family X ′, the relative moduli space ρ ′ : sMpug(Ku(X ′)/S′)(v)→ S′ is the base change
of ρ : sMpug(Ku(X )/S)(v)→ S along S′→ S. Applied to closed points of S this shows
that the fibers of ρ are smooth. Applied to the spectrum of a DVR over S (which factors
via a smooth scheme of finite type over S), this proves the valuative criterion for flatness
[Gro66, 11.8.1]. Combined, this shows that ρ is smooth.

Thus from now on we may assume that S is smooth. Assume we have proven
that in this case the total space sMpug(Ku(X )/S)(v) is smooth. Let 0 ∈ S(C) be a closed
point, let X0 be the fiber of X → S, and let v0 ∈ H̃(Ku(X0),Z) be the fiber of v. Then
the moduli space sMpug(Ku(X0))(v0) —i.e., the fiber of ρ over 0— is smooth by our
assumption (applied to the case where S is a point), and of dimension v2

0 + 2 (as this
computes dim Ext1(E0,E0) for a simple universally gluable object in Ku(X0) of class v0).
Therefore ρ : sMpug(Ku(X )/S)(v)→ S is a locally finite type morphism between smooth
spaces whose closed fibers are smooth of constant dimension. It follows that ρ is smooth.

Thus to prove the theorem it suffices to show that sMpug(Ku(X )/S)(v) is smooth
if S is smooth. Since sMpug(Ku(X )/S)(v) is locally of finite type over C, we just need to
show that it is formally smooth at any C-point. More precisely, let E0 be a C-point of
sMpug(Ku(X )/S)(v) lying over a closed point 0 ∈ S. Let ArtC be the category of Artinian
local C-algebras with residue field C, and let F : ArtC → Sets be the deformation functor
of the point E0, i.e. F(A) consists of pairs (Spec(A)→ S,E) where Spec(A)→ S takes
the closed point p ∈ Spec(A) to 0 ∈ S, and E is an A-point of sMpug(Ku(X )/S)(v) whose
restriction over p ∈ S is isomorphic to E0; for simplicity we often simply write E ∈ F(A)

suppressing the map Spec(A) → S from the notation. (Note that in the definition of
F(A), instead of requiring E to be an A-point of sMpug(Ku(X )/S)(v), it is equivalent to
require E ∈Dperf(XA); indeed, an A-point E of sMpug(Ku(X )/S)(v) must lie in Dperf(XA)

since it is relatively perfect over Spec(A) and XA → Spec(A) is smooth, and conversely,
the condition that an object E ∈ Dperf(XA) restricts over p to E0 guarantees that E lies
in Ku(XA), has class v, and is universally gluable, as E0 has these properties.) To prove
formal smoothness of sMpug(Ku(X )/S)(v) at E0, we must show that F is a smooth functor,
i.e. for any surjection A′→ A in ArtC, the map F(A′)→ F(A) is surjective.

It will also be useful to consider the deformation functor G : ArtC → Sets of the
point 0 ∈ S, whose value on A ∈ ArtC consists of morphisms Spec(A)→ S taking the
closed point to 0. By definition, there is a morphism of functors F→G.

We start by considering a split square-zero extension A′→ A, that is the case where
A′ ∼= A[ε]/(ε2). We will prove that the fiber DefE(A′) of the map

F(A′)→G(A′)×G(A) F(A)

over any point (Spec(A′)→ S,E) is a torsor under Ext1(E,E). Let XA′ → Spec A′ and
XA → Spec A be the base changes of our family X → S of cubic fourfolds. By Theo-
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rem 31.3, it suffices to show that

(31.1) κ(XA′) ·A(E)= 0 ∈ Ext2(E,E).

Note that Hom(E,E)∼= A since E is simple, and relative Serre duality over A gives that
Ext2(E,E) is a line bundle on Spec A. More precisely, a version of the arguments in
[KM09, Theorem 4.3] relative to A shows that

(31.2) Ext2(E,E)
TrE( ◦A(E))
−−−−−−→ Ext3(OXA,�XA/A)

is an isomorphism. Now we claim that

0=TrE

(
κ(XA′) ·A(E)2

)
∈ Ext3(OXA,�XA/A),

so that by the isomorphism (31.2) the desired vanishing (31.1) holds. Indeed, consider the
formal exponential

exp(A(E)) : E→
⊕

i�0

E⊗�i
XA/A[i].

Due to the vanishing of Hi+2,i for i �= 1, we have

TrE

(
κ(XA′) ·A(E)2

)
= 2 TrE(κ(XA′) · exp(A(E)))= 2κ(XA′) · ch(E),

which vanishes, as it is precisely the obstruction to v, or equivalently ch(E), remaining of
Hodge type along A′.

Now we prove that F is a smooth functor. We use the T1-lifting theorem [Kaw92,
FM99] to reduce to the case of split square-zero extensions handled above. Namely, for
any integer n � 0 set An =C[t]/(tn+1) and A′n = An[ε]/(ε

2). The T1-lifting theorem says
that F is smooth if for every n � 0 the natural map

F(A′n+1)→ F(A′n)×F(An) F(An+1)

is surjective. Note that this map fits into a commutative diagram

F(A′n+1) F(A′n)×F(An) F(An+1)

G(A′n+1) G(A′n)×G(An) G(An+1)

where the bottom horizontal arrow is surjective because 0 ∈ S is a smooth point. There-
fore, it suffices to prove the map

(31.3) F(A′n+1)→G(A′n+1)×G(A′n)×G(An)G(An+1) (F(A′n)×F(An) F(An+1))
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is surjective. Let (Spec(A′n+1)→ S,E′n,En+1) be a point of the target of this map, and set
En = (En+1)An

∼= (E′n)An . By the previous paragraph, the set DefEn+1(A
′
n+1) of deformations

of En+1 over A′n+1 is an Ext1(En+1,En+1)-torsor, and the set DefEn(A
′
n) of deformations

of En over A′n is an Ext1(En,En)-torsor. Moreover, the restriction map on deformations
DefEn+1(A

′
n+1)→DefEn(A

′
n) is compatible with the torsor structures under the restriction

map

(31.4) Ext1(En+1,En+1)→ Ext1(En,En).

We claim the map on Ext1 groups, and hence also DefEn+1(A
′
n+1)→ DefEn(A

′
n), is sur-

jective. Given this claim, we can choose an element E′n+1 ∈ DefEn+1(A
′
n+1) restricting to

E′n ∈DefEn(A
′
n); then E′n+1 maps to (Spec(A′n+1)→ S,E′n,En+1) under (31.3), proving the

required surjectivity.
It remains to prove the map (31.4) is surjective. In fact, we will prove there is an

isomorphism

(31.5) Ext1(En+1,En+1)⊗An+1 An
∼= Ext1(En,En)

which implies the surjectivity of (31.4). The isomorphism (31.5) is a special case of
[Per20, Lemma 7.4(2)], but for completeness we include the argument. By base change
(Lemma 3.21), we have

HomAn+1(En+1,En+1)⊗An+1 An
∼=HomAn(En,En).

We will prove the cohomology groups Exti(En+1,En+1) of HomAn+1(En+1,En+1) are locally
free An+1-modules for all i, which by the above base change formula implies the iso-
morphism (31.5). Serre duality shows that Exti(En+1,En+1) vanishes for i /∈ [0,2], and
for i = 0 or i = 2 we already observed above that it is a line bundle. For i = 1, by the
local criterion for flatness it suffices to show that H−1(j∗0 Ext1(En+1,En+1)) = 0, where
j0 : Spec(C)→ Spec(An+1) is the closed point. Note that we have a spectral sequence
with E2-page

Ei,j
2 =Hj(j∗0 Exti(En+1,En+1))(⇒ Exti+j(E0,E0).

But E0,j
2 and E2,j

2 are 1-dimensional for j = 0 and vanish for j �= 0, and Ext0(E0,E0) is
1-dimensional, so the vanishing H−1(j∗0 Ext1(En+1,En+1))= 0 follows. ✷

32. Specializing Kuznetsov components to twisted K3 surfaces

Combining Proposition 30.8, Theorem 21.24, and Theorem 31.1, we obtain the
following.
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Corollary 32.1. — Let X be a cubic fourfold, let v ∈ H̃Hdg(Ku(X),Z) be a primitive vector,
and let σ ∈ Stab†(Ku(X)) be a v-generic stability condition. Let X′ be another cubic fourfold in the
Hodge locus where v stays a Hodge class. Then there exist a family g : X → C of cubic fourfolds over
a smooth connected quasi-projective curve and a stability condition σ on Ku(X ) over C such that:

(1) v is a primitive vector in H̃Hdg(Ku(Xc),Z) for all closed points c ∈C;
(2) there exists closed points c0, c1 ∈C such that Xc0 =X and Xc1 =X′;
(3) σc0 is a small deformation of σ satisfying Mσc0

(Ku(Xc0),v)=Mσ (Ku(Xc0),v);
(4) σc is v-generic for all c ∈C;
(5) the relative moduli space Mσ (v) is smooth and proper over C.

Furthermore, if we assume that the central charge Z of σ is defined over Q[i] and that X′ is also in the
Hodge locus where ℓσ ∈ H̃Hdg(Ku(X),Q) stays a Hodge class, then we can choose σ so that there is
an open neighborhood U ⊂ C of c0 such that the central charge of σ restricted over U factors through
N (Ku(XU)/U).

Proof. — Parts (1)–(5) follow directly from Proposition 30.8. To clarify the last state-
ment, we recall that the class ℓσ ∈ N1(Mσ (v)) of Theorem 21.25 corresponds via the
Mukai morphism (see Theorem 29.2.(2)) to a class in H̃(Ku(X),R), which is actually
rational under our assumptions. Then, up to slightly deforming σ , we can assume that
its central charge factors through M := H̃Hdg(Ku(Xc),Z), for c a very general point in C.
The conclusion follows then directly from Proposition 30.8.(3). ✷

Corollary 32.1 shows that to prove deformation invariant properties about
Mσ (Ku(X),v), we may specialize the cubic fourfold X within the Hodge locus for v.
In the proofs of our results stated in Section 29, we will use this observation to specialize
to the case where Ku(X) is equivalent to the derived category of a twisted K3 surface
(S, α), for which many results are already known [BM14b]. There is one subtlety: mod-
uli spaces of σ -stable objects in Db(S, α) are only well-understood when σ lies in the
connected component Stab†(S, α) containing geometric stability conditions, i.e., those
for which skyscraper sheaves of points are stable of the same phase.

Remark 32.2. — In the first version of this paper, the above subtlety was over-
looked, but in the meantime it was addressed in [PPZ19, Section 5.2] in the context
of Gushel–Mukai varieties. The arguments below closely follow those of [PPZ19, Sec-
tion 5.2], but are included for completeness.

Definition 32.3. — Let X be a cubic fourfold and (S, α) a twisted K3 surface. A
†-equivalence Ku(X) ≃ Db(S, α) is an equivalence under which Stab†(Ku(X)) maps to
Stab†(S, α).

The following proposition gives the desired type of specialization, and is the main
result of this section.
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Proposition 32.4. — Let X be a cubic fourfold and let v ∈ H̃Hdg(Ku(X),Z). Then X is
deformation equivalent within the Hodge locus for v to a cubic fourfold X′ such that there is a †-
equivalence Ku(X′)≃Db(S′, α′) for a twisted K3 surface (S′, α′).

We will prove the proposition at the end of this section, after some preliminary
results.

Lemma 32.5. — Let X be a cubic fourfold, let v ∈ H̃Hdg(Ku(X),Z) be primitive vector
with v2 = 0, and let σ ∈ Stab†(Ku(X)) be a v-generic stability condition. Assume there exists a
σ -stable object in Ku(X) of class v. Then S=Mσ (Ku(X),v) is a smooth K3 surface and there is a
†-equivalence Ku(X)≃Db(S, α) for a certain Brauer class α ∈ Br(S).

Proof. — The results of Section 30.2 applied in the case where the base is a point
show that σ is a stability condition over Spec(C). Thus by Theorem 21.24.(3), S is a
proper algebraic space over Spec(C). Moreover, by Theorem 31.1, S is also smooth over
Spec(C). Since Ku(X) is a 2-Calabi–Yau category, standard arguments show that S has
dimension v2 + 2= 2 and is equipped with a symplectic form (see [KM09]). Since S is
a smooth proper 2-dimensional algebraic space, it is in fact a smooth projective surface.
Moreover, by [BLMS17, Proposition A.7], S is also connected.

Now let E be a quasi-universal family over S × X and α ∈ Br(S) the associated
Brauer class. By [Bri99], the exact functor 	E : Db(S, α)→Ku(X) is fully faithful. Since
the 0-th Hochschild cohomology HH0(Ku(X)) is one-dimensional, 	E is also essentially
surjective (Bridgeland’s trick; see for example [Kuz19, Proposition 5.1]). By construction,
the equivalence 	E is a †-equivalence.

As S has a symplectic form, it is either a K3 or abelian surface. Since the category
Db(S, α)≃Ku(X) has the same Hochschild homology as a K3 surface, S must in fact be
a K3 surface. ✷

Next we observe that the existence of a †-equivalence deforms along Hodge loci
for square-zero classes.

Lemma 32.6. — Let X and X′ be cubic fourfolds which are deformation equivalent within the
Hodge locus for a vector v ∈ H̃Hdg(Ku(X),Z) with v2 = 0. Then Ku(X) is †-equivalent to the
derived category of a twisted K3 surface if and only if Ku(X′) is.

Proof. — Assume Ku(X) is †-equivalent to the derived category of a twisted K3
surface. Then if σ ∈ Stab†(Ku(X)) is v-generic, the moduli space Mσ (Ku(X),v) is
a smooth K3 surface [BM14b]. By Corollary 32.1, it follows that for any v-generic
σ ′ ∈ Stab†(Ku(X′)), the moduli space Mσ ′(Ku(X′),v) is also a smooth K3 surface. By
Lemma 32.5, we conclude Ku(X′) is †-equivalent to the derived category of a twisted K3
surface. ✷
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The following is our key technical ingredient. It allows us to replace a given equiv-
alence Ku(X) ≃ Db(S, α) with a †-equivalence, provided X admits deformations with
suitable Hodge-theoretic properties.

Lemma 32.7. — Let X be a cubic fourfold such that:
(1) There is an equivalence Ku(X)≃Db(S, α) for a twisted K3 surface (S, α).
(2) There exists a vector v ∈ H̃Hdg(Ku(X),Z) with v2 = 0 such that X is deformation

equivalent within the Hodge locus for v to a cubic fourfold X′ with the property that
H̃Hdg(Ku(X′),Z) contains no vectors w with w2 =−2.

Then there exists a twisted K3 surface (T, β), possibly different from (S, α), and a †-equivalence
Ku(X)≃Db(T, β).

Proof. — Let X → C be a family of cubic fourfolds over a smooth connected
quasi-projective curve C, such that X0 = X and X1 = X′ for some points 0,1 ∈ C(C),
and v remains a Hodge class along C. There exists a simple object E ∈ Ku(X) of class
v ∈ H̃Hdg(Ku(X),Z) with Ext<0(E,E) = 0; indeed, even stronger, there exist σ -stable
objects of class v for a v-generic σ ∈ Stab†(S, α) by [BM14b]. Thus by Theorem 31.1
there is a Zariski open U ⊂ C such that for any c ∈ U(C) there exists a simple object
Ec ∈Ku(Xc) of class v ∈ H̃Hdg(Ku(Xc),Z) with Ext<0(Ec,Ec)= 0; in particular, it follows
that Ext1(Ec,Ec)∼=C2.

The condition that H̃Hdg(Ku(Xc),Z) contains no vectors w with w2 =−2 holds for
a very general c ∈U(C), because it holds for c= 1 by assumption. Therefore, after possi-
bly replacing X′ by a different fiber of the map X →C, we may assume there is an object
E′ ∈ Ku(X′) such that Ext1(E′,E′) ∼= C2. It then follows from [BLMS17, Lemma A.4]
that E′ is σ -stable for any σ ∈ Stab(Ku(X′)). Thus, Lemma 32.5 shows Ku(X′) is †-
equivalent to the derived category of a twisted K3 surface, and by Lemma 32.6 we con-
clude the same for Ku(X). ✷

Proof of Proposition 32.4. — By [AT14, Theorem 4.1], X is deformation equivalent
within the Hodge locus for v to a cubic fourfold in C8, where C8 is the discriminant 8
Hassett divisor. Recall that C8 can be described either as the irreducible divisor parame-
terizing cubic fourfolds containing a plane, or as the Hodge locus for a certain square-zero
vector in H̃Hdg(Ku(X),Z), see [Huy17]. Therefore, to finish the proof, by Lemma 32.6
it suffices to show there exists a X ∈ C8 such that Ku(X) is †-equivalent to the derived
category of a twisted K3 surface.

By [Huy17, Proposition 2.15], there exists a Hassett divisor Cd such that Cd is the
Hodge locus for a square-zero vector in H̃Hdg(Ku(X),Z), and the very general point of
Cd parameterizes a cubic fourfold X such that H̃Hdg(Ku(X),Z) contains no vectors w

with w2 = −2. Moreover, again by [AT14, Theorem 4.1], there exists a cubic fourfold
X ∈ Cd ∩ C8 such that Ku(X)≃Db(S, α) for a twisted K3 surface (S, α) (and in fact we
may take α = 0). Thus, we conclude by Lemma 32.7 that Ku(X) is †-equivalent to the
derived category of a twisted K3 surface, as required. ✷
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33. Proofs of the main results

In this section, we apply the previous results to prove Theorems 29.1, 29.2, and
29.4, and their consequences, Corollaries 29.5, 29.7, and 29.8.

Proof of Theorem 29.4.(1). Let X →C be a family of cubic fourfolds. Let C̃→C be
a finite (not necessarily étale) Galois cover such that XC̃ admits a family of lines in the
fibers that are not contained in a plane. Let σ be the stability condition over C̃ given by
Proposition 30.8 that is v-generic in every fiber; in the construction it is easy to ensure
that σ is Galois-invariant, in the naive sense that in each orbit, the stability conditions in
the corresponding Kuznetsov component are identical.

Now consider the relative moduli space Mσ (v). By construction, there are no prop-
erly semistable objects, and so Mσ (v) is an open subspace of sMpug(Ku(XC̃)/C̃). By The-
orem 21.24.(2), it is an algebraic space, proper over C̃. By Theorem 31.1, it is also smooth
over C̃.

Finally, by the Galois invariance of σ , the Galois group of C̃ → C also acts on
Mσ (v); therefore it descends to a smooth and proper morphism M̃(v)→ C with the
properties described in the statement of the theorem. ✷

Proof of Theorem 29.4.(3). In the case where S admits a family of lines over S, none
of which are contained in a plane, this is just Theorem 21.24 in our context. The general
case can be reduced to that situation using a cover of S, just as in the previous proof. ✷

Next we prove Corollary 29.7, in the following general form.

Proposition 33.1. — Let X be a cubic fourfold. Then there exist a smooth projective K3 surface
S and a Brauer class α ∈ Br(S) such that Ku(X)≃Db(S, α) if and only if there exists a non-zero
primitive Mukai vector v ∈ H̃Hdg(Ku(X),Z) such that v2 = 0. Moreover, the class α can be chosen to
be trivial if and only if there exists another Mukai vector v′ ∈ H̃Hdg(Ku(X),Z) such that (v,v′)= 1.

Note the following generalization of [Muk87], which can also be regarded as an
elaboration on Lemma 32.5 (with slightly different hypotheses).

Lemma 33.2. — Let D be a 2-Calabi–Yau category, i.e. an admissible subcategory of the
derived category of a smooth projective variety, with Serre functor SD = [2]. Assume HH0(D)=C.

(1) If there exists a K3 surface S and a Brauer class α ∈ Br(S) such that D ≃Db(S, α), then
there exists a primitive Mukai vector v ∈ H̃Hdg(D,Z) with v2 = 0.

(2) If there exists a primitive Mukai vector v with v2 = 0 and a Bridgeland stability condition
σ which is v-generic and such that Mσ (v) exists and it is isomorphic to a K3 surface S,
then D ≃Db(S, α), for a certain α ∈ Br(S).

Moreover, the Brauer class α can be chosen to be trivial if and only if there exists another Mukai vector
v′ ∈ H̃Hdg(D,Z) with (v′,v)= 1.
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Remark 33.3. — The group of Hodge classes H̃Hdg(D,Z) appearing in the lemma
can be defined as in [Per20]; however, in this paper we will only need the case where
D =Ku(X) for a cubic fourfold X.

Proof. — Part (1) is clear, by taking v to be the Mukai vector of a skyscraper sheaf
(and, if the Brauer class is trivial, v′ to be that of the structure sheaf). Part (2) holds as in
the proof of Lemma 32.5. Finally, if there exists another Mukai vector v′ ∈ H̃Hdg(D,Z)

with (v′,v)= 1, then the quasi-universal family is universal, and so α can be chosen to
be trivial. ✷

Proof of Proposition 33.1. By Lemma 33.2, we only need to show that, given a non-
zero primitive Mukai vector v ∈ H̃Hdg(Ku(X),Z) such that v2 = 0, there exists a v-
generic stability condition σ for which the moduli space Mσ (v) is a K3 surface. This
follows from Proposition 32.4, Corollary 32.1, and the analogous statement for moduli
spaces for stability conditions in the distinguished component of the stability manifold of
a twisted K3 surface [BM14b]. ✷

The above proposition is enough to extend [Huy17, Theorem 1.5.ii)], by using the
Derived Torelli Theorem for twisted K3 surfaces [Orl97, HS06].

Corollary 33.4. — Let d be a positive integer such that

d ≡ 0,2 (mod 6) and ni ≡ 0 (mod 2)

for all primes pi ≡ 2 (mod 3) occuring in the factorization 2d =
∏

pni
i . Then for cubic fourfolds

X,X′ ∈ Cd , there exists an equivalence Ku(X)≃Ku(X′) if and only if there exists a Hodge isometry
H̃(Ku(X),Z)∼= H̃(Ku(X′),Z).

Proof of Theorem 29.2. We divide the proof in a few steps. For the moment, we think
of Stab†(Ku(X)) as a non-empty connected open subset. We postpone the proof that it
is a whole connected component of the space of stability conditions to later on in the
section.

Non-emptiness. — We first deal with the non-emptiness statement in part (1) of the
theorem. One implication follows immediately from the properties of the Mukai pairing:
since v is primitive and σ is v-generic, then Mσ (v)=Mst

σ (v) and any object E in Mσ (v)

satisfies v2 =−χ(E,E)�−2.
For the converse, let v ∈ H̃Hdg(Ku(X),Z) be a primitive Mukai vector satisfying

v2 �−2 and σ ∈ Stab†(Ku(X)) be a v-generic stability condition. We apply one more
time Corollary 32.1 as in the proof of Proposition 33.1: the Hodge locus where v stays a
Hodge class will intersect the divisor C8. Since, by [BM14b, Corollary 6.9], the moduli
space is non-empty there, it is non-empty on all fibers, in particular over X, as we wanted.
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Hodge classes are algebraic. — The equality H̃Hdg(Ku(X),Z) = H̃alg(Ku(X),Z) is
now immediate: every Hodge class can be written as sum of Hodge classes having posi-
tive square. The non-emptiness statement above guarantees that these are algebraic, as
we wanted.

Projectivity. — The moduli space Mσ (v) is smooth and proper, by Theorem 31.1
and Theorem 21.24.(3). Moreover, by [KM09, Theorem 2.2], since Mσ (v) parameterizes
stable objects in the K3 category Ku(X), Serre duality gives a non-degenerate closed
symplectic 2-form on Mσ (v), and so it has trivial canonical bundle. We want to prove
that Mσ (v) is projective.7

We claim, in a slightly more precise version of Corollary 32.1, that there exists
a family g : X → C of cubic fourfolds, parameterized by a smooth connected quasi-
projective curve C, c0, c1 ∈C, and a stability condition σ on Ku(X ) over C whose central
charge factors via N (Ku(X )/C) such that:

(1) v is a primitive vector in H̃Hdg(Ku(Xc),Z) for all closed points c ∈C;
(2) Xc0 =X and Mσc0

(Ku(Xc0),v)=Mσ (Ku(Xc0),v);
(3) Ku(Xc1)

∼=Db(S, α), for some twisted K3 surface (S, α);
(4) σc is v-generic for all c ∈C;
(5) the relative moduli space Mσ (v) is smooth and proper over C.

If we assume the claim, we can conclude the proof as follows. Let us consider the
relatively nef real numerical Cartier divisor class ℓσ ∈N1(Mσ (v)/C) of Theorem 21.25.
By slightly deforming σ and taking multiples if necessary, we can assume it is actually an
integral class. By Proposition 32.4 and [BM14b, Corollary 7.5], we have that the divisor
class ℓσc1

is ample. Since ampleness is an open property, ℓσc is ample for all c in a Zariski
open subset U of C. By relative Serre vanishing, we can further assume it has no higher
cohomology, for all c ∈ U. Hence, h0(Mσc(v), ℓ⊗m

σc
) = χ(Mσc(v), ℓ⊗m

σc
), for all c ∈ U and

m > 0, and thus it is independent on c.
By semicontinuity, this shows that h0(Mσ (v), ℓ⊗m

σ ) has maximal growth, for m≫ 0,
and therefore it is big on Mσ (v). Since Mσ (v) has trivial canonical bundle and ℓσ is nef
as well, the Base Point Free Theorem [KM98, Theorem 3.3] (for algebraic spaces see
also [Anc87]) implies that a multiple of ℓσ is globally generated on Mσ (v). But ℓσ has the
stronger positivity property of intersecting any curve strictly positively; this shows that ℓσ

is actually ample, and thus Mσ (v) is projective, as we wanted.
Finally, we prove the claim above. By Corollary 32.1, there is a family g : X → C

and a stability condition σ with all the properties except that the central charge might
not factor via N (Ku(X )/C). This works if we replace C with an open subset C′ ⊆ C
containing c0 but c1 might not be in C′.

7 The following argument was suggested to us by Giulia Saccà; it greatly simplifies the one in an earlier version of
this paper.



316 A. BAYER, M. LAHOZ, E. MACRÌ, H. NUER, A. PERRY, P. STELLARI

The claim follows if we show that we can take C with infinitely many points sat-
isfying (3). The argument is rather elementary and we will briefly discuss it. Let N be
the smallest saturated sublattice of H̃Hdg(Ku(X),Z) generated by the natural sublattice
A2, v and ℓσ . By [AT14, Proposition 2.3], the saturated sublattice N⊥ of H̃(Ku(X),Z)

identifies with a saturated sublattice N′ in H4(X,Z) (up to sign). Thus X is contained in
the Hodge locus CM of the moduli space of cubic fourfolds C determined by the lattice
M := (N′)⊥. By Proposition 33.1, the set of cubic fourfolds satisfying (3) is a countable
collection of divisors in C and each of them is a Hodge locus determined by a rank-2
sublattice of the fourth integral cohomology lattice of the cubic fourfold with non-trivial
intersection with M, due to the signature of the lattice orthogonal to the saturated sublat-
tice generated by N and the additional class of square zero. Thus the intersection of CM

with any such divisor C ′ has codimension at most 1 in CM. In order to show that the in-
tersection CM ∩ C ′ is nonempty for infinitely many C ′ as above, by the explicit description
of the image of the period map for cubic fourfolds [Loo09, Laz10], we just need to show
that this intersection is not contained in the two special divisors C2 and C6 in the period
domain of cubic fourfolds. But if, for infinitely many C ′ the intersection were contained in
either of the two divisors then, by the density of such Hodge loci, CM would be contained
either in C2 or C6 which contradicts the fact that X is in CM. Hence we can pick the curve
C in CM so that all the properties above are satisfied and (3) holds true for infinitely many
points. The same is then true when passing to an open subset C′ containing c0.

The holomorphic symplectic structure. — Since M is deformation equivalent to a Hilbert
scheme of points on a K3 surface, it is a irreducible holomorphic symplectic manifold.
Moreover, the existence of a quasi-universal family on the relative moduli space guaran-
tees that the morphism θ does behave well in family as well, and thus Theorem 29.2.(2)
follows by again reducing to the case of (twisted) K3 surfaces and using [BM14b, Theo-
rem 6.10] therein. Theorem 29.2 is proven. ✷

We can finally complete the proof of Theorem 29.4.

Proof of Theorem 29.4.(2). First of all, as in the first part of the proof of Proposi-
tion 30.8, we can base change with a finite cover u : S̃→ S to have a family of lines over
S̃ and so that the fixed locus M of the monodromy group is H̃Hdg(Ku(Xs0),Z). This gives
a stability condition σ on Ku(X ) over S̃ with respect to M∨ and with the property that
σ s0
= σs0 . We can shrink S and assume further that the cover S̃→ S is étale.

Stability is open; in particular, the set of points s ∈ S̃ such that σ s is v-generic is
open. We set S̃0 this open subset. We consider the relative moduli space M̃0(v) :=Mσ (v)

over S̃0. This is proper and smooth over S̃0, and since now the lattice is fixed, comes also
with a relatively ample divisor class lσ , as defined in the proof of Theorem 29.2.

By [Sta21, Tag 0D30], M̃0(v) is a smooth projective integral scheme over S̃0.
Let S0 := u(̃S0) ⊂ S; it is open. By Proposition 20.11, M̃0(v) gives a descent datum for

https://stacks.math.columbia.edu/tag/0D30
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M̃0(v)/̃S0/S0 (see [Sta21, Tag 023U]). Hence, M̃0(v) does descend to an algebraic space
M0(v)→ S0. Since the central charge is monodromy-invariant, the relatively ample di-
visor class does descend as well. Therefore M0(v) is a scheme which is smooth projective
over S and a relative moduli space, which is what we wanted. ✷

Proof of Corollary 29.5. Let S be an open subset of the 20-dimensional moduli space
of smooth cubic fourfolds admitting a universal family g : X → S; for example, we can
choose the open set of cubics that have no automorphism. For a very general point s0 ∈ S,
we have Knum(Ku(Xs0))= A2, which is monodromy-invariant by construction.

For a pair of integers (a, b) as in the statement, consider v := aλ1+ bλ2 ∈ A2. Take
σs0 ∈ Stab†(Ku(Xs0)) a v-generic stability condition. Since η(σs0) ∈ A2 ⊗ C, the central
charge of σs0 is monodromy invariant.

By Theorem 29.4.(2), there is a non-empty open subset S0 ⊆ S and a relative mod-
uli space g : M0(v)→ S0. By Theorem 29.2, the fibers of g are irreducible holomorphic
symplectic manifolds of dimension v2+ 2= 2(a2− ab+ b2)+ 2. This proves the first part
of the statement.

As explained in the proof of Theorem 29.2, M0(v) is endowed with a relative line
bundle l such that ls = lσs . By Theorem 29.2.(2), ls is orthogonal to v for all s ∈ S0 and
must be a vector in A2, since Knum(Ku(Xs0))= A2 for a very general point s0. Hence ls is
proportional to w=−(2b−a)λ1+(2a−b)λ2. Given a, b coprime, the class w is primitive
if a2 − ab+ b2 is not divisible by 3, and divisible by 3 otherwise. A simple computation
yields the degree. Another application of Theorem 29.2.(2) shows that the divisibility of
the polarisation is equal to the divisibility of w or w

3 in v⊥. The claim then follows from
the fact that v⊥ has discriminant 2n, whereas v⊥ ∩w⊥ = A⊥2 has discriminant 3.

To get a unirational family, we observe that S0 is open in the moduli space of cubic
fourfolds which is unirational by construction. ✷

Remark 33.5. — Using a descent argument as in the proof of Theorem 29.4.(2),
one can extend this family to a larger subset of the DM stack of cubic fourfolds. The
precise locus S \ S0 we are forced to omit can be determined as in [DM19] as the locus
where a stability condition σ with η(σ ) ∈ A2 ⊗C cannot be v-generic, or, equivalently,
where l cannot extend to a polarisation.

Example 33.6. — Let S be the moduli space of smooth cubic fourfolds, and
v = 2λ1 + λ2 as in Example 29.6. By [LPZ18, Theorem 1.2], we can take S0 to be
the complement of the divisor C8 of cubics containing a plane. (Alternatively, this con-
sequence could also be deduced from the extension of [BM14a, Theorem 5.7] to our
context; this would also show that along C8, stability conditions with central charge in A2

lie on a wall, induced by the additional Hodge classes; in other words, S0 is the maxi-
mal possible subset in which Theorem 29.4.(2) holds.) It follows from the first statement
of [Has00, Proposition 5.2.1] that the monodromy on C8 acts trivially on these addi-
tional Hodge classes. Therefore, we are in the setting of Remark 30.9, and can deform

https://stacks.math.columbia.edu/tag/023U
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the stability conditions with central charge in A2 to some that are generic on all fibers;
the associated relative coarse moduli space extends M0(v)→ S0 to a proper morphism
M(v)→ S of algebraic spaces, with all fibers being smooth and projective. Over C8, it
agrees with the moduli spaces of stable objects constructed by Ouchi in [Ouc17].

Proof of Theorem 29.1. Let σ be a stability condition in the boundary of the open
subset Stab†(Ku(X))⊂ Stab(Ku(X)); by the covering map property, its central charge is
on the boundary of P+

0 (Ku(X)). This means that in the kernel of Z there is either a root
δ ∈ H̃Hdg(X,Z), δ2 =−2, or there is a real class w ∈ H̃Hdg(X,Z)⊗R with w2 � 0.

By definition of the topology on Stab(Ku(X)), the set where a given object is
semistable is closed; therefore, the non-emptiness of Theorem 29.2 still holds for σ .
In the former case, this is a direct contradiction to Z(δ) = 0. In the latter case, let
Q be the quadratic form giving the support property for σ , and consider a sequence
wi ∈ H̃Hdg(X,Z) ⊗ Q with w2

i � 0 and wi → w. As an integral multiple of wi is
the Mukai vector of a σ -semistable object, we have Q(wi) � 0, a contradiction to
Q(w) < 0. ✷

Proof of Corollary 29.8. — Take a class v ∈ H4(X,Z) ∩ H2,2(X). By [AH61, Sec-
tion 2.5] (see also [AT14, Theorem 2.1(3)]), there is w ∈Ktop(X) such that v(w)= v+ ṽ,
where ṽ ∈H6(X,Q)⊕H8(X,Q).

Consider the projection w′ of w to H̃(Ku(X),Z) which is induced by the projec-
tion functor. It is clear that the identity w′ =w+ a0[OW]+ a1[OW(1)]+ a2[OW(2)] holds
in Ktop(X), where for a0, a1, a2 ∈ Z (see, for example, [AT14, Section 2.4]). Note that
c2(w

′) and c2(w)= c2(v) differ by a multiple of h2, so one is algebraic if and only if the
other one is. The vector w′ is in H̃Hdg(Ku(X),Z)= H̃alg(Ku(X),Z) since the projection
preserves the Hodge structure (for the latter equality we used Theorem 29.2). Hence,
there exists E ∈Ku(X) such that v(E)=w′ and c2(w

′) is algebraic. ✷
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