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Abstract—Stability is an important constraint in power system
operation. Often trial and error heuristics are used that can be
costly and imprecise. A new methodology that eliminates the need
for repeated simulation to determine a transiently secure oper-
ating point is presented. The theoretical development is straightf-
forward: dynamic equations are converted to numerically equiva-
lent algebraic equations and then integrated into the standard OPF
formulation. Implementation issues and simulation results are dis-
cussed in the context of a 162-bus system.

Index Terms—Power System, Transient Stability, Optimal
Power Flow, Numerical Computation.

I. INTRODUCTION

T HE cost of losing synchronous through a transient in-
stability is extremely high in modern power systems.

Consequently, utility engineers often perform a large number of
stability studies in order to avoid the problem. Mathematically,
transient stability is described by solutions of a set of differen-
tial-algebraic equations [1]–[3]. The current industry standard
is to solve the swing equations via step-by-step integration
(SBSI) methods. Since different operating points of a power
system have different stability characteristics, transient stability
can be maintained by searching for one that respects appropriate
stability limits. Such a search using conventional methods has
to be done by trial-and-error methods incorporating engineering
experience and judgement. Recently, significant improvements
in computer technology have encouraged the successful imple-
mentation of on-line dynamic security assessment programs
[4]–[7]. These new programs greatly improve the ability of
stability monitoring, also indicate a trivial yet important issue:
trial-and-error methods are not suitable for automated on-line
computation.

The disadvantage of SBSI has been recognized since the
earlier stages of computer application in power systems. This
encouraged extensive investigations into energy function
methods [8]–[11]. These methods have their roots in Lyapunov
stability theory and they are able to provide a quantitative
stability margin. With the stability margin in hand, the change
in direction of an operating point can be derived [12]–[14].
Possibly for the same reason, research on pattern recognition
and its variant, artificial neural networks, has also been rather
active in the past two decades. Although these methods do
not produce an explicit stability margin, they do provide for a
simple mapping between controllable generation dispatch and
indices such as an energy margin, rotor angles, etc. The simple
mapping information can in turn be used in a preventive control
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formulation [15]. Other attempts to solve this preventive control
problem can be found in, for example, references [4], [5], [16],
[17]–[30].

In reality the stability problem appears to be an OPF-like
problem, in which stability can be viewed as a constraint in ad-
dition to the normal OPF voltage and thermal constraints. Dis-
cussions on the possibility of including stability constraints into
standard OPF formulations can be found in [19], [21], [22]. It
is well-understood that voltage and thermal constraints be mod-
eled viaalgebraicequations or inequalities [19]–[21]. It is, how-
ever, an open question as to how to include stability constraints
since stability is a dynamic concept anddifferential equations
are involved. We note that attempts based on either energy func-
tion method or pattern recognition have been pursued [12]–[15].

We also note that the emergence of competitive power mar-
kets creates the need for a stability-constrained OPF because
the traditional trial and error method can produce a discrimina-
tion among market players in stressed power systems [23]. As
reported in [24], “the past practice of maintaining reliability by
following operating guidelines based on off-line stability studies
is not satisfactory in a deregulated environment.”

For the time being, there seems to be no general theory for
computing stability limits [27]. In this paper, we develop an ap-
proach to address this problem. A similar approach using a sig-
nificantly different dynamic metric and algorithms is discussed
in [29]. We demonstrate our idea by developing a stability-con-
strained OPF framework. The methodology is built upon the
state-of-the-art OPF and SBSI techniques. We found that, by
converting the differential equations into numerically equiva-
lent algebraic equations, standard nonlinear programming tech-
niques can be applied to the problem. We demonstrate the tech-
nique on a 25-machine 162-bus system where stability con-
straints such as rotor angle limit, tie-line stability limits, and
others can be conveniently controlled in thesameway thermal
limits are controlled in the context of an OPF solution. The sta-
bility- constrained OPF method is inevitably CPU-intensive. To
relieve this problem, new implementation techniques are de-
scribed.

II. A STABILITY -CONSTRAINED OPTIMAL POWER FLOW

FORMULATION

A standard OPF problem can be formulated as follows[19]:

Min (1)

S.T. (2)

(3)

0885–8950/00$10.00 © 2000 IEEE



536 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 15, NO. 2, MAY 2000

(4)

(5)

(6)

(7)

Where is a cost function; (2) and (3) are the active and
reactive power flow equations, respectively; is the vector of
generator active power output with upper bound and lower
bound ; is the vector of reactive power output with upper
bound and lower bound ; and are vectors of real
and reactive power demand; and are vectors of
real and imaginary network injections, respectively; is
a vector of apparent power flowing across the transmission lines
and contains the thermal limits for those lines;and are
vectors of bus voltage magnitudes and angles with upper and
lower limits and . Note that , , , and are the
free variables in the problem.

Now, assume that the dynamics are governed by the so-called
classical model in which the synchronous machine is character-
ized by a constant voltage behind a transient reactance .
For the sake of illustration, the load is modeled by a constant
impedance. Note that more complicated models could be used
in the same framework. We have the following “swing” equa-
tion [1]:

(8)

(9)

(10)

where and contain the real and reactive part of the bus
admittance matrix, respectively; and are vectors con-
taining the real and imaginary part of the network (bus) volt-
ages; is the nominal system frequency; is the inertia of
th generator; and are the rotor speed and angle ofth gen-

erator. The th entry of and is given by:

(generator buses)

(nongenerator buses)

We require that a solution of the stability-constrained OPF re-
spect the following constraint for each:

(11)

where is the number of generators, andis the rotor angle
with respect to a center of inertia reference frame. Note that
other physical constraints such as voltage dip can also be con-
veniently included here. In (11) we use rotor angle to indicate
whether or not the system is stable. This criteria is consistent
with industry practice and has been found by utility engineers
to be acceptable. The reason is as follows. At first, we point out
that there is no general method for measuring the stability region
of dynamic system (8)–(10). Hence equation (11) is the only
method available. Secondly, suppose the generators are approx-
imately separated into two groups during the transient duration,
then the well-know equal area criteria indicates that the relative
rotor angle between the two groups of generators should always
be smaller than in the extreme 180 degrees, otherwise the system
is unstable. Thirdly, a real-world power system is always oper-
ated such that any generator rotor anglewill not be greater
than a threshold (like 100 degrees). If a generator’s rotor angle

is larger than such a threshold, the generator will be tripped
off-line by out-of-step relay to protect it from being damaged
[10].

A solution to a stability-constrained OPF would be a set
of generator set-points that satisfy equations and inequalities
(1)–(11) for a set of credible contingencies. Unfortunately,
this nonlinear programming problem contains bothalgebraic
and differential equation constraints. Existing optimization
methods cannot deal with this kind of problem directly. In the
next section, we propose a method to attack the problem.

III. OUTLINE OF THE IDEA

As mentioned in preceding text, it is relatively straightfor-
ward to include contingency constraints into an OPF since
these constraints can be modeledalgebraically. It is, however,
an open question about how to include stability constraints. Ob-
viously the key to solving the problem is in handling the dif-
ferential equations. Here we convert the differential-algebraic
equations to numerically equivalent algebraic equations using
some appropriate rule. For our equations (8)–(10) and using the
trapezoidal rule this yields:

(12)

(13)

(14)
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(15)

where is the integration step length, is the integration step
counter, and is the number of integration steps [28]. The
stability constraints can thus be expressed as follows:

(16)

Note that we must set up the equations needed for computing
initial values of rotor angle, and equations for computing pa-
rameters of the swing equations. It is trivial to show that:

(17)

(18)

(19)

(20)

(21)

Where and represent the real and imaginary
part of load impedance, and is the number of buses. In
summary, we obtain the followingalgebraic nonlinear program
(NP) problem:

Min

S.T. –

– (22)

This standard nonlinear programming problem can be solved
using existing numerical methods. Indeed, the idea described in
this section is surprisingly simple. In subsequent sections, we
will develop a linear programming (LP) based computational
procedure to solve this algebraic NP problem.

IV. COMPUTATIONAL ISSUES

In this section, we outline the overall procedure of our method
and discuss some of the computational complexities associated
with it.

Fig. 1. Overall procedure for stability constrained OPF.

A. An Algorithm

A model algorithm that has been tested on several power sys-
tems is outlined in Fig. 1. We developed the model algorithm
based on the successive linear programming method [22] with
two additions: incorporation of stability constraints and a new
constraint relaxation technique (the constraint relaxation tech-
nique described in [22] is also implemented in our code).

In what follows we explain the procedure described in Fig. 1.
Since stability constraints are typically not binding, it is only
prudent to begin by solving a standard OPF to start and to check
to see if the solution of the standard OPF respects stability con-
straints. If the solution does, this solution is also the final solu-
tion of stability constrained OPF. If the solution does not respect
stability constraints, then a complete stability constrained OPF
must be solved.

The KT condition in Fig. 1 stands for the Kuhn–Tucker op-
timality condition associated withthe algebraic NP problem.
Inside the main loop, load flow and dynamic swing equations
should be solved simultaneously. Based on our computational
experience, this seems to be overly cautious. So in our proto-
type code, we solve load flow and swing equations sequentially.
Our experience also indicates that the integration method and
the step-size used in SBSI and that in the algebraic NP problem
should be consistent. Otherwise, the algorithm may not con-
verge.

Linearizing the objective function and constraints is trivial.
Techniques for reducing CPU demand are thus discussed in the
next section.

B. Computational Complexity

The algebraic NP problem (22) contains a very large number
of constraints. We offer some observations that could lead to
practical solutions. We start our discussion by making a com-
parison between steady-state security constrained OPF and dy-
namic-security constrained OPF. As an example assume:

—There are 10 contingency constraints
—The integration step size is 0.1 second
—The integration period is 2 seconds
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—There are 2 network switches (the point in time where the
fault is applied and cleared)
Note that each integration step imposes one set of constraints,

those are, equations (12)–(16), so each contingency imposes a
set of 22 constraints (2/0.12 constraints). Thus for this sta-
bility-constrained OPF, roughly 220 constraints need to be ap-
pended to standard OPF (l) to (7). For steady-state security con-
strained OPF, 10 constraints would need to be appended to stan-
dard OPF (l) to (7). This analysis is however overly simplistic
because of the following reasons.

First, the number of binding constraints for dynamic security
is typically smaller than that for steady-state security. In perhaps
any power system, the number of binding stability constraints is
normally very small, say in the order of 5 or less.

Second, the data structure of nonlinear programming problem
(22) fulfills the requirement of successful application of the cus-
tomized LP-based OPF algorithm reported in [22]. The major
computational burden in the LP-based OPF algorithm is to re-
peatedly solve the so-called primal and dual equations
and . To solve the primal equations (the technique for
dual equations is similar), write as follows:

(23)

Where sub-matrices and correspond to linear load flow
equations linearized from (2)–(3). They are constant during the
search of optimal basis. The solution of the primal equations is
given by:

(24)

(25)

Since matrix is constant during LP iteration, its factors are
computed only once in the beginning of the process, and stored
sparsely for the next iterations. During each LP iteration, one
only need solve dense linear equations (25) for, and perform
forward/backward substitutions to compute. From iteration
to iteration, if the size of is very small compared with that
of basis matrix , the above algorithm is extremely efficient.
We point out that the data structure of nonlinear programming
problem (22) meets this assumption, in addition, it is almost
band-wise, and is very sparse.

Third, for most stability studies, we can apply the con-
straint relaxation technique explained below. Suppose the
maximum rotor angle at each integration step, that is

, reaches maximum point at 0.4
second, then the constraints associated with those integration
steps after (say) 0.6 second can be excluded from LP problem
since they are not binding (Fig. 2).

Note that a full SBSI should always be performed to ensure
that no stability constraint is violated. In other words, if any
rotor angle violates the constraint after 0.6 second, these rotor
angle constraints should be adaptively incorporated into the LP
problem. Our method significantly reduces the size of LP prob-
lems. The results of simulation studies are provided in subse-
quent text to further illustrate the significance of this technique.

Fig. 2. Constraint relaxation for the stability constrained OPF.

V. AN EXTENSION

The integration-based method described in preceding sec-
tions also offers the basis of an analytical tool for other sta-
bility-related problems. We give some examples in this section.

Similar to standard OPF or steady-state security constrained
OPF, the objective function of the stability constrained OPF can
be defined as operating cost, transmission loss, as well as special
objectives like the one given below:

Min

S.T. –

–

where represents the desired operating point (typically the
previous one). The objective of this OPF is to find a secure
operating point that is close to the desired operating point.
Such a problem is known as preventive control or generation
rescheduling [12], [16], [17].

Another example is to estimate the loadability of power sys-
tems subject to stability constraint [25]. The objective function
and load flow constraints of this problem is defined as:

Max

S.T.

– –

where scalar denotes a parameter associated with load in-
crease.

Total Transfer Capability (TTC) or stability limit of tie line
can possibly be computed by solving:

Max

S.T. –

–

Note that once TTC is obtained, it is trivial to compute Avail-
able Transfer Capability (ATC) [24]. The interface flow can be
of either point-to-point type or area-to-area type.

One of the advantages of our method is that it has little limita-
tion on component modeling. Load can be flexibly expressed as
any combination of constant impedance, constant current, and
constant power. Generators can be modeled using a single-axis
model, a two-axis model, or even a more detailed model [1].
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Fig. 3. Dynamic response of 162-bus system at three operating points.

Fig. 4. Iteration process of stability constrained OPF.

Network changes such as three-phase-ground faults or the re-
moval of transmission lines can also be modeled in a straight-
forward way.

VI. NUMERICAL EXAMPLES

The integration-based method was implemented using the
MATPOWER package [26], a MATLAB-based power system
analysis toolbox that is freely available for download from the
site at http://www.pserc.cornell.edu/matpower/. The prototype
code has been tested on a 25-machine 162-bus system, 10-ma-
chine 39-bus system, and a 3-machine 9-bus system. The results
of the 162-bus system are presented here.

A three-phase-to-ground fault is applied to bus 26, the fault is
cleared 0.2 second later coupled with the removal of line 26–25.
The integration is executed for 1.6 seconds. The power flow (PF)
dispatch set-points were used as starting points to solve OPF
and SOPF (though the results of OPF should be used as starting
points to solve SOPF).

Fig. 3 illustrates the maximum rotor angles after the contin-
gency when the operating point of the system is given by sta-
bility-constrained OPF (SOPF), PF, and OPF, respectively. It
can be seen that the system does not survive after the contin-
gency at operating points given by PF or OPF, it does at oper-
ating point given by SOPF.

The iteration process of the stability constrained OPF is
shown in Fig. 4. The constraint relaxation technique illustrated

in Fig. 2 has been implemented in our MATLAB code. It was
found that the dynamics of system between 0.0 second to 0.6
second needs to be incorporated into LP problem, the dynamics
of system beyond 0.6 does not contain a binding constraint
thus is not included into the LP problem. As a result, the CPU
saving is enormous.

VII. CONCLUSIONS

The objective of monitoring and ultimately controlling the
stability of a power system is desirable. While the technology
for stability simulation is rather stable now, little theoretical
work has been done for computing stability limits precisely.

There is, however, an increasing need of solutions for this
challenging problem. In this paper, we have developed a basis
for one approach to this problem. The method naturally inherits
the advantages SBSI has such as, it has little limitations on com-
ponent modeling, it is robust, and it provides all system swing
information. We demonstrated that, using this general method-
ology, for the first time the stability limits of power systems can
be precisely and automatically estimated. We are hoping that the
methodology can be further developed into a practical tool. This
will require that it be efficiently implemented.
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