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1 Introduction

The observational evidence for an accelerating universe adds another serious wrinkle to the

already vexing issue of moduli stabilization in string theory. Besides having to stabilize

a myriad of moduli self-consistently at values that give physically acceptable couplings,

requiring the vacuum solution to have positive energy introduces a new layer of compli-

cations. Unlike their anti de Sitter and Minkowskian counterparts, de Sitter solutions

are much harder to construct as they are not amenable to the powerful tools of super-

symmetry. Furthermore, the de Sitter solutions one might hope to obtain from a string

compactification are at best metastable. There exist generically supersymmetric vacua

in the decompactified limit and any candidate de Sitter vacua are subject to all kinds of

perturbative and non-perturbative instabilities.

In the past decade, motivated partly by the increasing observational support for dark

energy, various proposals for constructing metastable de Sitter vacua from string theory

have been suggested. These proposals can be broadly divided into two types: those that

hinges on non-perturbative effects and/or explicit SUSY breaking localized sources (most

notably [1] and variations thereof), and those that do not [2–16]. We refer to the latter as

classical de Sitter solutions, as their constructions involve only classical ingredients such

as internal curvature, fluxes, and orientifold planes. In contrast to non-perturbative effects
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in string compactifications which are difficult to compute in full detail, the simplicity of

these classical de Sitter solutions allows for explicit models to be constructed. Among

these models, some of them can be shown to be genuine solutions of the 10D equations of

motion, as well as critical points of the dimensionally reduced theory. The classical de Sitter

solutions explored so far are admittedly far from realistic, e.g., the Standard Model sector

has not yet been implemented and an exponentially small cosmological constant is difficult

to achieve. Nonetheless, they serve to illustrate the general issues one may encounter in

constructing explicit de Sitter vacua from string theory. Furthermore, explicit constructions

of such solutions, though not fully realistic, may shed light on conceptual issues of de Sitter

space, such as a microscopic understanding of its entropy and holography etc.

If one may draw hints from the aforementioned attempts in constructing explicit de

Sitter vacua, a recurrent lesson seems to be the ubiquity of tachyons. While anti de Sitter

flux vacua are abundant [17],1 de Sitter solutions are hard to come by. Even if de Sitter

extrema are found, they are plagued with one or more unstable modes. Similar searches

for de Sitter vacua within 4D supergravity also seems to suggest that tachyonic modes are

omnipresent [21–24], though the tachyons found in explicit reductions of 10D backgrounds

(e.g., [6, 15]) are not necessarily in the “sGoldstino” direction [16]. Taking cues from these

earlier attempts, we set out to prove some no-go theorems for the existence of stable de

Sitter vacua. Of course, no-go theorems always come with assumptions and there are ways

around them. Our work thus helps in sharpening the requirements needed for constructing

explicit de Sitter vacua from string theory.

We found that some necessary constraints on the absence of tachyonic modes in classical

de Sitter solutions can be stated in a surprisingly clean and simple way. From the scalings

of various contributions to the potential with respect to the universal moduli (i.e., dilaton

and the breathing mode), and upon simplifications around a positive potential extremum,

we analyzed the conditions under which the moduli mass matrix contains necessarily an

unstable mode or a flat direction upon diagonalization. The conditions we found, sup-

plemented with earlier no-go theorems on the existence of de Sitter extrema [2, 4, 5, 16],

therefore provide us with a more refined guide to search for (meta)stable de Sitter vacua in

classical supergravity. As we shall see, the conditions on the stability of de Sitter extrema

are simple but yet powerful enough to show that the minimal setups evading the no-goes

in [2, 4, 5, 16] turn out to all suffer from perturbative instabilities. To obtain stable de

Sitter vacua, additional ingredients (e.g., more types of fluxes and/or O-planes) have to be

introduced. Our approach further allows us to enumerate the minimal ingredients needed

for constructing classical de Sitter vacua.

Although our focus is on finding classical vacua with positive cosmological constant in

this paper, we should mention here some recent related attempts in clarifying the possi-

bilities of realizing a time-varying dark energy in string theory. A shift-symmetry is often

invoked to prevent any undesired couplings between the heavy modes and the quintessence

field. There are two strands of approaches to weakly break this shift symmetry in order

1The non-perturbative (in)stability of AdS vacua were discussed in [18, 19]. See also the non-perturbative

instability argument [20] for AdS5 through a bubble of nothing.
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to obtain a time-varying dark energy: one with a non-perturbative potential [25, 26], and

the other with a classical potential from an NS5-brane [27] (based on [28–30]). The latter

class of models are similar in spirit to the classical de Sitter vacua considered here, as only

perturbative ingredients are introduced.

This paper is organized as follows. In section 2, we revisit the no-go theorems for

de Sitter extrema. Some form of these results were already obtained previously in the

literature [2, 4, 5, 16], but our approach is more systematic and suited for our subsequent

discussions about the stability of these extrema. In section 3, we generalize the setups

in section 2 and derive some new no-go theorems for (meta)stable de Sitter vacua. We

enumerate several “minimal” setups necessary to evade these no-goes. We end with some

discussions in section 5. Some details are relegated to an appendix.

2 No-go theorems for de Sitter extrema

Here, we analyze the conditions for de Sitter extrema to arise in classical supergravity (with

localized sources). Though some forms of these results were previously obtained [2, 4, 5, 16],

our result here is more complete, and our presentation will streamline our subsequent dis-

cussion in section 3 on more complicated set-ups and on the stability of classical de Sitter

vacua.

Our analysis applies to both Type IIA and Type IIB string theories. Consider com-

pactification to 4D, with the following ansatz for the metric:

ds2
10 =τ−2ds2

4 + ρds2
6 (2.1)

where we took the Weyl factor to be τ = e−φρ3/2 such that the kinetic terms for the

universal moduli ρ and τ in the 4D Einstein frame do not mix.

Various fluxes H3, Fp, localized q-brane sources and the 6D curvature contribute to the

4D potential in some specific way:

VH3
= AH3

τ−2ρ−3, VFp
= AFp

τ−4ρ3−p, Vq = Aqτ
−3ρ(q−6)/2, VR6

= AR6
τ−2ρ−1.

(2.2)

The coefficients AH3
and AFq

of the flux potentials are defined to be positive, while the

coefficients Aq of the p-branes contributions (including D-branes and O-planes) and AR6

for the curvature contribution can be either positive or negative. Note that all these po-

tentials go to zero when we take τ → ∞ while keeping the others finite. Therefore there

always exist a Minkowski vacuum asymptotically.

Here we follow more closely the discussions in [2, 16] which analyze the conditions for

a de Sitter extremum to arise in this context. The idea is that if we can find an inequality

of the following form:

D ≡ −aτ∂τ − bρ∂ρ,

DV ≥ cV,
(2.3)

with non-trivial real constants a, b, and c > 0, then a positive energy extremum of the

potential is excluded. To evade this no-go, one can enumerate a set of minimal ingredients

needed.
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As a simple example, let’s consider an effective 4D potential receiving contributions

from R6,H3 and two more components taken from the set of Fp,Oq. D-branes typically

introduce additional open-string moduli, and thus as a first pass, we do not include them

for simplicity. Here we analyze all possibilities which can evade the condition (2.3), and

then confirm that all candidates of this type were tabulated in [16]. From now on we

restrict ourselves to the following ingredients for simplicity:

F0, F2, F4, F6, O4, O6 in IIA

F1, F3, F5, O3, O5, O7 in IIB
(2.4)

More complicated setups give us more examples, some excluded by the no-goes and some

evading them. However since we will find examples of each type within this setup, we will

concentrate on the above limited components.

First we focus on the case with R6, H3, Fp, Oq (same as in [16]). If the following

conditions are satisfied:

DV = (2a + b)V + 2bVH3
+ (2a + (p − 4)b) VFp

+
(

a +
(

2 −
q

2

)

b
)

Vq,

2a + b > 0, 2b ≥ 0, 2a + (p − 4)b ≥ 0, a +
(

2 −
q

2

)

b ≤ 0,
(2.5)

we see that DV ≥ (2a + b)V and this leads to a no-go theorem for de Sitter extrema.

However, the inequality can be violated if we have the following sources:

IIA :(F0,O4), (F0,O6), (F2,O4),

IIB :(F1,O3), (F1,O5), (F3,O3), (F5,O3)
(2.6)

with suitable sign of R6 for each case, which we omit here but will be clarified later. A

nontrivial H3 is required in some cases, but we do not specify the details here.

Upon a similar analysis but with R6,H3, Fp1
, Fp2

and also R6,H3,Oq1,Oq2, we are left

with two additional cases, i.e., (O3,O5), (O3,O7) which can potentially evade the no-go.

However, a more detailed analysis showed that these two cases can evade the no-go only

if the number of O5 (respectively O7) is zero. Therefore we have in total 7 cases listed

in (2.6), where the no-go does not apply. Note that evading the no-go here only means that

the 4D potential can admit a de Sitter extremum, but does not guarantee the stability of

such extremum.

Now, if we include the contributions to the potential from the O8, O9-planes, the

constraints for evading the no-goes leave us only with (O3, O9). However again this

situation is possible only when the number of O9 is zero. Thus we can conclude that the

result obtained in (2.6) is most general, with two additional ingredients beyond R6 and H3.

In the next section, we will proceed further to analyze the stability of the candidate

de Sitter extrema. Although the ingredients presented in (2.6) are minimal in terms of

evading the no-go (2.3) for de Sitter extrema, all these minimal scenarios turn out to give

only unstable extrema. Since the more complicated setups we consider in the next section

subsume the simpler cases enumerated here, we will relegate our discussion of the no-go

for stability to the next section.
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3 No-go theorems for the stability of de Sitter extrema

We now generalize the setup in the previous section to include three additional components

beyond R6 and H3 and reanalyze the no-go theorems for de Sitter extrema presented

in (2.3). The three components are taken from the set: Fp,Oq, in particular, those listed

in (2.4). Then evading the no-go for extremal (2.3) leaves us with the following possibilities:

IIA :(F0, F2,O4), (F0, F4,O4), (F0, F6,O4), (F2, F4,O4), (F2, F6,O4),

(F0, F2,O6), (F0, F4,O6), (F0, F6,O6), (F0,O4,O6), (F2,O4,O6),

IIB :(F1, F3,O3), (F1, F5,O3), (F3, F5,O3), (F1, F3,O5), (F1, F5,O5),

(F1,O3,O5), (F1,O3,O7), (F3,O3,O5), (F3,O3,O7), (F5,O3,O5),

(F5,O3,O7), (F1,O5,O7),

(3.1)

We will analyze the stability of de Sitter extrema arising from all these cases. Again the sign

of the 6D curvature should be chosen appropriately in each case, and to avoid cluttering

our discussion, we omit such details here.

Let us examine the (in)stability of the candidates listed in (3.1). We restrict our

analysis to the universal moduli subspace, as the positivity of the mass matrix of this 2D

subspace is a necessity condition for the absence of unstable modes in the full moduli space,

according to the Sylvester’s criterion in linear algebras.2 The criterion can be stated as

follows (see e.g. [31]):

An N ×N Hermitian (e.g., real-symmetric) matrix is positive-definite if and

only if the determinants of the upper-left n × n submatrices (n ≤ N) are all

positive, or more mathematically precise, all of the leading principle minors are

positive.

For instance, let us apply this criterion first to the 2 × 2 mass matrix M of the (ρ, τ) sub-

space. The positivity of the determinant of M requires the diagonal components to be both

positive or both negative. In addition, the positivity of the upper-left most component is

also required (by Sylvester’s criterion) for M to be positive definite, thus tr(M) > 0 and

det(M) > 0. Now, applying Sylvester’s criterion to the mass matrix of the full moduli

space, we see that tr(M) > 0 together with det(M) > 0 are necessary conditions for the

full moduli mass matrix to be positive definite.

The eigenvalues of the two-by-two mass matrix M ≡ ∂ρi
∂ρj

V |ext can be easily calcu-

lated:

eigenvalues(M) =
1

2

(

tr(M) ±
√

(tr(M))2 − 4 det(M)
)

. (3.2)

So a stable minimum can exist if both tr(M) > 0 and 0 < det(M) ≤ (tr(M))2/4. We also

consider the case in which we have a zero eigenvalue separately. In the following, we will

show that in the minimal scenarios enumerated in (2.6), there is at least one tachyonic

2We are grateful to Thomas van Riet, Timm Wrase, and especially Marco Zagermann for bringing our

attention this point.
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or flat direction. Furthermore, in the remainder of this section, we will show some no-go

examples where tr(M) > 0 and det(M) > 0 cannot be simultaneously satisfied. Therefore,

owing to the Sylvester’s criterion, the full moduli mass matrix must necessarily contain at

least an unstable mode.

We now analyze the stability of the setups enumerated in (3.1), which were already

shown to evade the no-go for de Sitter extrema. Since going through the details case by

case is not very illuminating, we will work out one case in detail here and relegate the

details of all other cases to appendix A. We will further enumerate in the next section the

minimal ingredients for evading the refined no-go for de Sitter vacua we found here.

Let’s consider classical de Sitter solutions in Type IIA string theory with R6,H3, F0, F2,

and O4, as these ingredients were shown to evade the no-go for de Sitter extrema. As the

critical point, one finds the following two constraints between the coefficients of the poten-

tial and the values of the moduli fields.

AH3
= −

AR6
ρ2

7
+

13AF0
ρ6

7τ2
+

AF2
ρ4

τ2
, A4 = −

4AR6
τ

7
−

18AF0
ρ4

7τ
−

2AF2
ρ2

τ
. (3.3)

Usually we solve for the moduli given the coefficients; here, however, we use the constraint

equations to replace the coefficients with moduli fields instead. This does not mean that

these coefficients are functions of the universal moduli, as these equalities only hold on-shell.

Upon substituting (3.3), the potential at the extremum is:

Vext =
2AF0

ρ3

7τ4
+

2AR6

7ρτ2
. (3.4)

Here we see that a positive AR6
, corresponding to a negatively curved manifold, helps to

obtain a positive extremum of the potential, otherwise AF0
should be sufficiently large to

compensate for the contribution from a positive (or zero) internal curvature.

We proceed to analyze the stability of the extremum, following the argument

around (3.2). Actually we do not need to know the trace of the mass matrix in this

example to show the no-go for its stability. Instead, we focus on the determinant at the

extrema which can be written as:

det
(

∂ρi
∂ρj

V |ext

)

=
4

56ρ4τ10

[

(

4AR6
τ2 − 87AF0

ρ4 − 35AF2
ρ2

)2

−35
(

35A2
F2

ρ4 + 182AF0
AF2

ρ6 + 243A2
F0

ρ8
)]

.

(3.5)

Since we are interested in Vext > 0, AH3
≥ 0, we are limited to the range: −AF0

ρ4 <

AR6
τ2 ≤ 7AF2

ρ2 + 13AF0
ρ4. From the explicit expression of the determinant, and the

above inequalities, we found that the determinant is bounded from above by:

det
(

∂ρi
∂ρj

V |ext

)

< −
16A2

F0
ρ4

τ10
. (3.6)

Therefore we see that the constraints, Vext > 0, det
(

∂ρi
∂ρj

V |ext

)

≥ 0, AH3
≥ 0 cannot be

satisfied simultaneously, regardless of the sign of R6.

Let us analyze the case in which det
(

∂ρi
∂ρj

V |ext

)

= 0 while tr
(

∂ρi
∂ρj

V |ext

)

≥ 0,

meaning that at least one eigenvalue of the mass matrix is zero. However we exclude the

– 6 –
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situations which can satisfy det
(

∂ρi
∂ρj

V |ext

)

> 0, since then the examples have stable dS

vacua in some region. Actually there is only one situation which have a zero eigenvalue,

not positive, which is (R6, F5,O3) without any other sources. In this case, the potential

can be rewritten as

V (σ) =
AF5

σ4
+

A3

σ3
+

AR6

σ2
, (3.7)

with the definition σ = τρ1/2. Since the non-trivial potential is generated only for the di-

rection of σ, we have one remaining flat direction defined by δ = τρ−1/2 in 2D moduli space.

Therefore one modulus field δ cannot be stabilized, by the classical ingredients we consider.

Applying similar analysis to all the cases in (3.1), we found that Type II string theories

in the presence of R6, H3, and only the following sources:

IIA :(F0, F2,O4), (F0,O4,O6),

IIB :(F1, F3,O3), (F1,O3,O5), (F1,O3,O7), (F3,O3,O7), (F5,O3,O5), (F5,O3,O7)

(3.8)

do not lead to metastable de Sitter vacua. For the cases in Type IIA listed above in (3.8),

Vext > 0 and det
(

∂ρi
∂ρj

V |ext

)

≥ 0 cannot be satisfied simultaneously. While in Type IIB,

we cannot satisfy tr
(

∂ρi
∂ρj

V |ext

)

≥ 0, det
(

∂ρi
∂ρj

V |ext

)

≥ 0 with Vext > 0, except for the

case (R6, F5,O3) in which we have one flat direction. Thus, we found a new no-go theorem

which states that for the cases enumerated in (3.8), when Vext > 0, there is at least one

tachyonic or flat direction. We also see that the “minimal” setups (enumerated in (2.6))

designed to evade the no-go for de Sitter extrema turn out to be all unstable. Even if we gen-

eralized these “minimal” setups in (2.6) to include more contributions from fluxes and orien-

tifold planes (see (3.1)), some of these generalized setups still forbid stable positive minima.

4 Evading the no-goes

Next, we consider the cases in (3.1) other than the ones in (3.8) which were already excluded

in the previous section based on stability. Among these many cases, we would like to classify

what kinds of sources are essential in evading the no-go theorems for de Sitter vacua. Just

like the previous section, we will work out one case in detail, and then simply provide a

list of cases which can evade all the no-goes which we found after a thorough analysis.

Let’s consider the setup with R6,H3, F0, F2, O6. At the extremum, the coefficients

AH3
, A6, and the potential go like:

AH3
= −

AR6
ρ2

3
+

AF2
ρ4

3τ2
+

AF0
ρ6

τ2
, A6 = −

4AR6
τ

9ρ
−

14AF2
ρ

9τ
−

2AF0
ρ3

τ
,

Vext = −
2AF2

ρ

9τ4
+

2AR6

9ρτ2
.

(4.1)

Then we can analyze the stability of the de Sitter critical point from the trace and the
determinant of the mass matrix at the extrema:

tr
(

∂ρi
∂ρj

V |ext

)

=
2

3ρ3τ6

(

5AF2
ρ4 + 3AF0

ρ6 + 6AF2
ρ2τ2 − 2AR6

ρ2τ2 + 27AF0
ρ4τ2 − 3AR6

τ4
)

,

det
(

∂ρi
∂ρj

V |ext

)

=
4

3ρ4τ10

(

7A2

F2
ρ4 + 33AF0

AF2
ρ6 − 9AF2

AR6
ρ2τ2 − 21AF0

AR6
ρ4τ2 + 2A2

R6
τ4

)

.

(4.2)

– 7 –
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To obtain the validity range for de Sitter minima, we need to satisfy

tr
(

∂ρi
∂ρj

V |ext

)

> 0, 0 < det
(

∂ρi
∂ρj

V |ext

)

≤ (tr
(

∂ρi
∂ρj

V |ext

)

)2/4, simultaneously

with Vext > 0, AH3
≥ 0, A6 < 0. After some simplifications, these inequalities leave us

with the following range of parameters:

AF2
ρ2

τ2
< AR6

<
11AF2

ρ2

7τ2
, AF0

>
−7A2

F2
ρ4 + 9AF2

AR6
ρ2τ2 − 2A2

R6
τ4

33AF2
ρ6 − 21AR6

ρ4τ2
, (4.3)

which can be satisfied, and thus the no-go theorem for the stability of de Sitter extrema

can be evaded. Note that AH3
> 0 for the parameter region above.

Since we are interested in finding the parameter regime which gives stable de Sitter

vacua, we omitted the case when det
(

∂ρi
∂ρj

V |ext

)

= 0 which can be satisfied non-trivially

in this example if the second inequality in (4.3) becomes an equality. If an eigenvalue of

the mass matrix is zero, we need to check higher order terms for stability.

One can repeat this analysis for all the other cases. Since the details are not very

illuminating, we simply state our results as follows:

(i) In Type IIA string theory, we can satisfy the conditions for the existence of de Sitter

critical points, and the requirements of stability in the following setups:

• R6,H3, F0, F2, O6 with AR6
> 0, AH3

> 0,

• R6,H3, F0, F4, O6 with AR6
> 0, AH3

≥ 0,

• R6,H3, F0, F6, O6 with AR6
> 0, AH3

≥ 0,

• R6,H3, F0, F4, O4 with AR6
≷ 0, AH3

> 0 or AR6
> 0, AH3

= 0,

• R6,H3, F0, F6, O4 with AR6
≷ 0, AH3

> 0 or AR6
> 0, AH3

= 0,

• R6,H3, F2, F4, O4 with AR6
> 0, AH3

≥ 0,

• R6,H3, F2, F6, O4 with AR6
> 0, AH3

≥ 0,

• R6,H3, F2, O4, O6 with AR6
> 0, AH3

> 0.

(ii) In Type IIB string theory, the following setups can admit stable de Sitter minimum:

• R6,H3, F3, F5, O3 with AR6
> 0, AH3

> 0,

• R6,H3, F1, F5, O3 with AR6
≷ 0, AH3

> 0,

• R6,H3, F1, F5, O5 with AR6
> 0, AH3

≥ 0,

• R6,H3, F1, F3, O5 with AR6
> 0, AH3

> 0,

• R6,H3, F3, O3, O5 with AR6
> 0, AH3

> 0,

• R6,H3, F1, O5, O7 with AR6
> 0, AH3

> 0.
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As we increase the number of ingredients (fluxes and localized sources), we are likely

to find more and more examples that evade the no-goes (for both the existence of an

extremum and its stability), but the above list constitutes the “minimal” setups for

classical de Sitter vacua. Interestingly, the no-goes can be evaded with compactifications

on a positively curved or a flat manifold in the presence of H3 flux, even though in most

cases, a negatively curved manifold is preferred.

5 Discussions

In this paper, we have presented several new no-go theorems for classical de Sitter vacua,

i.e., de Sitter constructions using only 6D curvature, fluxes and O-planes in Type IIA and

IIB string theories. In addition to the no-goes for de Sitter extrema previously derived

in this context [2, 4, 5, 16], we found that constraints on the stability of these extrema

can further eliminate a significant portion of the landscape. We enumerate the minimal

ingredients needed to evade these no-goes. Most of these minimal setups we found involve

negatively curved 6D manifolds as originally suggested in [3], though there still remain

several interesting possibilities with positively curved 6D manifolds. It would be interesting

to see if such minimal setups can indeed be realized in terms of explicit models.

Recently it was argued that warping and/or stringy corrections are necessarily

important for compactifications on manifolds whose curvature is everywhere negative [32].

This is because the equations of motion cannot be satisfied pointwise in an everywhere

negatively curved internal space if the only negative tension objects at our disposal, i.e.

the orientifold planes are localized. The universal Kähler moduli defined in (2.1) is that of

an unwarped case, but is modified in the presence of warping [33–40] (see, in particular [41]

which is more suited for our present discussion). In this work, we sidestep these issues

of warping by implicitly smearing the orientifold planes, which can be thought of as an

approximation before the fully backreacted solutions are found.3 Furthermore, since our

analysis is carried out in the 4D effective field theory where the internal space is integrated

out. Therefore, it would also apply to manifolds which are not everywhere negatively

curved, but with an overall negative 6D curvature. We should emphasize that while we

found the necessary constraints for stable classical dS minima, there is no guarantee that

explicit backgrounds satisfying the requirements exist. Moreover, the full backreaction of

several localized sources remains an open challenging issue.

We focus our search for de Sitter vacua whose constructions do not invoke explicit

SUSY breaking localized sources. Introducing sources such as anti-branes would certainly

enlarge the list of possibilities. For example, the no-go theorem for the stability of de

Sitter extremum constructed from IIB string theory with R6, H3, F0, O4, and O6 can

be evaded by replacing O4 with D4-D4 pairs. In fact, the no-go theorems can similarly

be evaded for R6, H3, F1, D3-D3, O5, also for R6, H3, F5, O3, D5-D5 and R6, H3, F5,

O3, D7-D7. Pairs of localized D3-D3 [42] were also used for uplifting the AdS vacua to

dS in [1]. Recently the backreaction of such D3-D3 pairs in the Klebanov-Strassler throat

3We consider smearing just on a base manifold transverse to the Oq-planes, such that the Oq-planes do

not acquire additional moduli dependences as compared to a localized one.
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were discussed in [43–45] (see also further discussions in [46–48]). Related studies on the

backreaction of localized sources in simpler setups (though more closely related to the

classical de Sitter vacua discussed here) were considered in [49, 50].
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A Instability analysis for other examples

This appendix is devoted to complete the stability analysis for all the cases in (3.8), which

were skipped in section 3, and demonstrate that they all lead to a no-go for stable de

Sitter vacua.

A.1 R6,H3, F0, O4, O6 in IIA

The requirements of an extremum lead to the following two conditions:

AH3
= −

AR6
ρ6

3
+

AF0
ρ6

τ2
−

A4ρ
2

3τ
, A6 = −

2AF0
ρ3

τ
−

4AR6
τ

9ρ
−

7A4

9ρ
. (A.1)

Then the potential at its extremum, upon substituting AH3
, and A6, becomes

Vext =
2AR6

9ρτ2
−

A4

9ρτ3
. (A.2)

Therefore we see that a negatively curved manifold together with a number of O4-planes,

or with a certain amount of F0 flux help to obtain dS extrema.

The determinant of the mass matrix at the extremum becomes

det
(

∂ρi
∂ρj

V |ext

)

=
1

3ρ4τ9

(

60A4AF0
ρ4 − 7A2

4τ − 84AF0
AR6

ρ4τ + 4A4AR6
τ2 + 8A2

R6
τ3

)

.

(A.3)

Thus, we cannot satisfy Vext > 0, det
(

∂ρi
∂ρj

V |ext

)

≥ 0, AH3
≥ 0, A4 ≤ 0 simultaneously.

This means there is at least one tachyonic direction at the positive extremum.

A.2 R6,H3, F1, F3, O3 in IIB

The conditions on extrema lead to the following potential at the critical point:

AH3
=

AF3
ρ3

τ2
+

2AF1
ρ5

τ2
, A3 = −

2AF3
ρ3/2

τ
−

8AF1
ρ7/2

3τ
−

2

3
AR6

ρ1/2τ ,

Vext =
AF1

ρ2

3τ4
+

AR6

3ρτ2
.

(A.4)
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The trace and the determinant of the mass matrix go like

tr
(

∂ρi
∂ρj

V |ext

)

=
1

2ρ3τ6

(

4AF3
ρ3 + 9AF3

ρτ2 − 4AR6
ρ2τ2 − AR6

τ4 + 32AF1
ρ3τ2

)

,

det
(

∂ρi
∂ρj

V |ext

)

= −
16

ρ3τ10

(

4A2
F1

ρ5 + AF3
AR6

τ2 + AF1
ρ2(AF3

ρ + 3AR6
τ2)

)

,
(A.5)

We see that the conditions Vext > 0, det
(

∂ρi
∂ρj

V |ext

)

≥ 0, tr
(

∂ρi
∂ρj

V |ext

)

≥ 0, AH3
≥ 0

cannot be satisfied simultaneously.

A.3 R6,H3, F1, O3, O5 in IIB

At the extremum of the potential:

AH3
=

2AF1
ρ5

τ2
+

A5ρ
5/2

2τ
, A3 = −

8AF1
ρ7/2

3τ
−

2AR6
ρ1/2τ

3
−

4A5ρ

3
,

Vext =
AF1

ρ2

3τ4
+

AR6

3ρτ2
+

A5

6ρ1/2τ3
,

(A.6)

while the trace and the determinant of the mass matrix are found to be

tr
(

∂ρi
∂ρj

V |ext

)

=
1

4ρ3τ5

(

−4A5ρ
5/2 + 7A5ρ

1/2τ2 − 8AR6
ρ2τ − 2AR6

τ3 + 64AF1
ρ3τ

)

,

det
(

∂ρi
∂ρj

V |ext

)

= −
2

ρ7/2τ10
(8AF1

ρ5/2 + A5τ)
(

4AF1
ρ3 + 2A5ρ

1/2τ + 3AR6
τ2

)

.

(A.7)

Again we cannot satisfy Vext > 0, det
(

∂ρi
∂ρj

V |ext

)

≥ 0, tr
(

∂ρi
∂ρj

V |ext

)

≥ 0, AH3
≥

0, A3 ≤ 0 simultaneously regardless of the sign of R6.

A.4 R6,H3, F5, O3, O5 in IIB

At the extremum of the potential:

AH3
=

A5ρ
5/2

2τ
, A3 = −

4AF5

3ρ1/2τ
−

2AR6
ρ1/2τ

3
−

4A5ρ

3
,

Vext = −
AF5

3ρ2τ4
+

AR6

3ρτ2
+

A5

6ρ1/2τ3
.

(A.8)

then the trace and the determinant of the mass matrix becomes

tr
(

∂ρi
∂ρj

V |ext

)

=
1

4ρ4τ6

(

16AF5
ρ2 + 4AF5

τ2 − 4A5ρ
7/2τ + 7A5ρ

3/2τ3 − 8AR6
ρ3τ2 − 2AR6

ρτ4

)

,

det
(

∂ρi
∂ρj

V |ext

)

= −
2A5

(

−6AF5
+ 3AR6

ρτ2 + 2A5ρ
3/2τ

)

ρ9/2τ9
.

(A.9)

In this case, we cannot satisfy Vext > 0, det
(

∂ρi
∂ρj

V |ext

)

> 0, tr
(

∂ρi
∂ρj

V |ext

)

≥ 0, AH3
≥

0, A5 ≤ 0 simultaneously. When we satisfy det
(

∂ρi
∂ρj

V |ext

)

= 0, tr
(

∂ρi
∂ρj

V |ext

)

≥ 0, the

system is reduced to (R6, F5,O3) which was showed to have one flat direction in (3.7).
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A.5 R6,H3, F1, O3, O7 in IIB

At the extremum of the 4D potential:

AH3
=

2AF1
ρ5

τ2
+

A7ρ
7/2

τ
, A3 = −

8AF1
ρ7/2

3τ
−

2AR6
ρ1/2τ

3
−

5A7ρ
2

3
,

Vext =
AF1

ρ2

3τ4
+

A7ρ
1/2

3τ3
+

AR6

3ρτ2
.

(A.10)

Then the trace and the determinant of the mass matrix go like

tr
(

∂ρi
∂ρj

V |ext

)

=
1

2ρ3τ5

(

32AF1
ρ3τ − 4AR6

ρ2τ − AR6
τ3 − 4A7ρ

7/2 + 11A7ρ
3/2τ2

)

,

det
(

∂ρi
∂ρj

V |ext

)

=
−4

ρ5/2τ10

(

16A2

F1
ρ9/2+A7τ

2(5A7ρ
3/2+4AR6

τ)+4AF1
(5A7ρ

3τ +3AR6
ρ3/2τ2)

)

.

(A.11)

It can be shown that Vext > 0, det
(

∂ρi
∂ρj

V |ext

)

≥ 0, tr
(

∂ρi
∂ρj

V |ext

)

≥ 0, AH3
≥ 0

cannot be satisfied.

A.6 R6,H3, F3, O3, O7 in IIB

At the extremum of the 4D potential:

AH3
=

AF3
ρ3

τ2
+

A7ρ
7/2

τ
, A3 = −

2AF3
ρ3/2

τ
−

2AR6
ρ1/2τ

3
−

5A7ρ
2

3
,

Vext =
A7ρ

1/2

3τ2
+

AR6

3ρτ2

(A.12)

Then the determinant of the mass matrix becomes

tr
(

∂ρi
∂ρj

V |ext

)

=
1

2ρ3τ6

(

4AF3
ρ3 + 9AF3

ρτ2 − 4A7ρ
7/2τ + 11A7ρ

3/2τ3 − 4AR6
ρ2τ2 − AR6

τ4

)

,

det
(

∂ρi
∂ρj

V |ext

)

= −
4

ρ3τ9

(

4AF3
AR6

τ + 5A2

7
ρ2τ + 4A7(AF3

ρ3/2 + AR6
ρ1/2τ2)

)

.

(A.13)

Thus we cannot satisfy Vext > 0, det
(

∂ρi
∂ρj

V |ext

)

≥ 0, tr
(

∂ρi
∂ρj

V |ext

)

≥ 0, AH3
≥ 0

simultaneously.

A.7 R6,H3, F5, O3, O7 in IIB

At the extremum of the 4D potential:

AH3
=

A7ρ
7/2

τ
, A3 = −

4AF5

3ρ1/2τ
−

2AR6
ρ1/2τ

3
−

5A7ρ
2

3
,

Vext = −
AF5

3ρ2τ4
+

AR6

3ρτ2
+

A7ρ
1/2

3τ3
.

(A.14)

We see immediately that the only allowed situation is AH3
= A7 = 0 for O7, a case

subsumed in the analysis around (3.7) which has at least one flat direction.
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