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Abstract. Recent numerical studies in the area of transition to turbulence discovered

that the classical plane Couette flow, plane Poiseuille flow, and pipe Poiseuille flow share

some universal 3D steady coherent structure in the form of a “streak-roll-critical layer”.

As the Reynolds number approaches infinity, the steady coherent structure approaches a

3D limiting shear of the form (U(y, z), 0, 0) in velocity variables. All such 3D shears are

steady states of the 3D Euler equations. This raises the importance of investigating the

stability of such inviscid 3D shears in contrast to the classical Rayleigh theory of inviscid

2D shears. Several general criteria of stability for such inviscid 3D shears are derived.

In the Appendix, an argument is given to show that a 2D limiting shear can only be the

classical laminar shear.

1. Introduction. There has been a lot of continuing interest in searching for 3D

steady solutions (or traveling wave solutions in a different frame) in plane Couette flow,

plane Poiseuille flow, and pipe Poiseuille flow ([19], [18], [23], [12], [24], [22], [7], [4], [8]).

There seems to be confirmation of their existence in experiments [8]. Recent numerical

studies of [24], [23], [22] reveal that the so-called lower branch steady states in the plane

Couette flow, plane Poiseuille flow, and pipe Poiseuille flow share some universal steady

coherent structure in the form of a “streak-roll-critical layer”. As the Reynolds number

approaches infinity, the steady coherent structure approaches a 3D limiting shear of the

form (U(y, z), 0, 0) in velocity variables. All the 3D shears of this form are steady states

of the 3D Euler equations. This raises two important questions: (1). What is the special

property of the limiting shear? (2). What is the nature of stability of 3D inviscid shears

in contrast to the classical Rayleigh theory of 2D inviscid shears? The first question was

addressed in [16]. It turns out that the limiting shear satisfies a necessary condition:
∫

∆Uf(U)dydz = 0 for any function f . We shall address the second question in this

study. We shall use the channel flow (plane Couette flow and plane Poiseuille flow) as

the example. Some partial results are obtained here. Both questions, especially the

second one, deserve much further studies.
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As the Reynolds number decreases from infinity, the limiting 3D shear as a steady

state deforms into the lower branch steady state, while the 3D shear itself undergoes a

slow drifting toward the classical laminar shear. In fact, all the shears (3D and 2D) form

a stable submanifold of the classical laminar shear. These shears can play a fundamental

role in the transition to turbulence from the classical laminar shear [15].

2. Inviscid channel flow. The inviscid channel flow is governed by the 3D Euler

equations

∂tui + ujui,j = −p,i, ui,i = 0, (2.1)

where (u1, u2, u3) are the three components of the fluid velocity along the (x, y, z) direc-

tions, and p is the pressure. The boundary condition is the so-called slip condition

u2(x, a, z) = 0, u2(x, b, z) = 0, (2.2)

where a < b, and ui (i = 1, 2, 3) are periodic in the x and z directions with periods ℓ1
and ℓ3.

We start with the steady shear solutions of the 3D Euler equations:

u1 = U(y, z), u2 = 0, u3 = 0, p = p0 (a constant),

where U(y, z) is periodic in z with period ℓ3. Linearize the 3D Euler equations with the

notation

u1 = U(y, z) +
[

eik(x−ct)u(y, z) + c.c.
]

, u2 = eik(x−ct)v(y, z) + c.c.,

u3 = eik(x−ct)w(y, z) + c.c., p → p0 +
[

eik(x−ct)p(y, z) + c.c.
]

,

where k is a real constant and c is a complex constant, we obtain the linearized 3D Euler

equations

ik(U − c)u+ vUy + wUz = −ikp, (2.3)

ik(U − c)v = −py, (2.4)

ik(U − c)w = −pz, (2.5)

iku+ vy + wz = 0. (2.6)

Two forms of simplified systems can be derived:

k2(U − c)v = ∂y [(U − c)(vy + wz)− (Uyv + Uzw)] , (2.7)

k2(U − c)w = ∂z [(U − c)(vy + wz)− (Uyv + Uzw)] , (2.8)

with boundary condition v(a, z) = v(b, z) = 0 and v, w are periodic in z; also,

(U − c)2∇ ·
[

(U − c)−2∇p
]

= k2p, (2.9)

with boundary condition ∂yp(a, z) = ∂yp(b, z) = 0 and p is periodic in z. We are not

successful in utilizing the system (2.7)-(2.8). System (2.9) turns out to be fruitful. The

first result that can be derived from system (2.9) is the Howard semicircle theorem.
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Theorem 2.1 ([9], [3]). The unstable eigenvalues (if they exist) lie inside the semicircle

in the complex plane:

(

cr −
M +m

2

)2

+ c2i ≤

(

M −m

2

)2

, c = cr + ici, ci > 0,

where M = maxy,z U and m = miny,z U .

Proof. Multiplying (2.9) with p̄, integrating by parts, and splitting into real and imag-

inary parts, we obtain that

∫ ℓ3

0

∫ b

a

UGdydz = cr

∫ ℓ3

0

∫ b

a

Gdydz, (2.10)

∫ ℓ3

0

∫ b

a

U2Gdydz = (c2r + c2i )

∫ ℓ3

0

∫ b

a

Gdydz, (2.11)

where

G = |U − c|−4
[

|∇p|2 + k2|p|2
]

.

Let

M = max
y,z

U, m = min
y,z

U.

Then
∫ ℓ3

0

∫ b

a

(U −m)(M − U)Gdydz ≥ 0.

Expanding this inequality and utilizing (2.10)-(2.11), we arrive at the semicircle inequal-

ity in the theorem. �

Our next goal is to find a counterpart of the Rayleigh criterion [2]. For that goal, we

need to introduce the transform

p̃ = (U − c)−1p. (2.12)

Then p̃ satisfies

∆p̃+

[

∆U

U − c
−

2∇U · ∇U

(U − c)2

]

p̃ = k2p̃, (2.13)

with the boundary condition

∂y p̃+
Uy

U − c
p̃ = 0, at y = a, b. (2.14)

It turns out that we can only derive results when U satisfies the constraint

Uy = 0, at y = a, b; (2.15)

in this case, p̃ satisfies the simplified boundary condition

∂y p̃ = 0, at y = a, b. (2.16)

Theorem 2.2. For U(y, z) satisfying the constraint Uy = 0, at y = a, b, if U(y, z) has

an (inviscid) unstable eigenvalue, then
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(1)

∇ ·

(

1

|U − c|4
∇U

)

= 0,

at some point (y∗, z∗) in the interior of the domain, for some c (ci > 0) in the semi-

circle
(

cr −
M+m

2

)2
+ c2i ≤

(

M−m
2

)2
, where M = maxy,z U and m = miny,z U ;

(2)

2
|c|2 − U2

|U − c|2
|∇U |2 + U∆U > 0,

at some point (y∗, z∗) in the interior of the domain, for some c (ci > 0) in the semi-

circle
(

cr −
M+m

2

)2
+ c2i ≤

(

M−m
2

)2
, where M = maxy,z U and m = miny,z U .

Proof. Multiplying (2.13) with ¯̃p, integrating by parts, and splitting into real and

imaginary parts, we obtain that
∫ ℓ3

0

∫ b

a

[

U − cr
|U − c|2

∆U − 2
(U − cr)

2 − c2i
|U − c|4

|∇U |2
]

|p̃|2dydz > 0, (2.17)

∫ ℓ3

0

∫ b

a

[

1

|U − c|2
∆U − 4

U − cr
|U − c|4

|∇U |2
]

|p̃|2dydz = 0. (2.18)

Equation (2.18) directly implies the first claim in the theorem. The second claim is along

the spirit of the Fjortoft theorem [2]. Multiplying (2.18) by cr and adding (2.17), we

obtain the second claim. �

Next we will derive a relation between ci and k.

Theorem 2.3. For U(y, z) satisfying the constraint Uy = 0 at y = a, b, let A =

maxy,z |∇U |, B = maxy,z |∆U |. Then the unstable eigenvalue (if it exists) and the

wave number k satisfy the condition

(kci)
2 ≤ 2A2 +Bci (ci > 0),

[

equivalently,

(

kci −
B

2k

)2

≤ 2A2 +

(

B

2k

)2
]

.

Proof. Multiplying (2.13) with ¯̃p and integrating by parts, we obtain that
∫ ℓ3

0

∫ b

a

[

∆U

U − c
− 2

|∇U |2

(U − c)2

]

|p̃|2dydz =

∫ ℓ3

0

∫ b

a

[

|∇p̃|2 + k2|p̃|2
]

dydz. (2.19)

The left-hand side of (2.19) is less than or equal to
(

B

|ci|
+ 2

A2

|ci|2

)
∫ ℓ3

0

∫ b

a

|p̃|2dydz.

The right-hand side of (2.19) is greater than or equal to

k2
∫ ℓ3

0

∫ b

a

|p̃|2dydz.

Thus
B

ci
+ 2

A2

c2i
≥ k2 (when ci > 0),
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which leads to the claim of the theorem. �

It is obvious that Theorems 2.2 and 2.3 apply to the 2D shears U(y) too. Theorem

2.2 is not the exact 3D counterpart of the 2D Rayleigh criterion. The exact counterpart

seems elusive. Next we will derive a variation formula for the unstable eigenvalue. This

type of formula was initially derived by Tollmien [21], [17] for 2D shears. They are useful

in deriving unstable eigenvalues near neutral eigenvalues. For 3D shears in atmosphere

problems [1], specific approximations can make the stability problem very similar to the

2D Rayleigh problem. In such a case, a similar variation formula can also be derived

to predict unstable eigenvalues near neutral eigenvalues [1]. In our current case, no

approximation can be made, and we have a much harder problem. We have to work with

the pressure variable of which the singularity nature is not clear even for 2D shears. We

can derive a formula near an unstable eigenvalue, but its limit to a neutral eigenvalue is

elusive and finding a neutral eigenvalue here is more challenging than finding an unstable

eigenvalue in contrast to the 2D shear problem. Let (p, c, k) and (p1, c1, k1) be two

unstable eigenfunctions (if they exist) to (2.9). Then

∇ ·
[

(U − c)−2∇p
]

= k2(U − c)−2p, (2.20)

∇ ·
[

(U − c1)
−2∇p1

]

= k21(U − c1)
−2p1. (2.21)

Multiplying (2.20) by p1 and (2.21) by p, integrating and subtracting, we get

(c1 − c)

∫ ℓ3

0

∫ b

a

c1 + c− 2U

(U − c1)2(U − c)2
[

∇p · ∇p1 + k2pp1
]

dydz

= (k1 − k)(k1 + k)

∫ ℓ3

0

∫ b

a

pp1
(U − c1)2

dydz,

from which we obtain the variational formula

dc

dk
= −k

∫ ℓ3

0

∫ b

a

p2

(U − c)2
dydz

×

[

∫ ℓ3

0

∫ b

a

1

(U − c)3
[

∇p · ∇p+ k2p2
]

dydz

]

−1

. (2.22)

The merit of this formula is that it does not involve dp. This formula is valid at an

unstable eigenvalue (c = cr + ici, ci > 0). If the unstable eigenvalue lies on a curve

c = c(k) that leads to a neutral eigenvalue c0 = c(k0), c0i = 0 as in the case of a 2D shear,

then by the semicircle theorem 2.1, c0 = U(y0, z0) for some (y0, z0). In such a case, the

limit k → k0 of (2.22) is still very attractive even though finding the neutral eigenvalue

c0 here is more challenging than finding an unstable eigenvalue in contrast to the case of

2D shears. On the other hand, the limit seems very singular (even for 2D shears). First

of all, in the limit k → k0, equation (2.9) is singular, so the limiting eigenfunction p will

be singular too. The following simple equation

t2q′′ + αtq′ + βq = 0 (α, β constants)

already shows a variety of singular solutions near t = 0. Moreover, the singularities

generated by (U − c0) in the integrals in (2.22) add to the challenge.
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Similarly, starting from (2.13), (2.15) and (2.16), we can derive the following:

(c1 − c)

∫ ℓ3

0

∫ b

a

[

∆U

(U − c1)(U − c)
+

2∇U · ∇U(c1 + c− 2U)

(U − c1)2(U − c)2

]

p̃p̃1dydz

= (k1 − k)(k1 + k)

∫ ℓ3

0

∫ b

a

p̃p̃1dydz,

from which we obtain the variational formula

dc

dk
= 2k

∫ ℓ3

0

∫ b

a

p̃2dydz

×

[

∫ ℓ3

0

∫ b

a

[

∆U

(U − c)2
−

4∇U · ∇U

(U − c)3

]

p̃2dydz

]

−1

. (2.23)

3. Viscous channel flow. The viscous channel flow is governed by the Navier-Stokes

equations

∂tui + ujui,j = −p,i + ǫui,jj , ui,i = 0, (3.1)

where (u1, u2, u3) are the three components of the fluid velocity along the (x, y, z) di-

rections, p is the pressure, and ǫ = 1/R is the inverse of the Reynolds number R. The

boundary condition is

u1(x, a, z) = α, u1(x, b, z) = β, uj(x, a, z) = uj(x, b, z) = 0 (j = 2, 3), (3.2)

where a < b, α < β, and ui (i = 1, 2, 3) are periodic in the x and z directions with periods

ℓ1 and ℓ3. For the viscous channel flow, the 3D shears mentioned above are no longer

fixed points; instead they drift slowly in time (sometimes called quasi-steady solutions):

(

eǫt∆U(y, z), 0, 0
)

.

By ignoring the slow drift and pretending they are still fixed points (or by using artificial

body forces to stop the drifting), their unstable eigenvalues will lead to transient nonlinear

growths as shown numerically [13]. A better explanation here is to use the theory of

geometric singular perturbation ([6], [14]). The slowly drifting 3D shears altogether form

a locally invariant slow (center) manifold. The normal direction growth rate (or decay

rate) of this slow manifold has a persistence property (i.e. robust). Thus the growth rate

can be estimated by ignoring the slow drift. The geometric singular perturbation theory

implies the transient nonlinear growth induced by the linear growth rate.

The corresponding linear Navier-Stokes operator at (U(y, z), 0, 0) is given by the fol-

lowing counterpart of (2.3)-(2.6):

ik(U − c)u+ vUy + wUz = −ikp+ ǫ[∆− k2]u, (3.3)

ik(U − c)v = −py + ǫ[∆− k2]v, (3.4)

ik(U − c)w = −pz + ǫ[∆− k2]w, (3.5)

iku+ vy + wz = 0. (3.6)
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Again, two forms of simplified systems can be derived:

∂y
{[

∆− k2 − ikR(U − c)
]

(vy + wz) + ikR(vUy + wUz)
}

−k2(∆− k2)v + ik3R(U − c)v = 0, (3.7)

∂z
{[

∆− k2 − ikR(U − c)
]

(vy + wz) + ikR(vUy + wUz)
}

−k2(∆− k2)w + ik3R(U − c)w = 0, (3.8)

with the boundary conditions

v(a, z) = v(b, z) = vy(a, z) = vy(b, z) = w(a, z) = w(b, z) = 0,

where v, w are periodic in z; and the other form

(U − c)2∇ ·
{

(U − c)−1[ǫ(∆− k2)− ik(U − c)]−1∇p
}

= ikp

+
ǫ

ik
(∆− k2)∇ ·

{

[ǫ(∆− k2)− ik(U − c)]−1∇p
}

, (3.9)

the boundary condition of which is complicated.

The system (3.7)-(3.8) looks quite convenient for numerical simulations. Multiplying

(3.7) by v̄ and (3.8) by w̄, integrating and adding the two equations, we obtain the

following expression for the eigenvalue in terms of the eigenfunction:

ci =
−1

kRD
[A+ E +H + kR Re(G)], cr =

1

D
[B + Im(G)], (3.10)

where

A =

∫

[

|∇vy|
2 + |∇wz|

2 + k2|vy|
2 + k2|wz|

2
]

≥ 0;

B =

∫

U

(

|vy|
2 + |wz|

2 + v̄ywz + vyw̄z

+k2|v|2 + k2|w|2
)

, real;

D =

∫
(

|vy|
2 + |wz|

2 + v̄ywz + vyw̄z

+k2|v|2 + k2|w|2
)

≥ 0;

E =

∫

[

v̄yywzy + v̄yzwzz + k2v̄ywz + c.c.
]

, real;

G = −i

∫

(v̄y + w̄z)(vUy + wUz), complex;

H = k2
∫

[

|∇v|2 + |∇w|2
]

+ k4
∫

[

|v|2 + |w|2
]

≥ 0.

Notice that the expression of cr has no explicit dependence upon the Reynolds number

R, but it does depend on R implicitly via the eigenfunction. An unstable eigenvalue

corresponds to kci > 0. Without loss of generality, we assume k > 0.

Theorem 3.1. Let g = max{‖Uy‖L∞ , ‖Uz‖L∞}, (k, c) be an eigenmode; if Rg < min(k,

k3) (where k > 0), then ci < 0, i.e. a stable eigenvalue.
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Proof. In the expression of ci (3.10), notice that A + E ≥ 0; if H + kR Re(G) > 0,

then ci < 0. Notice also that

|G| ≤ g

∫

[|vy|
2 + |wz|

2 + |v|2 + |w|2],

where

g = max{‖Uy‖L∞ , ‖Uz‖L∞}.

Thus

H + kR Re(G) ≥ (k2 − kRg)

∫

[

|∇v|2 + |∇w|2
]

+ (k4 − kRg)

∫

[

|v|2 + |w|2
]

.

Therefore if k2−kRg > 0 and k4−kRg > 0, then H+kR Re(G) > 0. The two conditions

here are equivalent to the one in the theorem, and the theorem is proved. �

The type of claims in Theorem 3.1 and their improvements have been investigated

intensively for 2D shears ([20], [10], [11]). On the other hand, as mentioned at the be-

ginning, we are more interested in unstable eigenvalues and for a large Reynolds number

R as in [15].

4. Appendix: 2D limiting shear can only be the classical laminar shear. We

take the plane Couette flow as the example; for plane/pipe Poiseuille flow, the argument

is the same. Assume that as the Reynolds number R → +∞, a 2D steady state of the

plane Couette flow approaches the limiting shear (U(y), 0). Denote by

(U(y) + u(x, y), v(x, y))

the steady state which is periodic in x. Assume that (u, v) and their spatial derivatives

are of order o(R−1/2) as R → +∞. Then to the leading order O(R−1),

U∂xu+ v∂yU = −∂xp+
1

R
∂2
yU,

U∂xv = −∂yp,

∂xu+ ∂yv = 0.

Taking an average in the x-direction (over the period), we get

v∂yU =
1

R
∂2
yU,

0 = −∂yp,

∂yv = 0.

By the boundary condition of v in the y-direction, v = 0. Thus

∂2
yU = 0, i.e. U = c1 + c2y.

That is, U has to be the laminar linear shear.

As shown in [16], the corresponding 3D limiting shear U(y, z) does not have to be the

linear shear, but rather satisfies a constraint
∫

∆Uf(U) dydz = 0
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for any f . In fact, the lower branch 3D limiting shear is far away from the linear shear

([24], [23], [22]). Does this hint that the lower branch steady state does not exist in 2D?

Numerical simulations could not find any 2D steady state other than the linear shear [5].
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