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Stability Domain Calculations of Period-1
Ferroresonance in a Nonlinear Resonant Circuit

David A. N. Jacobson, Member, IEEE, Peter W. Lehn, Member, IEEE, and Robert W. Menzies, Senior Member, IEEE

Abstract—Catastrophic equipment failures continue to occur
today due to ferroresonance even though this phenomenon has
been extensively studied over the past 90 years. This paper is
concerned with comparing analytical nonlinear dynamics methods
with a two-dimensional (2-D) brute-force bifurcation diagram for
displaying safety margins in a 2-D parameter space. A simplified
single-phase model is used to represent the case of ferroresonance
between a transformer and circuit breaker grading capacitor.
Comparisons are made between the analytical method and EMTP
simulations of an actual ferroresonant event.

Index Terms—Approximation methods, capacitors, ferroreso-
nance, nonlinear circuits, power system modeling, power system
transients, power transformers.

I. INTRODUCTION

BOUCHEROT [2] originally coined the wordferroreso-
nancein 1920 to describe the phenomenon of two stable

fundamental frequency operating points coexisting in a series
resistor, nonlinear inductor, and capacitor circuit. The first
published work, a 1907 paper by Bethenod [1], simply de-
scribed the phenomenon as transformer resonance. Today, the
term ferroresonance is firmly established in the power system
engineer’s vocabulary and is used to not only describe the
jump to a higher current fundamental frequency state, but also
bifurcations to subharmonic, quasi-periodic, and even chaotic
oscillations in any circuit containing a nonlinear inductor.

The main objective of this paper is to attempt to answer the
following question: “Given an operating point in a parameter
space, what margin exists between the operating point and the
nearest ferroresonant state?”

The catastrophic failure of a wound potential transformer at a
230-kV Manitoba Hydro substation [4] has made this more than
an academic question—it is an important safety issue that must
be addressed.

Time-domain simulation using detailed transformer and
system models is the most accurate method for determining the
probability of ferroresonance, aside from full-scale laboratory
or system testing. Hundreds of simulations are required to get
a sufficient feel for the effect of parameter variations. Each
simulation, however, is no better than throwing a dart. The
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Fig. 1. Equivalent circuit model.

resulting scatter diagram does not give any information about
behavior for cases which were not analyzed.

Direct calculation of the stability domains using Floquet
theory or through calculation of the determinant of the Jaco-
bian, as described by Van Craenenbroecket al. [3], is a better
technique. The only drawback is that the stability domains
represent quasi-static bifurcations. Network switching, fault
clearing, etc. may cause bifurcations to occur at different
parameters than predicted by the quasi-static approach.

The paper will identify the differences between the time-
domain and analytical quasi-static methods of calculating the
fundamental frequency (i.e., period-1) ferroresonance stability
domain boundary. A new analytical method is introduced
which is based on modifying the slowly varying amplitude
(SVA) method to include the effects of system dynamics.

II. EQUIVALENT CIRCUIT MODEL

The essential features of a transformer (PT)/grading capacitor
model are shown in Fig. 1. A nonlinear inductor and a parallel
resistor represent the PT. Total iron-core losses neglecting hys-
teresis effects are modeled by the linear resistor (). An ideal
source equivalent represents the system voltage (), stray ca-
pacitance ( ), and circuit breaker grading capacitance ().

Given the simple circuit shown in Fig. 1, a nonlinear differ-
ential equation for flux linkage can be derived

(1)

where , , ,
and .

III. H ARMONIC BALANCE METHOD

Hayashi [5] and Germond [6] have used the harmonic balance
method to analytically determine approximate periodic solutions
to the nonlinear differential equation given by (1). This method
requiresa priori knowledge of the harmonic content of the final
state and does not consider the possibility of ferroresonance
being switching surge induced.
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TABLE I
SYSTEM PARAMETERS

A first-order solution for (1) can be assumed to be of the form

(2)

The basic procedure of harmonic balance is to substitute (2)
into (1) and equate terms of and . Since this is
a first-order approximation, third harmonics are ignored. After
equating terms and substituting for , the following
equation results:

(3)

The binomial expansion is used to derive[12]

(4)

Real values of that satisfy (3) correspond to equilibrium
points or solutions to the original differential equation.

A particular example will illustrate the procedure. The pa-
rameters listed in Table I were substituted into (3). A third-order
polynomial approximation of the saturation curve results in (1)
being of the same form as Duffing’s equation [9].

Three solutions were found for .
Floquet theory [5], [9] can be used to calculate the stability of the
solutions to the first variational equation [i.e., linearized form of
(1)].

IV. SLOWLY VARYING AMPLITUDE (SVA) METHOD

The SVA method is an averaging method that is useful for
visualizing the nature of solutions near equilibrium points for
weakly nonlinear problems. The method was originally con-
ceived by Krylov and Bogoliubov in 1937 and was extended
by Bogoliubov and Mitropolsky in 1955 and is also referred to
as theKBM method[9], [10].

The method begins by assuming that a solution to the differ-
ential equation, given by (1), can be written in the form

(5)

where and have SVAs compared with and
.

Fig. 2. Paths in the van der Pol plane (Cg: 2000 pF andV : .924 p.u.).

The method proceeds as in the harmonic balance method. The
solution is substituted into the differential equation and coeffi-
cients of and are equated. Second-order deriva-
tives of and , terms in and and terms

and are neglected.
After equating terms and solving for the first derivative of

and , the following averaged equations result:

(6)

(7)

A typical portrait in the - phase plane is shown in Fig. 2.
The plane is also known as the van der Pol plane, named after
Balthasar van der Pol (1889–1959), a Dutch physicist who
studied the dynamics of electronic oscillators in the 1920s.

The fixed points calculated previously using the harmonic
balance method are also displayed. The stability of each is im-
mediately apparent by examining the behavior of the velocity
field in a small neighborhood around the fixed points. The co-
ordinates of the fixed points are calculated by substituting

into (6) and (7) and solving for and where the first
derivatives are zero.

The SVA method has transformed a nonautonomous differ-
ential equation into an autonomous differential equation. Fixed
points replace limit cycles. The stability of the fixed points can
be determined by performing a Taylor expansion in a small
neighborhood around the fixed points. The fixed points are
stable if the eigenvalues of the Jacobian lie in the left half of
the complex plane.

Table II summarizes the calculations made to determine the
stability of the fixed points in the van der Pol plane.

The calculations confirm the conclusions drawn from ob-
serving the behavior in the van der Pol plane.

V. BIFURCATION THEORY

A bifurcationis the abrupt change in the qualitative nature of
the system’s final operating state as a system parameter is quasi-
statically varied. Abifurcation diagramrecords the locations of
all bifurcations over a range of parameter values.
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TABLE II
FIXED POINT CLASSIFICATION

Two main techniques exist for the calculation of a bifurca-
tion diagram. One is based on the principle of continuation [3],
and the other is based on experimentation or time-domain simu-
lation. Bifurcation diagrams generated using commercial time-
domain simulation packages, such as EMTDC [7] or EMTP [4],
are sometimes referred to asbrute-force bifurcation diagrams.
Samples of the system state variables are taken once per 60-Hz
cycle as a parameter is slowly varied. This is sometimes referred
to asPoincaré sampling.

A bifurcation diagram can also be found analytically by
solving (3) as a bifurcation parameter (e.g., source voltage) is
varied. Fig. 3 illustrates a typical bifurcation diagram.

As the bifurcation parameter is slowly increased from zero,
a jump in flux linkage occurs at the first turning point. Simi-
larly, as the bifurcation parameter is slowly decreased from a
high value, a jump decrease in flux linkage occurs at the second
turning point. The result is a hysteretic-type pattern.

The type of bifurcation just illustrated is referred to as ajump
resonance[8] or a cyclic fold or saddle-nodebifurcation [9].
At the turning point, one eigenvalue of the linearized circuit is
attempting movement into the right half of the complex plane.

The turning points shown in Fig. 3 can be calculated as a
function of two parameters (e.g., grading capacitance and source
voltage). Since an equation that relates source voltage to flux
linkage exists [see (3)], the critical points can be calculated by
differentiating with respect to flux linkage. Critical points can
also be calculated by solving three nonlinear algebraic equations
(i.e., (6) and (7) and the determinant of the Jacobian are equated
to zero).

A projection of the first turning point on the grading ca-
pacitance-source voltage parameter plane is shown in Fig. 4.
The curve is known as abifurcation lineor a stability domain
boundary and it indicates the parameter values required to
spontaneously jump to period-1 ferroresonance.

In order to illustrate the effect of de-energizing a PT on the
period-1 stability domain boundary, a brute-force bifurcation
diagram [4] is constructed and is displayed in Fig. 5. Individual
1.5-s time-domain simulations are computed for discrete
changes in and . A symbol is used to represent the
periodicity of the final state. The example in Fig. 5 is the result
of 7260 individual time-domain simulations.

Prior to the circuit breaker opening, the grading capacitor is
short-circuited. Following circuit breaker opening, the circuit
configuration is equivalent to Fig. 1.

Fig. 3. Classic bifurcation diagram (C : 2000 pF).

Fig. 4. Quasi-static stability domain boundary.

Fig. 5. Brute-force 2-D bifurcation diagram.

The quasi-static stability domain boundary shown in Fig. 4,
determined by classical bifurcation theory, is seen to yield only
a very crude approximation to the actual transition from no
ferroresonance to period-1 ferroresonance. The large discrep-
ancy between the simulation results and those predicted by
classical bifurcation theory stem from the theory’s underlying
quasi-static assumption and its inability to account for transient
phenomena, such as the opening of a circuit breaker.
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VI. SEPARATRIX CALCULATION

Given a particular set of system parameters, a pair of initial
conditions can be chosen on the two-dimensional (2-D) phase
plane and the trajectory leading to a new steady-state can be
calculated. Thebasin of attractionis the set of initial conditions
leading to a particular final operating state or attractor.

The van der Pol diagram shown in Fig. 2 is meant to graph-
ically indicate the stability of fixed points; however, it can also
be used to illustrate the concept of a basin of attraction. For the
set of parameters chosen, there are two stable spiral attractors
indicated by asterisks. Two regions or basins of initial condi-
tions exist in Fig. 2 such that the trajectories will converge onto
a specific attractor. The curve separating the two basins is called
theseparatrix.

The separatrix may be sketched from the velocity field, or it
may be computed by time-domain simulation of (6) and (7) for
decreasing time. If the simulation approach is used, the system
states must be initialized to correspond to the unstable fixed
point plus a small deviation along the stable eigenvector associ-
ated with this point.

The basin of attraction can be used to improve upon the pre-
diction of ferroresonance as simply a jump phenomena, since it
accounts for the transients that occur. These transients typically
result in a premature transition into period-1 ferroresonance and
should not be neglected.

Depending on the particular ferroresonant circuit, the initial
conditions may not realistically cover the entire phase plane.
For example, for the case where a transformer is being de-en-
ergized, the initial conditions are prescribed at the instant the
circuit breaker opens. Therefore, only two initial conditions are
possible in a single-phase model assuming the breaker opens
exactly at a current zero.

Assuming the stray capacitance dominates the impedance of
the three parallel elements, the flux linkage will be zero and the
rate-of-change of flux linkage will be maximum and equal to
the source voltage ( ) at the instant the circuit breaker opens.
The instantaneous initial conditions, however, are not mapped
onto the van der Pol plane.

A Poincaré sampled versus plane can be thought
of as a subset of the van der Pol plane. An example is given
in Fig. 6. The sampled points can be laid on top of the
van der Pol diagram given in Fig. 2 and the true trajectory
sketched using the velocity field lines. The straight line seg-
ments shown in Fig. 6 only indicate the direction of movement
of the trajectory.

By selecting sampling to occur at , the term
in the initial state is zero. For the case of a transformer being
de-energized, the initial flux linkage in the nonlinear inductor
is equal to the integral of the source voltage (i.e., or

p.u.). Referring to Fig. 7, this initial condition lies on
the a-axis near the separatrix.

An increase in source voltage magnitude will cause a leftward
shift of the initial condition, resulting in a crossing of the sepa-
ratrix into the period-1 basin of attraction. Low values of source
voltage will result in the nonferroresonant state.

Fig. 6. Poincaré sampled trajectory (C : 2000 pF andV : .90 p.u.).

Fig. 7. Separatrices (C : 2000 pF andV : .924 pu).

The separatrix is also affected by variations in the source
voltage. Consequently, an iterative approach would be required
to determine at what voltage level the initial conditions leave the
basin of attraction of the nonferroresonant state. Each iteration
would require simulation of the system equations.To circumvent
this complexity, a closed-form solution is sought for describing
the separatrix as some function of the system parameters. The
analysis is simplified by assuming the system to be conservative
[i.e., in (6) and (7)].

The separatrix has thus far been determined by reverse-time
integration from the saddle point. In the conservative case,
however, its general shape likens that of the geometrical figure
known as theLimacon of Pascal.This likeness identifies the
following class of functions as candidates for the solution of
the separatrix:

(8)

(9)

These general functions are then substituted into the lossless
reverse-time differential equations, derived from (6) and (7), for
the case when is three.
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Solving for the constants and yields the following two
equations:

(10)

(11)

With the above values of and , (8) and (9) are used to
plot the exact separatrix for the conservative system in Fig. 7.
Fig. 7 also compares the estimated separatrix from theory with
the separatrix for the dissipative system. It may be seen that the
lossless separatrix yields a slightly conservative estimate for the
basin of attraction of the nonferroresonant operating point.

The initial conditions lie on the boundary between nonfer-
roresonance and period-1 ferroresonance when

(12)

where and are functions of , which is in turn a function of
the system voltage and grading capacitance. The critical angle
( ) lies between zero andπ and is calculated by finding the zero
of (9).

Equation (12) implicitly defines the critical system voltage at
which period-1 ferroresonance first occurs, as a function of the
system parameters. Solving for this critical system voltage as a
function of the grading capacitance yields a modified stability
domain boundary, as depicted in Fig. 8.

Using the lossless separatrix calculation method, the calcu-
lated stability domain boundary is found to be grading capaci-
tance invariant within the range 500 pF–8000 pF. This feature is
also strongly evident in the brute-force diagram given in Fig. 5.
For grading capacitance less than 2500 pF, the error between
the brute-force boundary and the calculated boundary is not
significant.

As the grading capacitance increases, a period-2 ferroreso-
nance mode develops. The presence of subharmonics tends to
shift the fundamental frequency boundary to the left.

When subharmonic attractors are considered, the basin
boundaries become extremely complex as demonstrated by
Hayashi [5]. It is demonstrated in [12] that the presence of sub-
harmonics causes oscillations in the separatrix. The oscillations
lead to multiple crossings of the separatrix on the negative flux
linkage axis near the saddle point.

For low values of grading capacitance, the brute-force
stability domain boundary also shows the possibility of non-
ferroresonant modes existing at higher source voltages. By
examining Fig. 7, this behavior can be predicted from the
reverse-time integration of the dissipative system equations.
The basin of attraction for the two fundamental frequency
oscillation modes spiral out in the- phase plane. If the initial
source voltage is high enough, there is a finite probability that
the initial conditions will lie in either the nonferroresonant
or period-1 ferroresonant basin.

Fig. 8. Stability domain boundary comparison (n = 3).

Fig. 9. Field recordings of bus voltages.

VII. PRACTICAL EXAMPLE

The analytical method described in the previous sections will
be applied to a practical example of ferroresonance.

On August 5, 1995, at 14:18, a 4.16-kV breaker failed to latch
while attempting to energize a 1500-kW induction motor at the
Dorsey Converter Station in Manitoba, Canada [11]. As a re-
sult, 11 230-kV breakers opened to clear bus B2 to which the
230-kV/4.16-kV transformer (SST1) was connected.

Noise levels coming from SST1 were noticeably higher than
normal and higher than the nearby loaded SST2 immediately
following the 230-kV bus de-energization. Recordings given in
Fig. 9 show high distortion and overvoltages near 1.5 p.u. indi-
cating a steady-state mode of ferroresonance had developed.

An EMTP model was developed and successfully modified
to match field recordings of the disturbance [11]. A single-line
diagram of the EMTP model is given in Fig. 10.

The approach taken in modeling the transformer’s magneti-
zation curve is to find a polynomial that closely follows the man-
ufacturers data and best represents recordings from an inrush or
ferroresonance test. A thirteenth-order two-term polynomial is
found to be a reasonable representation. The parameters used
are: , , , and A.

Iron-core losses of the station service transformers are 17 kW
at nominal voltage. A more detailed model of iron-core losses
is required to match the recorded transients. At the same instant
that the oscillation mode changes to ferroresonance, additional
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Fig. 10. Comparison of stability domain boundary locations (n = 13).

resistance is switched on in parallel with the existing linear
iron-core loss resistor. A more detailed discussion of iron-core
loss modeling can be found in [11] and [12].

When bus B2 is de-energized, it remains capacitively cou-
pled to the 443-m parallel A2 bus. A bus capacitance matrix
is used to model the capacitive coupling [4]. The equivalent
phase-to-ground capacitance ( ) is 5316 pF and the mutual
capacitance ( ) is 1108 pF. The equivalent positive sequence
capacitance-to-ground is or 6424 pF. Therefore, the
effective stray capacitance () used in (1) is 12 424 pF.

The period-1 stability domain boundary is calculated using
several methods with the results displayed in Fig. 11.

For the brute-force method, the detailed 3-phase EMTP
model is used. Both faulted and unfaulted clearing of the SST
are compared, in order to determine the sensitivity to initial
conditions.

In addition, comparison is made between a 3-phase BCTRAN
transformer model and a model using three single-phase trans-
formers. The location of the stability domain boundary does not
depend greatly on the type of model chosen.

Three analytically calculated stability domain boundaries are
shown in Fig. 11.

A more general technique is used to calculate the Limacon
and determine the parameter values that result in a crossing of
the separatrix [11]. The Limacon of Pascal is an exact solution
for the third-order conservative case and is a good approxima-
tion for the nonconservative case even when higher orders of
are considered. The curve shown estimates the stability domain
boundary for the case of de-energizing an unfaulted transformer.

Other separatrix crossing points can also easily be calculated.
However, the majority of transformer de-energizations are due
to unfaulted clearing. Our focus has been to identify this tran-
sition point and in spite of several assumptions and simplifi-
cations, the proposed analytical method does provide a much
better estimate than projection of the first turning point.

The projection of the second turning point is a good approxi-
mation to the faulted brute-force stability domain boundary. The
analytical calculation ignores winding losses in the transformer
which leads to a conservative estimate.

Fig. 11. Single-line diagram of the August 5, 1995, Dorsey disturbance
showing (a) main circuit components and (b) model of station service
transformer.

Fig. 11 shows the sensitivity to the main variable parameters
(i.e., and ). Sensitivity to variation in stray capacitance is
not significant [11].

The sensitivity to initial conditions is indicated by the spread
between the faulted and unfaulted brute-force stability domain
boundaries. The sensitivity increases with increasing.

The most significant unknown is the value of iron-core losses
during ferroresonance. In the example presented, field measure-
ments were available and were used to adjust the iron-core loss
model until the measurements could be duplicated. Depending
on the transformer and the mode of ferroresonance, a four-fold
increase in iron-core losses may be inappropriate. Further
research into iron-core loss modeling is recommended.

One application of the method has been to divide the param-
eter plane into several regions depending on the probability of
developing ferroresonance. Using this technique, a decision was
made to switch 200 resistors rather than have them perma-
nently connected [11].

VIII. C ONCLUSIONS

Quasi-static analytical approaches can be used to give a quick
indication of the locations of domains of different ferroreso-
nant states as a function of a set of parameters. However, these
approaches do not give an accurate indication of safety margins
if large-signal perturbations are considered. A brute-force 2-D
bifurcation diagram is an ideal tool for displaying margins be-
tween ferroresonant and nonferroresonant states. However, an
extensive number of long duration simulations are required in
the calculation of such a diagram.

The difference in the period-1 stability domain boundary
calculated by the quasi-static and brute-force technique is at-
tributed to the initial conditions at the time of the perturbation.
Different final operating states are possible depending on the
basin of attraction in which the initial conditions lie.

The Limacon of Pascal is a good approximation to the geo-
metric shape of the basin of attraction of the period-1 ferrores-
onant attractor and can be used to analytically calculate a better
approximation of the stability domain boundary.
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A general set of averaged equations is given that permit the
analysis of an th order two-term polynomial approximation of
the saturation curve.

The analytical method has been compared successfully
against a practical example of ferroresonance. The simple
system representation and first-order approximations are suffi-
ciently accurate to predict the behavior of a complete 3-phase
detailed system model.

Future work is recommended to focus on measuring the
effective iron-core losses during different ferroresonance
modes for different types of transformers with the goal of
creating an improved iron-core loss model.
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