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1. Introduction

In this article, we address the problem of global boundary control of the Kuramoto–
Sivashinsky equation (KS-equation)

ut + uxxxx + �uxx + uux = 0; 0¡x¡ 1; t ¿ 0; (1.1)

where we refer to �¿ 0 as the “anti-di�ussion” parameter. Note that a more general
form ut + �1uxxxx + �2uxx + �3uux = 0 can always be reduced to (1.1) by appropri-
ate rescaling of t; x and u. Eq. (1.1) was derived independently by Kuramoto et al.
[20–22] as a model for phase turbulence in reaction–di�usion systems and by Sivashin-
sky [33] as a model for plane ame propagation, describing the combined inuence
of di�usion and thermal conduction of the gas on stability of a plane ame front. So
far, it has been well understood that the KS-equation can also serve as a mathematical
model for cellular instabilities in a variety of situations: the ow of thin liquid �lms
on inclined planes [30] (in the limit of large surface tension), dendritic fronts in dilute
binary alloys [31], and Alfven drift waves in plasmas [23] (as a nonlinear saturation
mechanism of the dissipative trapped ion modes).
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The problem of large-time behavior of this nonlinear fourth-order dissipative equation
has been extensively studied. The pioneering work appears to be due to Foias et al.
[10] and Nicolaenko et al. [28–30], who described the global attractors and inertial
manifords of the KS-equation. Since then, there has been an impressive amount of
progress on analysis of the KS-equation [2,3,5–9,11–16,18,19,24,27,32,35–38].
At this stage, control problems for the KS-equation are largely unexplored. He et al.

[17] have studied numerical aspects of controllability and optimal control. Christo�des
[4] has developed linear controllers based on a Galerkin truncation which achieve
local stabilization. Both [17,4] employ distributed control and periodic boundary
conditions.
In this paper we are concerned with boundary control. We start by showing that, un-

der Dirichlet boundary conditions, the trivial solution u(x; t)≡ 0 is unstable for �¿ 4�2
and asymptotically stable for �¡ 4�2 (for the latter case we derive global exponential
decay estimates). Then we move to the problem with Neumann boundary control. The
uncontrolled system is not asymptotically stable even for �¡ 4�2. We introduce non-
linear boundary feedback and prove that it guarantees L2-global exponential stability,
H 2-global asymptotic stability, and H 2-semiglobal exponential stability if �¡ 4�2. By
constructing a Green function and using the Banach contraction mapping principle,
we prove that the closed-loop system has a global unique and in�nitely di�erentiable
solution.
We point out that the boundary stabilization problem for �¿ 4�2, i.e., when the

uncontrolled system is unstable under both Dirichlet and Neumann boundary conditions,
remains open. In our opinion, this problem requires a radically di�erent approach than
the one presented in this paper.
The nonlinear boundary conditions that we design as a feedback law are motivated by

the above physical problems, especially the problem of boundary stabilization of ame
front instabilities. An example of experimental setup is a combustor consisting of two
concentric cylinders with a narrow gap �lled with combustible gas. In the absence of
control, the ame front would develop “wrinkles” governed by Kuramoto–Sivashinsky
dynamics. While one could stabilize the ame by actuating the fuel supply all around
the base of the combustor (distributed control), the problem that this paper solves with
boundary actuation would require fuel modulation only on a small section of the base
of the combustor. An alternative actuation would be with a moving ame holder. The
sensing of the ame front can be accomplished using various photo-detecting, laser,
and video devices. An important property of the control law derived in the paper is
that it can be implemented by actuating any two of the four variables u; ux; uxx; uxxx

at the boundary, and sensing the remaining two variables. This property is achieved by
selecting the control laws (boundary conditions) as invertible functions. The conse-
quence is that the control laws will be implementable whatever the variables accessible
for actuation may be for a physical problem at hand. Apart from the physical moti-
vation for this work, its mathematical motivation should not be overlooked. The KS
equation can be regarded as a nonlinear, higher-dimensional extension of the heat equa-
tion, in which Neumann control (actuated via heat ux) is a natural choice. Since the
uncontrolled KS equation with Neumann boundary conditions is not asymptotically sta-
ble, the objective of designing Neumann boundary feedback is justi�ed. We point out
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that, while, in a second-order problem like heat equation the term “Neumann” would
be referring to boundary conditions on ux, in a fourth-order problem like KS we are
referring to uxx and uxxx (the term “Dirichlet” is used in reference to u; ux).
We present our main results in Section 2. Section 3 is dedicated to the spectral

analysis of the linear problem, from which we �nd the critical value �∗=4�2. In order
to prove the main results, we �rst establish a new di�erential inequality of Gronwall
type in Section 4, and then prove the main results by using Lyapunov techniques for the
stability theorems and the Banach contraction mapping principle for the well-posedness
theorem.

2. Main results

We �rst consider the following uncontrolled equation with Dirichlet boundary con-
ditions:

ut + uxxxx + �uxx + uux = 0; 0¡x¡ 1; t ¿ 0;

u(0; t) = u(1; t) = 0; t ¿ 0;

ux(0; t) = ux(1; t) = 0; t ¿ 0;

u(x; 0) = u0(x); 0¡x¡ 1:

(2.1)

The energy E(t) of solutions of (2.1) is de�ned by

E(t) =
∫ 1

0
u(x; t)2 dx (2.2)

and its higher-order energy V (t) is de�ned by

V (t) =
∫ 1

0
uxx(x; t)2 dx: (2.3)

The stability of system (2.1) signi�cantly depends on the anti-di�usion parameter �¿ 0.
Roughly speaking, the system is asymptotically stable if � is small enough and unstable
if � su�ciently large. To locate the boundary value �∗ between stability and instability,
we need to analyze the following eigenvalue problem: 1

’xxxx + �’xx = �’; 0¡x¡ 1;

’(0) = ’(1) = ’x(0) = ’x(1) = 0:
(2.4)

For a given � ∈ R, since @4=@x4 + �@2=@x2 with the above Dirichlet boundary condi-
tions is a self-adjoint operator, the eigenvalues are real numbers. Moreover, since the
inverse of the operator is compact, the eigenvalues are a sequence {�n} such that

1 Note that � corresponds to −@=@t rather than the more common +@=@t. This convention is followed for
subsequent notational convenience. One needs to keep this in mind in interpreting stability results: Re�¿ 0
means stability and Re�¡ 0 means instability.
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limn→∞ �n =+∞. Let us de�ne
�(�) = min

n
�n(�): (2.5)

Then we have

Lemma 2.1. The function �(�) is strictly decreasing on R and

�(4�2) = 0: (2.6)

Thus the critical value �∗ is equal to 4�2. If �¡ 4�2, system (2.1) is stable. More
precisely, we have the following stability theorem.

Theorem 2.1. Suppose that �¡ 4�2.
(i) If the initial data u0(x)∈L2(0; 1); then the solution of problem (2:1) satis�es

the following global-exponential stability estimate:

E(t) ≤ E(0)e−2�(�)t ; ∀t ≥ 0: (2.7)

(ii) If the initial data u0(x) ∈ H 2
0 (0; 1); then the solution of problem (2:1) satis�es

the following global-asymptotic and semiglobal-exponential stability estimate:

V (t) ≤ [C(�2 + �(�))E(0) + V (0)]exp(CE(0))e−�(�)t ; ∀t ≥ 0; (2.8)

where C is a positive constant independent of u0 and �.

In this theorem and in the sequel, Hs(0; 1) denotes the usual Sobolev space (see
[1,25]) for any s∈R. For s ≥ 0; H s

0(0; 1) denotes the completion of C∞
0 (0; 1) in

Hs(0; 1), where C∞
0 (0; 1) denotes the space of all in�nitely di�erentiable functions on

(0; 1) with compact support in (0; 1).

Remark 1. If �¿ 4�2, the corresponding linear system of (2.1)

ut + uxxxx + �uxx = 0; 0¡x¡ 1; t ¿ 0;

u(0; t) = u(1; t) = 0; t ¿ 0;

ux(0; t) = ux(1; t) = 0; t ¿ 0;

u(x; 0) = u0(x); 0¡x¡ 1

(2.9)

is unstable. In fact, problem (2.9) has solution

u= e−�(�)t’(x) (2.10)

for the initial data u0(x) = ’(x), where ’(x) is normalized eigenvector of (2.4) corre-
sponding to the eigenvalue �(�). Since �(�)¡ 0, the energy

E(t) =
∫ 1

0
e−2�(�)t’(x)2 dx = e−2�(�)t (2.11)

tends to +∞ as t → +∞. Although we are not able to �nd such an explicit solution
for problem (2.1), we conjecture that it also may not be stable.
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We then look at the uncontrolled Neumann boundary problem

ut + uxxxx + �uxx + uux = 0; 0¡x¡ 1; t ¿ 0;

uxx(0; t) = uxx(1; t) = 0; t ¿ 0;

uxxx(0; t) = uxxx(1; t) = 0; t ¿ 0;

u(x; 0) = u0(x); 0¡x¡ 1:

(2.12)

Unlike the Dirichlet case, the Neumann problem unfortunately is not asymptotically
stable even for �¡ 4�2. To see this, let us take the initial data u0(x) = 1. Then the
solution is u(x; t) = 1. This means that the equilibrium point 0 is not asymptotically
stable. In fact, the eigenvalues of linearized problem (2.12) include 0 with an eigen-
function ’0 = 1 + x. Hence, a boundary feedback is needed to stabilize the problem.
There are various feedbacks we can select. Since our goal is to achieve the global
stabilization, we introduce the following nonlinear boundary feedback:

uxx(0) = kux(0); uxxx(0) =−ku(0)− u(0)3;

uxx(1) =−kux(1); uxxx(1) = ku(1) + u(1)3;
(2.13)

where k is a su�ciently large constant (the largeness will be made clear in the proof
of Theorem 2.2 below in Section 4). The simpler linear feedback

uxx(0) = kux(0); uxxx(0) =−ku(0);

uxx(1) =−kux(1); uxxx(1) = ku(1)
(2.14)

guarantees only local stability. In Section 4 we will see how feedback (2.13) is found.
With this feedback, problem (2.12) becomes the following closed-loop problem:

ut + uxxxx + �uxx + uux = 0; 0¡x¡ 1; t ¿ 0;

uxx(0) = kux(0); uxxx(0) =−ku(0)− u(0)3; t ¿ 0;

uxx(1) =−kux(1); uxxx(1) = ku(1) + u(1)3; t ¿ 0;

u(x; 0) = u0(x); 0¡x¡ 1:

(2.15)

This closed-loop system is L2-globally exponentially stable and H 2-globally asymptot-
ically stable. In order to state this result more precisely, we introduce the following
higher-order energy function including boundary values:

F(t) = kux(0)2 + ku(0)2 + 1
2u(0)

4 + kux(1)2 + ku(1)2

+ 1
2u(1)

4 +
∫ 1

0
u2xx dx: (2.16)

Theorem 2.2. If �¡ 4�2; then there exists k ¿ 0 su�ciently large such that the fol-
lowing holds:
(i) If the initial data u0(x) ∈ L2(0; 1); then the solution of problem (2:15) satis�es

the following global-exponential stability estimate:

E(t) ≤ E(0)e−�(�)t ; ∀t ≥ 0: (2.17)
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(ii) If the initial data u0(x) ∈ H 2(0; 1); the solution of problem (2:15) satis�es the
following global-asymptotic and semiglobal-exponential stability estimate:

F(t) ≤ [CE(0) + F(0)]exp(CE(0))e−�(�)t=2; ∀t ≥ 0; (2.18)

‖u(t)‖2H 2 ≤ C[E(0) + F(0)]exp(CE(0))e−�(�)t=2; ∀t ≥ 0; (2.19)

where C is a positive constant independent of u0.

Remark 2. By the embedding theorem (see [1, p. 97]), Theorems 2.1 and 2.2 show
that

max
0≤x≤1

{|u(x; t)|; |ux(x; t)|} ≤ ‖u(t)‖H 2 ≤ C(u0; u0x ; u
0
xx)e

−�t ; ∀t ≥ 0; (2.20)

where � is a positive constant independent of u0 and C(u0; u0x ; u
0
xx) is a positive constant

independent of u.

Remark 3. The case of � ≥ 4�2 remains open. We do not know whether or not we
can �nd a boundary feedback to stablize the KS-equation with Dirichlet or Neumann
boundary condition.

Because both the equation and the boundary condition are nonlinear, the well-
posedness of problem (2.15) is challenging. We �rst note that even though problem
(2.1) falls in the category of general abstract equations discussed in [34, p. 115] prob-
lem (2.15) does not since the boundary condition is nonlinear. Also, the method we
used in [26] to deal with the Korteweg–de Vries–Burgers equation cannot be applied
since the solutions u of the linear boundary value problem

ut + uxxxx + �uxx + wux = 0; 0¡x¡ 1; t ¿ 0;

uxx(0) = kux(0); uxxx(0) =−ku(0)− u(0)w(0)2; t ¿ 0;

uxx(1) =−kux(1); uxxx(1) = ku(1) + u(1)w(1)2; t ¿ 0;

u(x; 0) = u0(x); 0¡x¡ 1

(2.21)

are less regular than w, where w = w(x; t) is a given function belonging to an appro-
priate function space. For example, if w ∈ C0;1([0; 1] × [0; T ]), we can just have u ∈
C([0; 1]×[0; T ])∩C1([0; T ]; L2(0; 1)), where C0;1([0; 1]×[0; T ]) denotes the space of all
functions u(x; t) continuous with respect to x on [0; 1] and continuously di�erentiable
with respect to t on [0; T ], and C1([0; T ]; L2(0; 1)) denotes the space of all continuously
di�erentiable functions u(t) de�ned on [0; T ] with values in L2(0; 1). This may be due
to the Neumann-type boundary condition (for the Korteweg–de Vries–Burgers equation
discussed in [26], the boundary condition is of mixed Dirichlet–Neumann type). Thus,
the mapping de�ned by

Aw = u (2.22)

does not map C0;1([0; 1] × [0; T ]) into itself. Therefore we are forced to �nd a new
approach. For this, we will construct the Green function of the corresponding homo-
geneous boundary value problem of (2:15) and then transform problem (2.15) into an
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integral equation so that the Banach contraction mapping principle can be applied. In
this way, we will prove

Theorem 2.3. Let u0(x) ∈ H 2(0; 1).
(i) Suppose � and k are any constants (not required to satisfy the conditions

imposed in Theorem 2:2). Then there exists a time T = T (u0) such that problem
(2:15) has a unique and in�nitely di�erentiable solution u on [0; 1]× (0; T ) satisfying

u ∈ C([0; T ); H 2(0; 1)): (2.23)

(ii) If �¡ 4�2; then there exists k ¿ 0 su�ciently large such that problem (2:15)
has a unique and in�nitely di�erentiable solution u on [0; 1]× (0;∞) satisfying

u ∈ C([0;∞); H 2(0; 1)): (2.24)

Before we close this section, we point out that feedback (2.13) can also be expressed
as

u(0)=


−uxxx(0)

2
+

√(
k
3

)3
+
(
uxxx(0)
2

)2
1=3

−

uxxx(0)

2
+

√(
k
3

)3
+
(
uxxx(0)
2

)2
1=3

;

u(1)=


uxxx(1)

2
+

√(
k
3

)3
+
(
uxxx(1)
2

)2
1=3

+


uxxx(1)

2
−
√(

k
3

)3
+
(
uxxx(1)
2

)2
1=3

;

ux(0)=
1
k
uxx(0);

ux(1)= −1
k
uxx(1);

(2.25)

that is, it can be implemented as Dirichlet boundary control.

3. Spectral analysis of the linearized problem

This section is dedicated to the proof of Lemma 2.1 and some other technical lemmas
used in the proofs of the main results.

Lemma 3.1. For every ’ ∈ H 2
0 (0; 1); we have

‖’xx‖2L2 − �‖’x‖2L2 ≥ �(�)‖’‖2L2 : (3.1)
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Proof. Let {�n} be the eigenvalues of (2:4) and {’n} the corresponding orthonormal
eigenvectors. Then every ’ ∈ H 2

0 (0; 1) can be expanded as

’=
∞∑

n=1

cn’n: (3.2)

By calculation, we obtain

‖’xx‖2L2 − �‖’x‖2L2 =
∞∑

n=1

c2n�n ≥ �(�)
∞∑

n=1

c2n = �(�)‖’‖2L2 : (3.3)

We now prove Lemma 2.1.

Proof of Lemma 2.1. We �rst prove that �(�) is strictly decreasing. Let �1 and �0 be
such that −∞¡�1¡�0¡∞ and ’∗ the normalized eigenfunction corresponding to
�(�1). Since ’∗ ∈ H 2

0 (0; 1), by Lemma 3.1, we have∫ 1

0
(’2∗xx − �0’2∗x) dx ≥ �(�0)

∫ 1

0
’2∗ dx: (3.4)

It therefore follows that

�(�1) = �(�1)
∫ 1

0
’2∗ dx

=
∫ 1

0
(’2∗xx − �1’2∗x) dx

=
∫ 1

0
(’2∗xx − �0’2∗x) dx +

∫ 1

0
(�0 − �1)’2∗x dx

¿ �(�0)
∫ 1

0
’2∗ dx

= �(�0): (3.5)

We then locate the �∗ such that

�(�∗) = 0: (3.6)

Thus, we consider the following eigenvalue problem:

’xxxx + �’xx = 0; 0¡x¡ 1;

’(0) = ’(1) = ’x(0) = ’x(1) = 0:
(3.7)

Obviously, in order that (3.7) has a nonzero solution, � must be larger than 0. The
corresponding characteristic equation of (3.7) is

�4 + ��2 = 0 (3.8)

and its solutions are given by

�1 = 0; �2 = 0; �3 = i�; �4 =−i�; (3.9)
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where

�=
√
�: (3.10)

Thus, the general solution of (3.7) is given by

’(x) = C1 + C2x + C3 cos(�x) + C4 sin(�x): (3.11)

By the boundary condition of (3.7), we infer that

C1 + C3 = 0;

C2 + �C4 = 0;

C1 + C2 + C3 cos �+ C4 sin �= 0;

C2 − C3� sin �+ C4� cos �= 0:

(3.12)

It is easy to see that the determinant of the coe�cient matrix of the above system is
equal to

2�− 2� cos �− �2 sin �: (3.13)

Thus, in order to ensure that (3.7) has a nonzero solution, � must satisfy

2− 2 cos �− � sin �= 0: (3.14)

This equation has in�nitely many solutions

�n = 2n�; n= 1; 2; : : : (3.15)

and consequently,

�n = 4n2�2; n= 1; 2; : : : : (3.16)

Since we have proved that �(�) is strictly decreasing, the �∗ we are looking for is

�∗ = 4�2; (3.17)

which gives �(4�2) = 0. This completes the proof.

The following two lemmas will be used in the proofs of Theorems 2.1 and 2.2.

Lemma 3.2. If �¡ 4�2; then; for every ’ ∈ H 2
0 (0; 1); we have

C1‖’xx‖2L2 ≤ ‖’xx‖2L2 − �‖’x‖2L2 ≤ C2‖’xx‖2L2 ; (3.18)

where C1; C2 are positive constants independent of ’.

Proof. We de�ne two operators �1 and �2 by

�1’= ’xxxx + �’xx for any ’ ∈ H 4(0; 1) ∩ H 2
0 (0; 1); (3.19)

�2’= ’xxxx for any ’ ∈ H 4(0; 1) ∩ H 2
0 (0; 1): (3.20)

By Lemma 3.1, both �1 and �2 are positive and self-adjoint operators in L2(0; 1) with
domain H 4(0; 1)∩H 2

0 (0; 1). It therefore follows from Remark 2:3 of Lions and Magenes
[25, p. 10] that

D(�1=21 ) = D(�1=22 ) = H 2
0 (0; 1) (3.21)
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with equivalent norms ‖�1=21 ’‖L2 and ‖�1=22 ’‖L2 , where D(�1=21 ) and D(�1=22 ) denote
the domains of �1=21 and �1=22 , respectively. This implies (3.18).

Lemma 3.3. If �¡ 4�2; then; for every u ∈ H 2(0; 1); we have

�(�)
2

‖u‖2L2 ≤ ‖uxx‖2L2 − �‖ux‖2L2 + C1[ux(1)2 + ux(0)2 + u(1)2 + u(0)2]; (3.22)

C2‖uxx‖2L2 ≤ ‖uxx‖2L2 − �‖ux‖2L2 + C3[ux(1)2 + ux(0)2 + u(1)2 + u(0)2]; (3.23)

where C1; C2; C3 are positive constants depending on �; but independent of u.

Proof. Let

w(x) = [ux(1) + ux(0)− 2u(1) + 2u(0)]x3 + [− ux(1)− 2ux(0)

+3u(1)− 3u(0)]x2 + ux(0)x + u(0): (3.24)

Then we have

w(0) = u(0); w(1) = u(1); wx(0) = ux(0); wx(1) = ux(1) (3.25)

and

u− w ∈ H 2
0 (0; 1): (3.26)

It therefore follows from Lemma 3.1 that

�(�)
∫ 1

0
(u− w)2 dx ≤

∫ 1

0
(u− w)2xx dx − �

∫ 1

0
(u− w)2x dx: (3.27)

Moreover, we have (the following C’s denoting various positive constants that may
vary from line to line)∫ 1

0
(u− w)2xx dx=

∫ 1

0
u2xx dx − 2

∫ 1

0
uxxwxx dx +

∫ 1

0
w2xx dx

=
∫ 1

0
u2xx dx − 2uxwxx|10 + 2uwxxx|10 +

∫ 1

0
w2xx dx

≤
∫ 1

0
u2xx dx + C[ux(1)2 + ux(0)2 + u(1)2 + u(0)2]; (3.28)

− �
∫ 1

0
(u− w)2x dx=−�

∫ 1

0
u2x dx + 2�

∫ 1

0
uxwx dx − �

∫ 1

0
w2x dx

=−�
∫ 1

0
u2x dx + 2�uwx|10 − 2�

∫ 1

0
uwxx dx − �

∫ 1

0
w2x dx

≤−�
∫ 1

0
u2x dx +

�(�)
4

∫ 1

0
u2 dx

+C[ux(1)2 + ux(0)2 + u(1)2 + u(0)2] (3.29)
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and ∫ 1

0
uw dx ≤ 1

4

∫ 1

0
u2 dx + C[ux(1)2 + ux(0)2 + u(1)2 + u(0)2]: (3.30)

It therefore follows from (3.27) that

�(�)
2

∫ 1

0
u2 dx ≤

∫ 1

0
u2xx dx− �

∫ 1

0
u2x dx + C[ux(1)2 + ux(0)2 + u(1)2 + u(0)2]:

(3.31)

In a similar way, by using Lemma 3.2, we can prove (3.23).

In order to use the Banach contraction mapping principle to prove Theorem 2.3,
we need to construct the Green function which depends on the eigenfunctions of the
following eigenvalue problem:

’xxxx = �’; 0¡x¡ 1;

’xx(0) = ’xxx(0) = ’xx(1) = ’xxx(1) = 0:
(3.32)

Thus, we discuss this problem here.

Lemma 3.4. The eigenvalues �n (n= 1; 2; : : :) of (3:2) are given by

�n = �4n; n= 0; 1; 2; : : : ; (3.33)

where

�0 = 0; (3.34)

2n�− �
2
¡�2n−1¡ 2n�; n= 1; 2; : : : ; (3.35)

2n�¡�2n ¡ 2n�+ �
2
; n= 1; 2; : : : ; (3.36)

lim
n→∞

(
2n�− �

2
− �2n−1

)
= lim

n→∞

(
2n�+ �

2
− �2n

)
= 0: (3.37)

The corresponding orthonormal eigenvectors are given by

’0 = 1; (3.38)

’n =
1
�n

[
cos �n − sin �n − e−�n

e�n − cos �n − sin �n
e�nx +

e�n − e−�n − 2 sin �n

e�n − cos �n − sin �n
cos(�nx)

− e
�n + e−�n − 2 cos �n

e�n − cos �n − sin �n
sin(�nx) + e−�nx

]
; n= 1; 2; : : : ; (3.39)

where �n are the normalizing constants such that∫ 1

0
’2n dx = 1; n= 1; 2; : : : : (3.40)
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Proof. The corresponding characteristic equation of (3.32) is

�4 = � (3.41)

and its solutions are

�1 = �; �2 = i�; �3 =−�; �1 =−i�; (3.42)

where

�= �1=4: (3.43)

Thus, the general solutions of (3.32) are given by

’(x) = C1e�x + C2 cos �x + C3 sin �x + C4e−�x: (3.44)

By the boundary condition of (3.32), it follows that

C1 − C3 − C4 = 0;

C1 − C2 + C4 = 0;

C1e� − C2 cos �− C3 sin �+ C4e−� = 0;

C1e� + C2 sin �− C3 cos �− C4e−� = 0:

(3.45)

It is easy to see that the determinant of the coe�cient matrix of the above system
is equal to 2cos �(e� + e−�) − 4: Thus, in order to ensure that (3.32) has a nonzero
solution, � must satisfy

ch � cos �= 1: (3.46)

This equation has in�nite solutions �n (n = 1; 2; : : :) and their properties listed in the
lemma can been clearly seen by plotting the functions 1=ch � and cos � on the same
�gure and determining the points of intersection. Hence the eigenvalues �n (n=1; 2; : : :)
of (3.32) are given by

�n = �4n: (3.47)

Solving system (3.45), we obtain the corresponding eigenfunctions as given in the
lemma.

4. Proofs of the results

We �rst establish a di�erential inequality of Gronwall type, which is frequently used
in this section.

Lemma 4.1. Let g; h; y be three positive and integrable functions on (t0;+∞) such
that y′ is locally integrable on (t0;+∞). Assume that

dy
dt

≤ gy + h for t ≥ t0; (4.1)

∫ ∞

t0
g(s) ds ≤ C1; (4.2)
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t0
e�sh(s) ds ≤ C2; (4.3)

∫ ∞

t0
e�sy(s) ds ≤ C3; (4.4)

where �; C1; C2; C3 are positive constants. Then

y(t) ≤ [C2 + �C3 + y(t0)]eC1e−�(t−t0) for t ≥ t0: (4.5)

Proof. Multiplying (4.1) by e�t , we obtain

d
dt
(e�ty) ≤ e�tgy + e�th+ �e�ty for t ≥ t0: (4.6)

By Gronwall’s inequality (see, e.g., [34, p. 90]), we deduce

e�ty(t)≤ e�t0y(t0) exp
(∫ t

t0
g(s) ds

)

+
∫ t

t0
(e�sh(s) + �e�sy(s)) exp

(
−
∫ s

t
g(�) d�

)
ds

≤ (C2 + �C3)eC1 + e�t0+C1y(t0) (4.7)

which implies (4.5).

In what follows, the C’s denote generic positive constants that may vary from line
to line.

Proof of Theorem 2.1. (i) By a straightforward calculation, we have

Ė(t) =−2
∫ 1

0
u2xx dx + 2�

∫ 1

0
u2x dx: (4.8)

It therefore follows from Lemma 3.1 that

Ė(t) ≤ −2�(�)E(t) (4.9)

which implies (2.7).
(ii) By (4.8) and Lemma 3.2, we deduce that there exists a constant C ¿ 0 such

that

Ė(t) + CV (t) ≤ 0: (4.10)

Multiplying (4.10) by e�(�)t , we obtain

d
dt
(e�(�)tE(t)) + Ce�(�)tV (t)≤ �(�)e�(�)tE(t) ≤ �(�)E(0)e−�(�)t :

(4.11)

Integrating from 0 to t gives

e�(�)tE(t) + C
∫ t

0
e�(�)sV (s) ds ≤ E(0)(2− e−�(�)t) (4.12)



498 W-J. Liu, M. Krsti�c / Nonlinear Analysis 43 (2001) 485–507

which implies

C
∫ t

0
e�(�)sV (s) ds ≤ 2E(0); ∀t ≥ 0: (4.13)

Multiplying the �rst equation of (2.1) by uxxxx, integrating from 0 to 1 by parts and
noting that

2
∫ 1

0
u2x dx ≤

∫ 1

0
u2xx dx; (4.14)

u(x)2 ≤
∫ 1

0
u2x dx; (4.15)

we obtain with Young’s inequality

V̇ (t) =−2
∫ 1

0
u2xxxx dx − 2�

∫ 1

0
uxxxxuxx dx − 2

∫ 1

0
uuxuxxxx dx

≤ �2
∫ 1

0
u2xx dx +

∫ 1

0
u2u2x dx

≤ �2V (t) + 1
4V (t)

2: (4.16)

Using (4:13) and applying Lemma 4.1 with

g= 1
4V; h= �2V; y = V; �= �(�); (4.17)

we obtain

V (t) ≤ [C(�2 + �(�))E(0) + V (0)]exp(CE(0))e−�(�)t : (4.18)

Now let us explain how feedback (2.13) is found. First, we obtain

Ė(t) = 2
∫ 1

0
uut dx

= 2
∫ 1

0
u[− uxxxx − �uxx − uux] dx

=−2
∫ 1

0
u2xx dx + 2�

∫ 1

0
u2x dx

− 2u(1)uxxx(1) + 2ux(1)uxx(1)− 2�u(1)ux(1)− 2
3u(1)

3

+2u(0)uxxx(0)− 2ux(0)uxx(0) + 2�u(0)ux(0) + 2
3u(0)

3: (4.19)
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It therefore follows from (3.22) and (4.19) that

Ė(t)≤−�(�)E(t) + C[ux(1)2 + ux(0)2 + u(1)2 + u(0)2]

− 2u(1)uxxx(1) + 2ux(1)uxx(1) + �[u(1)2 + ux(1)2] + 1
3 [u(1)

2 + u(1)4]

+2u(0)uxxx(0)− 2ux(0)uxx(0) + �[u(0)2 + ux(0)2] + 1
3 [u(0)

2 + u(0)4]

=−�(�)E(t) + ux(0)[Cux(0)− 2uxx(0)] + u(0)[2uxxx(0) + Cu(0) + 1
3u(0)

3]

+ ux(1)[Cux(1) + 2uxx(1)] + u(1)[− 2uxxx(1) + Cu(1) + 1
3u(1)

3]: (4.20)

This leads us to take feedback (2.13) because, with this feedback, we have

Ė(t)≤−�(�)E(t) + (C − 2k)ux(0)2 + (−2k + C)u(0)2

− 5
3u(0)

4 + (C − 2k)ux(1)2 + (−2k + C)u(1)2 − 5
3u(1)

4

≤−�(�)E(t) (4.21)

if k is large enough. This implies (2.17).

Proof of Theorem 2.2. (i) (2.17) has been proved above.
(ii) By (2.13), (3.23) and (4.19), we have

Ė(t)≤−C2

∫ 1

0
u2xx dx + (C − 2k)ux(0)2 + (−2k + C)u(0)2 − 5

3u(0)
4

+(C − 2k)ux(1)2 + (−2k + C)u(1)2 − 5
3u(1)

4: (4.22)

Set

m=min{C2; 2k − C; 5=3}¿ 0; (4.23)

G(t) =
∫ 1

0
u2xx dx + u(0)2 + u(0)4 + ux(0)2 + u(1)2 + u(1)4 + ux(1)2: (4.24)

Then we have

Ė(t) + mG(t) ≤ 0: (4.25)

As in (4.12), we obtain

exp(�(�)t=2)E(t) + m
∫ t

0
exp(�(�)s=2)G(s) ds ≤ 2E(0): (4.26)

On the other hand, we have

2
∫ 1

0
utuxxxx dx

=2utuxxx
∣∣1
0 − 2uxtuxx

∣∣1
0 +

d
dt

(∫ 1

0
u2xx dx

)
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=
d
dt

(
kux(0)2 + ku(0)2 + 1

2u(0)
4 + kux(1)2 + ku(1)2 + 1

2u(1)
4 +

∫ 1

0
u2xx dx

)

= Ḟ(t) (note the de�nition (2:16) of F): (4.27)

Multiplying the �rst equation of (2.15) by uxxxx, integrating from 0 to 1 by parts and
noting that

u(x)2 ≤ 2u(0)2 + 2
∫ 1

0
u2x dx; (4.28)

we obtain

Ḟ(t) =−2
∫ 1

0
u2xxxx dx − 2�

∫ 1

0
uxxuxxxx dx − 2

∫ 1

0
uuxuxxxx dx

≤ �2
∫ 1

0
u2xx dx +

∫ 1

0
u2u2x dx

≤ �2
∫ 1

0
u2xx dx + 2u(0)

2
∫ 1

0
u2x dx + 2

(∫ 1

0
u2x dx

)2

≤ �2
∫ 1

0
u2xx dx + u(0)4 + 3

(∫ 1

0
u2x dx

)2

= �2
∫ 1

0
u2xx dx + u(0)4 + 3

(
2ux(0)2 +

∫ 1

0
u2xx dx

)2

≤CF(t) + CF(t)2: (4.29)

Using (4:26) and applying Lemma 4.1 with

g= CF; h= CF; y = F; �= �(�)=2; (4.30)

we deduce (2.18).
Estimate (2.19) is a direct consequence of (2.17) and (2.18) and the equivalence

of the norms ‖u‖H 2 and (‖u‖L2 + ‖uxx‖L2 )1=2 (see, e.g., the interpolation theorem, [1,
p. 79, Corollary 4:16]).

In order to use the Banach contraction mapping principle to prove Theorem 2.3, we
construct the Green function of the following problem:

ut + uxxxx = 0; 0¡x¡ 1; t ¿ 0;

uxx(0; t) = uxxx(0; t) = uxx(1; t) = uxxx(1; t) = 0; t ¿ 0:
(4.31)

It seems that such a Green function is not known in the existing literature.
Setting

u= ’(x) (t) (4.32)
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then we have

−  t(t)
 (t)

=
’xxxx(x)
’(x)

≡ � (a constant): (4.33)

Accordingly, the Green function of (4.31) is given by

G(x; y; t; �) = 1 +
∞∑

n=1

’n(x)’n(y)e−�4n(t−�); 0 ≤ x; y ≤ 1; t ¿ �; (4.34)

where �n= �4n are the eigenvalues of (3:32) and ’n are the corresponding orthonormal
eigenfunctions which are given in Lemma 3.4.

Lemma 4.2. There exists a constant C ¿ 0 such that∫ t

0

∫ 1

0
|G(x; y; t; �)| dy d� ≤ t + C

∞∑
n=1

1− e−�4nt

�4n
; (4.35)

∫ t

0
|G(x; y; t; �)| d� ≤ t + C

∞∑
n=1

1− e−�4nt

�4n
; (4.36)

∫ t

0

∫ 1

0

∣∣∣∣ @n1+n2

@xn1@yn2
G(x; y; t; �)

∣∣∣∣ dy d�≤C
∞∑

n=1

1− e−�4nt

�4−n1−n2
n

; 1≤ n1 +n2≤ 2; (4.37)

∫ t

0

∣∣∣∣ @n1+n2

@xn1@yn2
G(x; y; t; �)

∣∣∣∣ d� ≤ C
∞∑

n=1

1− e−�4nt

�4−n1−n2
n

; 1 ≤ n1 + n2 ≤ 2: (4.38)

Proof. Since there exists a constant C ¿ 0 such that∣∣∣∣cos �n − sin �n − e−�n

e�n − cos �n − sin �n
e�nx
∣∣∣∣ ≤ C; (4.39)

∣∣∣∣e�n − e−�n − 2 sin �n

e�n − cos �n − sin �n
cos(�nx)

∣∣∣∣ ≤ C; (4.40)

∣∣∣∣e�n + e−�n − 2 cos �n

e�n − cos �n − sin �n
sin(�ny)

∣∣∣∣ ≤ C; (4.41)

we have

|’n(x)| ≤ C; 0 ≤ x ≤ 1 (4.42)

from which (4.35)–(4.38) follow.

Using the Green function, we can transform the following non-homogeneous initial
boundary value problem:

ut + uxxxx = f(x; t; u; ux; uxx; uxxx); 0¡x¡ 1; t ¿ 0;

uxx(0; t) = b1(t); uxxx(0; t) = b2(t); t ¿ 0;

uxx(1; t) = b3(t); uxxx(1; t) = b4(t); t ¿ 0;

u(x; 0) = u0(x); 0¡x¡ 1

(4.43)

into an integral equation, where f; b1(t); b2(t); b3(t); b4(t) are given functions.



502 W-J. Liu, M. Krsti�c / Nonlinear Analysis 43 (2001) 485–507

Lemma 4.3. Problem (4:43) is equivalent to the following integral equation:

u=
∫ 1

0
G(x; y; t; 0)u0(y) dy

+
∫ t

0

∫ 1

0
G(x; y; t; �)f(y; �; u(y; �); uy(y; �); uyy(y; �); uyyy(y; �)) dy d�

+
∫ t

0
[b3(�)Gy(x; 1; t; �)− b1(�)Gy(x; 0; t; �)]�

−
∫ t

0
[b4(�)G(x; 1; t; �)− b2(�)G(x; 0; t; �)] d�: (4.44)

Proof. Multiplying the �rst equation of (4.43) by G and integrating over (0; 1)×(0; t),
we obtain

∫ t

0

∫ 1

0
G(x; y; t; �)u�(y; �) dy d�+

∫ t

0

∫ 1

0
G(x; y; t; �)uyyyy(y; �) dy d�

=
∫ t

0

∫ 1

0
G(x; y; t; �)f(y; �; u(y; �); uy(y; �); uyy(y; �); uyyy(y; �)) dy d�: (4.45)

Integrating by parts, we have

∫ t

0

∫ 1

0
G(x; y; t; �)uyyyy(y; �) dy d�

=
∫ t

0

∫ 1

0
Gyyyy(x; y; t; �)u(y; �) dy d� (note that Gyy = Gyyy = 0 at y = 0; 1)

+
∫ t

0
[b1(�)Gy(x; 0; t; �)− b3(�)Gy(x; 1; t; �)] d�

+
∫ t

0
[b4(�)G(x; 1; t; �)− b2(�)G(x; 0; t; �)] d�; (4.46)

∫ t

0

∫ 1

0
G(x; y; t; �)u�(y; �) dy d�=

∫ 1

0
G(x; y; t; t)u(y; t) dy

−
∫ 1

0
G(x; y; t; 0)u0(y) dy

−
∫ t

0

∫ 1

0
G�(x; y; t; �)u(y; �) dy d�
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= u(x; t)−
∫ 1

0
G(x; y; t; 0)u0(y) dy

−
∫ t

0

∫ 1

0
G�(x; y; t; �)u(y; �) dy d�: (4.47)

Combining the above equalities, it follows that problem (4.43) is equivalent to the
integral Eq. (4.44).

Proof of Theorem 2.3. By Lemma 4.3, problem (2.15) is equivalent to

u=
∫ 1

0
G(x; y; t; 0)u0(y) dy

−
∫ t

0

∫ 1

0
G(x; y; t; �)(�uyy(y; �) + u(y; �)uy(y; �)) dy d�

−
∫ t

0
[kuy(1; �)Gy(x; 1; t; �) + kuy(0; �)Gy(x; 0; t; �)] d�

−
∫ t

0
[ku(1; �) + u(1; �)3]G(x; 1; t; �) d�

−
∫ t

0
[ku(0; �) + u(0; �)3]G(x; 0; t; �) d�

=
∫ 1

0
G(x; y; t; 0)u0(y) dy

+ �
∫ t

0

∫ 1

0
Gy(x; y; t; �)uy(y; �) dy d�−

∫ t

0

∫ 1

0
G(x; y; t; �)u(y; �)uy(y; �) dy d�

−
∫ t

0
[kuy(1; �)Gy(x; 1; t; �) + kuy(0; �)Gy(x; 0; t; �)] d�

−
∫ t

0
[�uy(1; �) + ku(1; �) + u(1; �)3]G(x; 1; t; �) d�

−
∫ t

0
[ku(0; �) + u(0; �)3 − �uy(0; �)]G(x; 0; t; �) d�: (4.48)

We de�ne a nonlinear operator A as

Au(x; t) =
∫ 1

0
G(x; y; t; 0)u0(y) dy

+ �
∫ t

0

∫ 1

0
Gy(x; y; t; �)uy(y; �) dy d�

−
∫ t

0

∫ 1

0
G(x; y; t; �)u(y; �)uy(y; �) dy d�

−
∫ t

0
[kuy(1; �)Gy(x; 1; t; �) + kuy(0; �)Gy(x; 0; t; �)] d�
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−
∫ t

0
[�uy(1; �) + ku(1; �) + u(1; �)3]G(x; 1; t; �) d�

−
∫ t

0
[ku(0; �) + u(0; �)3 − �uy(0; �)]G(x; 0; t; �) d� (4.49)

and note that

@
@x
(Au(x; t)) =

∫ 1

0
Gx(x; y; t; 0)u0(y) dy

+ �
∫ t

0

∫ 1

0
Gxy(x; y; t; �)uy(y; �) dy d�

−
∫ t

0

∫ 1

0
Gx(x; y; t; �)u(y; �)uy(y; �) dy d�

−
∫ t

0
[kuy(1; �)Gxy(x; 1; t; �) + kuy(0; �)Gxy(x; 0; t; �)] d�

−
∫ t

0
[�uy(1; �) + ku(1; �) + u(1; �)3]Gx(x; 1; t; �) d�

−
∫ t

0
[ku(0; �) + u(0; �)3 − �uy(0; �)]Gx(x; 0; t; �) d�: (4.50)

Let C1;0([0; 1]× [0; T ]) denote the set of all functions u(x; t) continuously di�erentiable
with respect to x on [0; 1] and continuous with respect to t on [0; T ]. C1;0([0; 1]×[0; T ])
is a Banach space with the following norm:

‖u‖∞ = max
0≤x≤1
0≤t≤T

{|u(x; t)|; |ux(x; t)|}: (4.51)

Set

M0 = max
0≤x≤1
0≤t≤T

{∣∣∣∣∣
∫ 1

0
G(x; y; t; 0)u0(y) dy

∣∣∣∣∣ ;
∣∣∣∣∣
∫ 1

0
Gx(x; y; t; 0)u0(y) dy

∣∣∣∣∣
}

(4.52)

B(0; 2M0) = {u ∈ C1;0([0; 1]× [0; T ]): ‖u‖∞ ≤ 2M0}: (4.53)

Since u0 ∈ H 2(0; 1), we have

‖u0xx‖2L2 =
∞∑

n=1

c2n�n =
∞∑

n=1

c2n�
4
n ¡+∞; (4.54)

where

cn =
∫ 1

0
’nu0 dx; n= 0; 1; 2; : : : (4.55)
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and �n = �4n are the eigenvalues of (3:32) and ’n are the corresponding orthonormal
eigenfunctions which are given in Lemma 3.4. Consequently, we obtain∣∣∣∣∣

∫ 1

0
G(x; y; t; 0)u0(y) dy

∣∣∣∣∣ =
∣∣∣∣∣
∫ 1

0

[
1 +

∞∑
n=1

’n(x)’n(y)e−�4nt

]
u0(y) dy

∣∣∣∣∣
≤ |c0|+ C

∞∑
n=1

|cn|

≤ |c0|+ C

( ∞∑
n=1

c2n�
4
n

)1=2( ∞∑
n=1

�−4n

)1=2

¡+∞ (4.56)

and ∣∣∣∣∣
∫ 1

0
Gx(x; y; t; 0)u0(y) dy

∣∣∣∣∣ =
∣∣∣∣∣
∫ 1

0

[ ∞∑
n=1

’nx(x)’n(y)e−�4nt

]
u0(y) dy

∣∣∣∣∣
≤ C

∞∑
n=1

|cn�n|

≤ |c0|+ C

( ∞∑
n=1

c2n�
4
n

)1=2( ∞∑
n=1

�−2n

)1=2

¡+∞: (4.57)

Hence, we have M0¡∞. We are going to prove that A maps B(0; 2M0) into itself
and is a contractive operator if T is small enough. For this, we set

�(T ) = max
0≤n1+n2≤2

max
0≤x;y≤1
0≤t≤T

{∫ t

0

∫ 1

0

∣∣∣∣ @n1+n2

@xn1@yn2
G(x; y; t; �)

∣∣∣∣ dy d�;
∫ t

0

∣∣∣∣ @n1+n2

@xn1@yn2
G(x; y; t; �)

∣∣∣∣ d�
}

: (4.58)

From Lemma 4.2 we get that

lim
T→0

�(T ) = 0: (4.59)

For any u ∈ B(0; 2M0), we easily deduce that

max
0≤x≤1
0≤t≤T

{|Au(x; t)|} ≤M0 + C�(T )(‖u‖∞ + ‖u‖2∞ + ‖u‖3∞)

≤M0 + C�(T )(2M0 + (2M0)2 + (2M0)3) (4.60)
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and

max
0≤x≤1
0≤t≤T

{|(Au(x; t))x|} ≤M0 + C�(T )(‖u‖∞ + ‖u‖2∞ + ‖u‖3∞)

≤M0 + C�(T )(2M0 + (2M0)2 + (2M0)3); (4.61)

where C is a positive constant independent of T and u. Therefore, if T is small enough,
we obtain Au ∈ B(0; 2M0). On the other hand, for any u1; u2 ∈ B(0; 2M0), in a similar
way, we deduce that

‖Au1 − Au2‖∞ ≤ C(u)�(T )‖u1 − u2‖∞: (4.62)

Thus, if T is small enough, A is a contraction. By the Banach contraction mapping
principle, A has a unique �xed point, and then problem (2.15) has a unique solution
on (0; T ) which is in�nitely di�erentiable on [0; 1] × (0; T ) due to the smoothness of
the Green function G. Moreover, if �¡ 4�2, u0 ∈ H 2(0; 1) and k is su�ciently large,
then by Theorem 2.2, the solution actually exists on [0;∞) and

u ∈ C([0;∞); H 2(0; 1)): (4.63)
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