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Abstract. We investigate a three species food chain system with a Holling type IV

functional response and impulsive perturbations. We find conditions for local and global

stabilities of prey(or predator) free periodic solutions by applying the Floquet theory and

the comparison theorems.

1. Introduction

It is currently very much in vogue to study population models with impulsive
perturbations containing biological and chemical controls. Especially, simple multi-
species systems consisting of a three species food chain with impulsive perturbations
have been discussed by a number of researchers [13], [17], [18], [19], [20] and there
are also many literatures on impulsive prey-predator population models [10], [11],
[12].

A well-known model of such systems is a food chain system with Holling type
IV functional response [7], [14], [20], which can be described the following equation:

(1.1)



x′(t) = x(t)(a− bx(t))− c1x(t)y(t)
1 + e1x2(t)

,

y′(t) = −d1y(t) +
c2x(t)y(t)
1 + e1x2(t)

− c3y(t)z(t)
1 + e2y2(t)

,

z′(t) = −d2z(t) +
c4y(t)z(t)
1 + e2y2(t)

,

where x(t), y(t), z(t) are the densities of the lowest-level prey, mid-level predator and
top predator at time t, respectively, a, b, c1, c2, c3, c4, d1, d2, e1 and e2 are positive
constants. In this paper, we consider an impulsive differential equation − a three
species food chain system with Holling type IV functional response, by introducing
a proportion periodic impulsive poisoning (chemical control) for all species and a
constant periodic releasing, or immigrating, (biological control) for the top predator
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at different fixed time. Thus, we establish a food chain system with impulsive
perturbations as follows:
(1.2)

x′(t) = x(t)(a− bx(t))− c1x(t)y(t)
1 + e1x2(t)

,

y′(t) = −d1y(t) +
c2x(t)y(t)
1 + e1x2(t)

− c3y(t)z(t)
1 + e2y2(t)

,

z′(t) = −d2z(t) +
c4y(t)z(t)
1 + e2y2(t)

,

}
t 6= nT, t 6= (n+ τ − 1)T,

x(t+) = (1− p1)x(t),
y(t+) = (1− p2)y(t),
z(t+) = (1− p3)z(t),

}
t = (n+ τ − 1)T,

x(t+) = x(t),
y(t+) = y(t),
z(t+) = z(t) + q,

}
t = nT,

(x(0+), y(0+), z(0+)) = (x0, y0, z0),

where 0 ≤ τ, p1, p2, p3 < 1 and T is the period of the impulsive immigration or
stock the top predator and q is the size of immigration or stock of the top predator.
Theories and applications for impulsive differential equations were greatly developed
by the efforts of Bainov and Lakshmikantham et al. [2], [9] and, moreover, the theory
of impulsive differential equations is being recognized to be not only richer than the
corresponding theory of differential equations without impulses, but also represents
a more natural framework for mathematical modeling of real world phenomenons.

The authors in [13] and [19] have studied the stabilities for a food chain system
with Holling type II and impulsive perturbations. Especially, the authors in [20]
have studies the local stability of a lower-level prey and mid-level predator free
periodic solution and a mid-level predator free periodic solution of the system (1.2)
with p1 = p2 = p3 = 0.

The rest of the paper is organized as follows: In the next section, we introduce
some notations and lemmas which are used in this paper. In section 3, we find con-
ditions for local and global stabilities of a lower-level prey and a mid-level predator
free periodic solution and mid-level predator free periodic solution by applying the
Floquet theory and comparison theorems.

2. Preliminaries

First, we shall introduce a few notations and definitions together with a few
auxiliary results relating to comparison theorems, which will be useful for our main
results.

Let R+ = [0,∞) and R3
+ = {x = (x(t), y(t), z(t)) ∈ R3 : x(t), y(t), z(t) ≥ 0}.

Denote N the set of all of nonnegative integers, R∗+ = (0,∞) and f = (f1, f2, f3)T

the right hand of the first three equations in (1.2). Let V : R+ × R3
+ → R+. Then
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V is said to be in a class V0 if

(1) V is continuous on(nT, (n+ 1)T ]× R3
+, and lim

(t,y)→(nT,x)
t>nT

V (t,y) = V (nT+,x) exists.

(2) V is a local Lipschitzian in x.

Definition 2.1. For V ∈ V0, we define the upper right Dini derivative of V with
respect to the impulsive differential system (1.2) at (t,x) ∈ (nT, (n+ 1)T ]×R3

+ by

D+V (t,x) = lim sup
h→0+

1
h

[V (t+ h,x + hf(t,x))− V (t,x)].

Remark 2.2. The smoothness properties of f guarantee the global existence and
uniqueness of solutions of the system (1.2). (See [9] for the details).

We will use a comparison result of impulsive differential inequalities. We sup-
pose that g : R+ × R+ → R satisfies the following hypothesis:
(H) g is continuous on (nT, (n+ 1)T ]× R+ and the limit lim(t,y)→(nT+,x) g(t, y) =
g(nT+, x) exists and is finite for x ∈ R+ and n ∈ N.

Lemma 2.3 ([9]). Suppose V ∈ V0 and

(2.1)


D+V (t,x) ≤ g(t, V (t,x)), t 6= (n+ τ − 1)T, t 6 nT,
V (t,x(t+)) ≤ ψ1

n(V (t,x)), t = (n+ τ − 1)T,
V (t,x(t+)) ≤ ψ2

n(V (t,x)), t = nT,

where g : R+ × R+ → R satisfies (H) and ψ1
n, ψ

2
+ : R+ → R+ are non-decreasing

for all n ∈ N. Let r(t) be the maximal solution for the impulsive Cauchy problem

(2.2)


u′(t) = g(t, u(t)), t 6= (n+ τ − 1)T, t 6 nT,
u(t+) = ψ1

n(u(t)), t = (n+ τ − 1)T,
u(t+) = ψ2

n(u(t)), t = nT,

u(0+) = u0,

defined on [0,∞). Then V (0+,x0) ≤ u0 implies that V (t,x(t)) ≤ r(t), t ≥ 0, where
x(t) is any solution of (2.1).

We now indicate a special case of Lemma 2.3, which provides estimations for the
solution of a system of differential inequalities. For this, we let PC(R+,R)(PC1(R+,R))
denote the class of real piecewise continuous(real piecewise continuously differen-
tiable) functions defined on R+.
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Lemma 2.4 ([9]). Let the function u(t) ∈ PC1(R+,R) satisfy the inequalities

(2.3)


du

dt
≤ f(t)u(t) + h(t), t 6= τk, t > 0,

u(τ+
k ) ≤ αku(τk) + βk, k ≥ 0,

u(0+) ≤ u0,

where f, h ∈ PC(R+,R) and αk ≥ 0, βk and u0 are constants and (τk)k≥0 is a
strictly increasing sequence of positive real numbers. Then, for t > 0,

u(t) ≤u0

( ∏
0<τk<t

αk

)
exp
(∫ t

0

f(s)ds
)

+
∫ t

0

( ∏
0≤τk<t

dk

)
exp
(∫ t

s

f(γ)dγ
)
h(s)ds

+
∑

0<τk<t

( ∏
τk<τj<t

dj

)
exp
(∫ t

τk

f(γ)dγ
)
βk.

Similar result can be obtained when all conditions of the inequalities in the
Lemma 2.3 and 2.4 are reversed. Using Lemma 2.4, it is possible to prove that
the solutions of the Cauchy problem (2.2) with strictly positive initial value remain
strictly positive.

Lemma 2.5. The positive orthant (R∗+)3 is an invariant region for the system
(1.2).

Proof. Let (x(t), y(t), z(t)) : [0, t0) → R2 be a saturated solution of the system
(1.2) with a strictly positive initial value (x0, y0, z0). It is easy to see that, for
tn 6= (n+ τ − 1)T, t 6= nT and 0 ≤ t < t0,

(2.4)


x′(t) ≥ x(t)(a− bx(t))− c1x(t)y(t),
y′(t) ≥ −d1y(t)− c3y(t)z(t),
z′(t) ≥ −d2z(t)

as long as the solution remains positive. By Lemma 2.4, we can obtain that, for
0 ≤ t < t0,

(2.5)



x(t) ≥ x0(1− p1)[
t
T ] exp

(∫ t

0

f1(s)ds
)
,

y(t) ≥ y0(1− p2)[
t
T ] exp

(∫ t

0

f2(s)ds
)
,

z(t) ≥ z0(1− p3)[
t
T ] exp

(∫ t

0

f3(s)ds
)
,

where f1(s) = a − bx(s) − c1y(s), f2(s) = −d1 − c3z(s) and f3(s) = −d2. Thus,
x(t), y(t) and z(t) remain strictly positive on [0, t0). �
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Now, we give the basic properties of two impulsive differential equations. First,
we consider the following impulsive differential equation.

(2.6)


x′(t) = x(t)(a− bx(t)), t 6= nT, t 6= (n+ τ − 1)T,
x(t+) = (1− p1)x(t), t = (n+ τ − 1)T,
x(t+) = x(t), t = nT,

x(0+) = x0.

The system (2.6) is a periodically forced system. It is easily obtain that

(2.7) x∗(t) =
aη exp(a(t− (n+ τ − 1)T ))

b(1− η + η exp(a(t− (n+ τ − 1)T )))
, (n+ τ − 1)T < t ≤ (n+ τ)T,

is a positive periodic solution of (2.6), where η = (1−p1) exp(aT )−1
exp(aT )−1 . Now, we mention

the following Lemma in [13].

Lemma 2.6 ([13]). The following statements hold.
(1) If aT + ln(1 − p1) > 0, then limt→∞ |x(t) − x∗(t)| = 0 for all solutions x(t) of
(2.6) with x0 > 0.
(2) If aT + ln(1− p1) ≤ 0, then x(t) → 0 as t→∞ for all solutions x(t) of (2.6).

Next, we consider the impulsive differential equation as follows:

(2.8)


z′(t) = −d2z(t), t 6= nT, t 6= (n+ τ − 1)T,
z(t+) = (1− p3)z(t), t = (n+ τ − 1)T,
z(t+) = z(t) + q, t = nT,

z(0+) = z0.

The system (2.8) is a periodically forced linear system. It is easy to obtain that

(2.9) z∗(t) =


q exp(−d2(t− (n− 1)T ))
1− (1− p3) exp(−d2T )

, (n− 1)T < t ≤ (n+ τ − 1)T,

q(1− p3) exp(−d2(t− (n− 1)T ))
1− (1− p3) exp(−d2T )

, (n+ τ − 1)T < t ≤ nT,

z∗(0+) = z∗(nT+) = q
1−(1−p3) exp(−d2T ) , z

∗((n + τ − 1)T+) = q(1−p3) exp(−d2τT )
1−(1−p3) exp(−d2T ) is

a positive periodic solution of (2.8).
Moreover, we can obtain that

(2.10)

z(t) =



(1− p3)n−1

(
z(0+)− q(1− p3)e−T

1− (1− p3) exp(−d2T )

)
exp(−d2t) + z∗(t),

(n− 1)T < t ≤ (n+ τ − 1)T,

(1− p3)n

(
z(0+)− q(1− p3)e−T

1− (1− p3) exp(−d2T )

)
exp(−d2t) + z∗(t),

(n+ τ − 1)T < t ≤ nT,
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is a solution of (2.8). From (2.9) and (2.10), we get easily the following result.

Lemma 2.7. All solutions z(t) of (1.2) tend to z∗(t). i.e., |z(t) − z∗(t)| → 0 as
t→∞.

To study the stability of the lowest-level prey and top predator free periodic so-
lution (0, 0, z∗(t)) and of the mid-level predator free periodic solution (x∗(t), 0, z∗(t))
we present the Floquet theory for the linear T -periodic impulsive equation:

(2.11)

{
x′(t) = A(t)x(t), t 6= τk, t ∈ R,
x(t+) = x(t) +Bkx(t), t = τk, k ∈ Z.

Then we introduce the following conditions:
(H1) A(·) ∈ PC(R, Cn×n) and A(t + T ) = A(t)(t ∈ R), where PC(R, Cn×n) is a
set of all piecewise continuous matrix functions which is left continuous at t = τk,
and Cn×n is a set of all n× n matrices.
(H2) Bk ∈ Cn×n, det(E +Bk) 6= 0, τk < τk+1(k ∈ Z).
(H3) There exists a q ∈ N such that Bk+q = Bk, τk+q = τk + T (k ∈ Z).
Let Φ(t) be a fundamental matrix of (2.11), then there exists a unique nonsingular
matrix M ∈ Cn×n such that

(2.12) Φ(t+ T ) = Φ(t)M(t ∈ R).

By equality (2.12) there corresponds to the fundamental matrix Φ(t) and the con-
stant matrix M which we call the monodromy matrix of (2.11) (corresponding to
the fundamental matrix of Φ(t)).

All monodromy matrices of (2.11) are similar and have the same eigenvalues.
The eigenvalues µ1, · · · , µn of the monodromy matrices are called the Floquet mul-
tipliers of (2.11).

Lemma 2.6 ([2]). Let conditions (H1) − (H3) hold. Then the linear T -periodic
impulsive equation (2.11) is
(1) stable if and only if all multipliers µj(j = 1, · · · , n) of (2.11) satisfy the inequality
|µj | ≤ 1, and moreover, to those µj for which |µj | = 1, there correspond simple
elementary divisors;
(2) asymptotically stable if and only if all multipliers µj(j = 1, · · · , n) of (2.11)
satisfy the inequality |µj | < 1;
(3) unstable if |µj | > 1 for some j = 1, · · · , n.

3. Main theorems

In this section, we study the stability of the lowest-level prey and mid-level
predator free periodic solution (0, 0, z∗(t)) and of the mid-level predator free periodic
solution (x∗(t), 0, z∗(t)). We also show that all solutions of the system (1.2) are
uniformly upper bounded.

First, we show that all solutions of (1.2) are uniformly ultimately bounded.
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Theorem 3.1. There is an M > 0 such that x(t) ≤ M,y(t) ≤ M and z(t) ≤ M
for all t large enough, where (x(t), y(t), z(t)) is a solution of the system (1.2).

Proof. Let (x(t), y(t), z(t)) be a solution of (1.2) and let u(t) = c2
c1
x(t)+y(t)+ c3

c4
z(t)

for t ≥ 0. Then, if t 6= nT ,t 6= (n+ τ − 1)T , then we obtain that

(3.1)
du(t)
dt

= −c2b
c1
x2(t) +

c2a

c1
x(t)− d1y(t)−

c3d2

c4
z(t).

From choosing 0 < β0 < min{d1, d2}, we obtain

(3.2)
du(t)
dt

+ β0u(t) ≤ −c2b
c1
x2(t) +

c2
c1

(a+ β0)x(t), t 6= nT, t 6= (n+ τ − 1)T.

As the right-hand side of (3.2) is bounded from above by M0 = c2(a+β0)
2

4bc1
, it follows

that
du(t)
dt

+ β0u(t) ≤M0, t 6= nT, n 6= (n+ τ − 1)T.

If t = nT , then u(t+) = u(t)+ c3
c4
q and if t = (n+ τ −1)T , then u(t+) ≤ (1−p)u(t),

where p = min{p1, p2, p3}. From Lemma 2.4, we get that

(3.3)

u(t) ≤ u0

( ∏
0<kT<t

(1− p)

)
exp
(∫ t

0

−β0ds
)

+
∫ t

0

( ∏
0≤kT<t

(1− p)

)
exp
(∫ t

s

−β0dγ
)
M0ds

+
∑

0<kT<t

( ∏
kT<jT<t

(1− p)

)
exp
(∫ t

kT

−β0dγ
)c3
c4
q

≤ u(0+) exp(−β0t) +
M0

β0
(1− exp(−β0t)) +

c3q exp(β0T )
c4 exp(β0T )− 1

.

Since the limit of the right-hand side of (3.3) as t→∞ is

M0

β0
+

c3q exp(β0T )
c4 exp(β0T )− 1

<∞,

it easily follows that u(t) is bounded for sufficiently large t. Therefore, x(t), y(t)
and z(t) are bounded by a constant M for sufficiently large t. �

Theorem 3.2. The following statements hold.
(1) The periodic solution (0, 0, z∗(t)) is locally stable if aT + ln(1− p1) ≤ 0.
(2) The periodic solution (0, 0, z∗(t)) is unstable if aT + ln(1− p1) > 0.

Proof. (1) The local stability of the periodic solution (0, 0, z∗(t)) of the system (1.2)
may be determined by considering the behavior of small amplitude perturbations
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of the solution. Let (x(t), y(t), z(t)) be any solution of the system (1.2). Define
x(t) = u(t), y(t) = v(t), z(t) = w(t) + z∗(t). Then they may be written asu(t)v(t)

w(t)

 = Φ(t)

u(0)
v(0)
w(0)

 ,

where Φ(t) satisfies

dΦ
dt

=

a 0 0
0 −d1 − c3z

∗(t) 0
0 c4z

∗(t) −d2

Φ(t)

and Φ(0) = I is the identity matrix. So the fundamental solution matrix is

Φ(t) =

exp(at) 0 0
0 exp(

∫ t

0
−d1 − c3z

∗(s)ds) 0
0 exp(

∫ t

0
c4z

∗(s)ds) exp(−d2t)

 .

The resetting impulsive conditions of the system (1.2) becomeu((n+ τ − 1)T+)
v((n+ τ − 1)T+)
u((n+ τ − 1)T+)

 =

1− p1 0 0
0 1− p2 0
0 0 1− p3

u((n+ τ − 1)T )
v((n+ τ − 1)T )
w((n+ τ − 1)T )


and u(nT+)

v(nT+)
w(nT+)

 =

1 0 0
0 1 0
0 0 1

u(nT )
v(nT )
w(nT )

 .

Note that the eigenvalues of

S =

1− p1 0 0
0 1− p2 0
0 0 1− p3

1 0 0
0 1 0
0 0 1

Φ(T )

are µ1 = (1 − p1) exp(aT ), µ2 = (1 − p2) exp(−
∫ T

0
d1 + c3z

∗(s)ds) < 1 and µ3 =
(1 − p3) exp(−d2T ) < 1. The condition µ1 ≤ 1(> 1) is equivalent to the equation
aT+ln(1−p1) ≤ 0(> 0). Therefore, by Lemma 2.8, the periodic solution (0, 0, z∗(t))
is locally stable if aT + ln(1− p1) ≤ 0 and is unstable if aT + ln(1− p1) > 0. �

Theorem 3.3. The periodic solution (x∗(t), 0, z∗(t)) is locally asymptotically stable
if aT + ln(1− p1) > 0 and

(3.4)
∫ T

0

c2x
∗(t)

1 + e1(x∗(t))2
dt+ ln(1− p2) < d1T + ∆,
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where ∆ =
c3q(1 + (p3 − 1) exp(−d2T )− p3 exp(−d2τT ))

d2(1− (1− p3) exp(−d2T ))
.

Proof. Now, we apply the same method as Theorem 3.2 to the periodic solution
(x∗(t), 0, z∗(t)) to determine its stability. So, we define x(t) = u(t) + x∗(t), y(t) =
v(t), z(t) = w(t) + z∗(t). Then they may be written asu(t)v(t)

w(t)

 = Φ(t)

u(0)
v(0)
w(0)


where Φ(t) satisfies

dΦ
dt

=

a− 2bx∗(t) − c1x∗(t)
1+e1(x∗(t))2

0

0 −d1 − c3z
∗(t) + c2x∗(t)

1+e1(x∗(t))2
0

0 c4z
∗(t) −d2

Φ(t)

and Φ(0) = I is the identity matrix. The resetting impulsive conditions of the
system (1.2) becomeu((n+ τ − 1)T+)

v((n+ τ − 1)T+)
u((n+ τ − 1)T+)

 =

1− p1 0 0
0 1− p2 0
0 0 1− p3

u((n+ τ − 1)T )
v((n+ τ − 1)T )
w((n+ τ − 1)T )


and u(nT+)

v(nT+)
w(nT+)

 =

1 0 0
0 1 0
0 0 1

u(nT )
v(nT )
w(nT )

 .

Further, the eigenvalues of

S =

1− p1 0 0
0 1− p2 0
0 0 1− p3

1 0 0
0 1 0
0 0 1

Φ(T )

are µ1 = (1 − p1) exp(
∫ T

0
a − 2bx∗(t)dt), µ2 = (1 − p2) exp

(∫ T

0
−d1 − c3z

∗(t) +
c2x∗(t)

1+e1(x∗(t))2
dt
)

and µ3 = (1− p3) exp(−d2T ) < 1. Since
∫ T

0
x∗(t)dt = 1

b (ln(1− p1)+
aT ) and ∫ T

0

z∗(t)dt =
q(1 + (p3 − 1) exp(−d2T )− p3 exp(−d2τT ))

d2(1− (1− p3) exp(−d2T ))
,

we get that |µ1| < 1 and the condition |µ2| < 1 is equivalent to the equation (3.4).
Therefore, from Lemma 2.8, we obtain (x∗(t), 0, z∗(t)) is locally asymptotically
stable.

�
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Remark 3.4. (1) It is not easy to evaluate the value of
∫ T

0
x∗(t)

1+e1(x∗(t))2
dt. Actually,

for 0 < t < T , we obtain x∗(t) = aη exp(at)
b(1−η+η exp(at)) and hence

∫ x∗(t)
1+e1(x∗(t))2

dt =
abc2η∆

2be1ηa3+2b3ηa , where ∆ = ∆1 −∆2, ∆1 = b ln(a2 exp(2at)e1η2 + b2(((exp(at)− 1) +

1)2)), ∆2 = 2a
√
e1 tan−1( exp(at)e1ηa2+b2((exp(at)−1)+1)

ab
√

e1(η−1) ) and η = (1−p1) exp(aT )−1
exp(aT )−1 .

(2) We get Theorem 3.1 in [20] as a Corollary of Theorem 3.2.

Theorem 3.5. The following statements hold.
(1) The periodic solution (0, 0, z∗(t)) is globally asymptotically stable if aT + ln(1−
p1) ≤ 0.
(2) The periodic solution (x∗(t), 0, z∗(t)) is globally asymptotically stable if aT +
ln(1− p1) > 0 and

(3.5)
c2
b

(ln(1− p1) + aT ) + ln(1− p2) < d1T + Λ,

where Λ =
c3q(1 + (p3 − 1) exp(−d2T )− p3 exp(−d2τT ))

(1 + e1M2)d2(1− (1− p3) exp(−d2T ))
and M is an ultimate

boundedness constant for y(t) in Theorem 3.1.

Proof. (1) Assume that aT + ln(1 − p1) ≤ 0. It is easy to see from the proof of
Theorem 3.2 that the periodic solution (0, 0, z∗(t)) is locally asymptotically stable.
Take ε1 > 0 such that ε1 < d1

c2
. Let ξ = (1− p1) exp((c2ε1− d1)T ). Then 0 < ξ < 1.

It is seen from the first equation in (1.2) that x′(t) = x(t)(a− bx(t))− c1x(t)y(t)
1+e1x2(t) ≤

x(t)(a − bx(t)) for t 6= (n + τ − 1)T . By Lemma 2.3, x(t) ≤ x̃(t) for t ≥ 0, where
x̃(t) is the solution of (2.6) with x0 > 0. From Lemma 2.6, we can choose T1 > 0
satisfying x(t) ≤ ε1 for t ≥ T1. Without loss of generality, we may assume that
x(t) ≤ ε1 for all t > 0. We obtain from the second equation in (1.2) that, for
t 6= (n+ τ − 1)T ,

(3.6)

y′(t) = −d1y(t) +
c2x(t)y(t)
1 + e1x2(t)

− c3y(t)z(t)
1 + e2y2(t)

≤ −d1y(t) + c2x(t)y(t)
≤ y(t)(−d1 + c2ε1).

Integrating (3.6) on ((n+ τ − 1)T, (n+ τ)T ], we get

y((n+ τ)T ) ≤ y((n+ τ − 1)T+) exp((−d1 + c2ε1)T ) = y((n+ τ − 1)T )ξ

and hence y((n+ τ)T ) ≤ y(τT )ξn which implies that y((n+ τ)T ) → 0 as n → ∞.
Further, we obtain that y(t) ≤ y((n+τ−1)T+) exp((−d1+c2ε1)(t−(n+τ−1)T )) ≤
y((n+τ−1)T ) for t ∈ ((n+τ−1)T, (n+τ)T ]. Thus y(t) → 0 as n→∞. Now, take
0 < ε2 <

d2
c4

to prove that z(t) → z∗(t) as t→∞. Since limt→∞ y(t) = 0, there is a
T2 > 0 that y(t) ≤ ε2 for t ≥ T2. For the sake of simplicity, we assume that y(t) ≤ ε2
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for all t. It follows from the third equation in (1.2) that, for t 6= (n+τ−1)T, t 6= nT ,

(3.7)
−d2z(t) ≤ z′(t) = −d2z(t) +

c4y(t)z(t)
1 + e2y2(t)

≤ −(d2 − c4ε2)z(t).

Thus, it is induced from Lemma 2.3 that z̃1(t) ≤ z(t) ≤ z̃2(t), where z̃1(t) is the
solution of (2.8) and z̃2(t) is also the solution of (2.8) with d2 changed into d2−c4ε2.
Therefore, it follows from Lemma 2.7 and taking sufficiently small ε2 > 0 that z̃1(t)
and z̃2(t) tend to z∗(t) as t→∞. Thus we get |z(t)− z∗(t)| → 0 as t→∞.

(2) Suppose that aT + ln(1 − p1) > 0 and (3.5) hold. Then, by (3.5), we can
choose ε3 > 0 such that

0 < ζ ≡ (1− p2) exp
(
−d1T + c2

(1
b
(ln(1− p1) + aT ) + ε3T

)
−Θ

)
< 1,

where Θ = c3q(1+(p3−1) exp(−d2T )−p3 exp(−d2τT ))
(1+e2M2)d2(1−(1−p3) exp(−d2T )) + ε3T . From Theorem 3.1, without

loss of generality, we may assume that x(t), y(t) < M for all t. As in the proof of
(1), by Lemma 2.3, x(t) ≤ x̃2(t) is obtained for t ≥ 0, where x̃2(t) is the solution of
(2.6). It is from Lemma 2.6 that there exists a T3 > 0 such that x(t) ≤ x∗(t) + ε3
for t ≥ T3. Without loss of generality , we may assume that x(t) ≤ x∗(t) + ε3 for
t > 0. Since z′(t) = −d2z(t) + c4y(t)z(t)

1+e2y2(t) ≥ −d2z(t)(t 6= (n + τ − 1)T, t 6= nT ), by
Lemma 2.3, z(t) ≥ z̃(t) is obtained for t > 0, where z̃(t) is the solution of (2.8).
From Lemma 2.7, we can select a T4 > 0 satisfying z(t) ≥ z∗(t) + ε3 for t ≥ T4. For
the sake of simplicity, we suppose that z(t) ≥ z∗(t) + ε3 for t > 0. From the second
equation in (1.2), we obtain that, for t 6= (n+ τ − 1)T ,

(3.8)
y′(t) = −d1y(t) +

c2x(t)y(t)
1 + e1x2(t)

− c3y(t)z(t)
1 + e2y2(t)

≤ y(t)
(
−d1 + c2(x∗(t) + ε3)−

c3
1 + e2M2

(z∗(t) + ε3)
)
.

By integrating (3.8) on ((n + τ − 1)T, (n + τ)T ], we obtain that y((n + τ)T ) ≤
y((n + τ − 1)T+) exp

(∫ (n+τ)T

(n+τ−1)T+ −d1 + c2(x∗(t) + ε3) − c3
1+e2M2 (z∗(t) + ε3)dt

)
=

y((n+ τ −1)T )ζ. Thus, y((n+ τ)T ) ≤ y(τT )ζn which implies that y((n+ τ)T ) → 0
as n→∞. Further, the inequality y′(t) ≤ c2x(t)y(t) ≤ c2My(t) implies that y(t) ≤
(1−p2)y((n+τ−1)T ) exp(c2MT ), for t ∈ ((n+τ−1)T, (n+τ)T ], and consequently
y(t) → 0 as t→∞. Now, let 0 < ε4 <

a
c1

to show that |x(t)−x∗(t)| → 0 as t→∞.
Since y(t) → 0 as t→∞, there exists a T5 > 0 such that y(t) < ε4 for t > T5. For
the sake of simplicity, we suppose that y(t) < ε4 for all t > 0. It follows that, for
t 6= (n+ τ − 1)T, t 6= nT ,

(3.9)
x′(t) = x(t)(a− bx(t))− c1x(t)y(t)

1 + e1x2(t)
≥ x(t)((a− c1ε4)− bx(t)).
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Thus, it follows from Lemma 2.3 that x̃1(t) ≤ x(t), where x̃1(t) is the solution
of (2.6) with a changed into a − c1ε4. From Lemma 2.6 and taking sufficiently
small ε4 > 0, we see that x̃1(t) and x̃2(t) tend to x∗(t) as t → ∞. Thus, we get
|x(t)− x∗(t)| → 0 as t→∞. By using the same process as the proof of (1), we can
show that |z(t)− z∗(t)| → 0 as t→∞. �
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