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1. Introduction

Generally speaking, a stability version of a geometric inequality with known equal-
ity cases is an explicit estimate, exhibiting how closely the extremal situation is
approximated if the equality is only satisfied up to some given error. In the geo-
metry of convex bodies, affine-invariant continuous functionals often attain one
of their extreme values at the simplices, and corresponding stability results are a
challenge. We know of only a few examples, see [2], [3], [7], [8]. This paper adds
some more. As a rule, the first step in proving a stability improvement of an in-
equality consists in optimizing a proof of the inequality to make the identification
of the equality cases as easy as possible.

Let X be a Minkowski space, that is, a real vector space of finite dimension n ≥ 2
with a norm ‖ · ‖. In the following, all metric notions refer to this norm and
its unit ball, B. By D, d,R, r we denote, respectively, diameter, minimal width,
circumradius, and inradius, as functions on the space K of convex bodies (compact,
convex subsets with interior points) of X. The sharp inequalities

R

D
≤ n

n+ 1
(1.1)
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and
d

r
≤ n+ 1 (1.2)

are Minkowski space analogues of classical Euclidean results, due to Jung and
to Steinhagen, respectively. Inequality (1.1) was established by Bohnenblust [1].
Proofs of both inequalities together with a discussion of the equality cases were
given by Leichtweiss [9], and independent proofs of the inequalities are due to
Eggleston [5]. Equality in (1.1) and (1.2) holds if the body K under consideration
is a simplex and the unit ball B is the difference body of this simplex. Conversely,
if equality holds in (1.1) or (1.2) for a body K, then K is a simplex, but the
possible unit balls B are not unique (up to affine transformations); they have been
described by Leichtweiss [9].

The quantities D, d,R, r appearing here can be expressed in terms of a single
function of two convex bodies. For K,L ∈ K (not necessarily symmetric), let

ρ(K,L) := min{λ > 0 : ∃x ∈ X : K + x ⊂ λL}.
If K∗ = 1

2 (K −K) denotes the Minkowski symmetral (half the difference body)
of K, then

D = 2ρ(K∗, B), d =
2

ρ(B,K∗)
, (1.3)

R = ρ(K,B), r =
1

ρ(B,K)
. (1.4)

The first relation in (1.3) follows from

∀x, y ∈ K : ‖x− y‖ ≤ λ⇔ ∀ z ∈ K −K : ‖z‖ ≤ λ⇔ 2K∗ ⊂ λB,
and the second (using the support function h with respect to some Euclidean
structure, or defined on the dual space) from

∀u : h(K,u) + h(K,−u) ≥ λh(B, u)⇔ 2K∗ ⊃ λB.
Relations (1.4) are essentially the definitions. Inequalities (1.1) and (1.2) now read
as

ρ(K,B)
ρ(K∗, B)

≤ 2n
n+ 1

(1.5)

and
ρ(B,K)
ρ(B,K∗)

≤ n+ 1
2

, (1.6)

and thus as inequalities for affine invariant-functionals of a pair of convex bodies.

Both inequalities can neatly be expressed in terms of covering. For sets K,M ⊂ X,
we say that K can be covered by M (or that M can cover K) if K ⊂ M + x for
a suitable vector x ∈ X. Recall that B is centrally symmetric. Inequality (1.5) is
equivalent (by homogeneity) to the following assertion.

(A) If any two-point subset of K can be covered by B (equivalently, K∗ ⊂ B), then
K can be covered by 2n

n+1B.
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By a supporting slab of a convex body K we understand the region of X bounded
by two parallel supporting hyperplanes of K. Then inequality (1.6) can be ex-
pressed as follows.

(B) If any supporting slab of K can cover the parallel supporting slab of B (equiv-
alently, K∗ ⊃ B), then K can cover 2

n+1B.

In either case, if the dilatation factor cannot be improved, then K is a simplex.

As remarked in [4, p. 135], it is easy to deduce from (A) a similar assertion about
arbitrary (not necessarily symmetric) convex bodies K,L. We formulate it here as
the inequality

ρ(K,L)
ρ(K∗, L∗)

≤ n, (1.7)

or in words as follows.

(C) If any two-point subset of K can be covered by L (equivalently, if any supporting
slab of L can cover the parallel supporting slab of K, or equivalently, K∗ ⊂ L∗),
then K can be covered by nL.

(We point out that the extension of (1.1), (1.2) to nonsymmetric bodies in [9] is
of a different kind.)

In (C), the dilatation factor cannot be improved if and only if K is a simplex and
L is its image under reflection in a point.

Theorems 3.1 and 4.1 of this paper provide stability versions for these extremal
properties of the simplex. They are derived from a stability estimate for the
Minkowski measure of symmetry; this is Theorem 2.1.

2. The Minkowski Measure of Symmetry

For a convex body K ∈ K, the Minkowski measure of symmetry, denoted by q(K),
is defined as the smallest number λ > 0 such that λK can cover −K, equivalently

q(K) := ρ(K,−K) = min{λ > 0 : ∃x ∈ X : K + x ⊂ −λK}.
Obviously, q(K) ≥ 1, with equality if and only if K is centrally symmetric. It is
known that

q(K) ≤ n, (2.1)
with equality if and only if K is a simplex (references are in [6, Section 6.1]).

This extremal property of the simplex can be improved in the form of a stability
version. For this, we need an appropriate notion of distance for affine equivalence
classes of convex bodies. The extended Banach–Mazur distance dBM (K,L) of not
necessarily symmetric convex bodies K,L ∈ K is defined as the smallest number
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λ > 0 such that a suitable affine transform of K can cover L and can be covered
by λL, thus

dBM (K,L) := min{λ ≥ 1 : ∃α ∈ Aff(n)∃x ∈ X : L ⊂ αK ⊂ λL+ x}.
Here Aff(n) denotes the group of affine transformations of X.

Stability estimates for the inequality (2.1) were obtained by Böröczky [2, 3] and
Guo [7]. The strongest assertion is that of Böröczky [2], but his proof seems to be
inconclusive at the end. We give, therefore, a detailed different proof (Theorem
2.1). Here ∆ denotes an n-dimensional simplex.

Theorem 2.1. Let 0 ≤ ε < 1
n . If the convex body K satifies

q(K) > n− ε,
then

dBM (K,∆) < 1 +
(n+ 1)ε
1− nε

.

Proof. If we want to show that some convex body is close to a simplex, we must
find such a simplex, and thus its vertices. In the present case, the vertices are found
by an application of Helly’s theorem (this extends the approach in [4, Theorem
2.7], which goes back to Yaglom and Boltyanskii [10, problem 19]). The connection
to covering is made by defining

K(x, q) :=
q

q + 1
(K − x) + x

for 0 ≤ q ≤ n and x ∈ K, and observing that

c ∈
⋂
x∈K

K(x, q)⇔ −(K − c) ⊂ q(K − c). (2.2)

The proof follows from

c ∈ K(x, q) ⇔ ∃ k ∈ K : c =
q

q + 1
(k − x) + x

⇔ ∃ k ∈ K : −(x− c) = q(k − c)
⇔ −(x− c) ∈ q(K − c).

Now let K ⊂ X be a convex body with q(K) > n− ε, where 0 ≤ ε < 1/n, and put
q := n − ε. Since q < q(K), no point c ∈ K satisfies the right-hand side of (2.2).
By Helly’s theorem, there must exist n+ 1 points v0, v1, . . . , vn ∈ K such that

n⋂
i=0

K(vi, q) = ∅. (2.3)

Since the set of all (n+ 1)-tuples (v0, . . . , vn) satisfying (2.3) is open in Kn+1, we
can assume that v0, . . . , vn are affinely independent. Then ∆ := conv {v0, . . . , vn}
is an n-simplex contained in K. We put

λ := 1 +
(n+ 1)ε
1− nε
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and assert that
K ⊂ intλ∆. (2.4)

Suppose that (2.4) were false. Then some facet of λ∆, say the one opposite to λv0,
contains a point p ∈ K. There is a unique representation

p =
n∑
i=1

γiλvi with γi ≥ 0,
n∑
i=1

γi = 1.

Now we put

r :=
q

q + 1
=

n− ε
n+ 1− ε

and

z := [1− n(1− r)]v0 + (1− r)
n∑
i=1

vi.

With

α0 :=
1− n(1− r)

r
=

1− ε
n− ε

, α1 := 0, αj :=
1− r
r

=
1

n− ε
for j = 2, . . . , n we have αi ≥ 0 and

∑n
i=0 αi = 1, hence

z =
n∑
i=0

αi[rvi + (1− r)v1] ∈ conv {r(vi − v1) + v1 : i = 0, . . . , n}

= r(∆− v1) + v1 = ∆(v1, q).

Similarly, z ∈ ∆(vi, q) for i = 1, . . . , n. Since ∆(vi, q) ⊂ K(vi, q), it follows from
(2.2) that

z /∈ K(v0, q).

Without loss of generality (namely, after applying a translation), we can assume
that

n∑
i=0

vi = o, (2.5)

then z = [1− (n+ 1)(1− r)]v0. From z /∈ r(K − v0) + v0 we see that the point

z0 := −τv0 with τ :=
1 + ε

n− ε
satisfies z0 /∈ K. By (2.5),

z0 = τ(v1 + · · ·+ vn). (2.6)

Using the point p introduced above, there is a unique affine representation

z0 =
n∑
i=1

βivi + βn+1p with
n+1∑
i=1

βi = 1,
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thus

z0 =
n∑
i=1

[βi + βn+1γiλ]vi.

Comparing this with (2.6), we get

βi + βn+1γiλ = τ for i = 1, . . . , n,

hence
n∑
i=1

βi + λβn+1 = nτ

and thus
βn+1 =

nτ − 1
λ− 1

=
1− nε
n− ε

≥ 0.

For i = 1, . . . , n, we obtain

βi =
1 + ε

n− ε
(1− γi) ≥ 0.

This yields
z0 ∈ conv {v1, . . . , vn, p} ⊂ K,

a contradiction. This shows that (2.4) holds, which implies dBM (K,∆) < λ. �

3. Stability for Assertions (A) and (B)

For K ∈ K, we define

p(K) := ρ(K,K∗) = min{λ > 0 : ∃x ∈ X : K + x ⊂ λK∗}, (3.1)
s(K) := ρ(K∗,K) = min{λ > 0 : ∃x ∈ X : K∗ + x ⊂ λK}. (3.2)

In the following, we write q(K) = q, p(K) = p, s(K) = s. For λ > 0 we have

K + x ⊂ −λK ⇔ K + λK + x ⊂ 2λK∗ ⇔ K +
1

λ+ 1
x ⊂ 2λ

λ+ 1
K∗.

In particular, with suitable x, y,

K + x ⊂ −qK ⇒ K +
1

q + 1
x ⊂ 2q

q + 1
K∗ ⇒ p ≤ 2q

q + 1
,

K + y ⊂ pK∗ ⇒ K +
2

2− p
y ⊂ − p

2− p
K ⇒ q ≤ p

2− p
,

thus
p =

2q
q + 1

. (3.3)

Similarly,

K + x ⊂ −λK ⇔ K −K + x ⊂ −(λ+ 1)K ⇔ 2K∗ + x ⊂ −(λ+ 1)K,

which yields

s =
q + 1

2
. (3.4)
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As in the introduction, we assume that X is equipped with a norm, and its unit
ball is denoted by B.

Let K be a convex body of diameter D > 0 and circumradius R, and let q = q(K),
p = p(K), s = s(K). The preceding identities together with (2.1) allow us to give
a very short version of Eggleston’s [5] proofs of (1.1) and (1.2).

Suppose that λ ≥ p, hence K + x ⊂ λK∗ for some x ∈ X. After a translation,
we may assume that K ⊂ λK∗. We cannot have λK∗ ⊂ intRB, since then K ⊂
intRB, and R would not be the circumradius of K. Hence, λK∗ has a point x
with ‖x‖ ≥ R. Therefore, λK contains two points at distance at least 2R, which
means that λD ≥ 2R. Since this holds for all λ ≥ p, we get

ρ(K,B)
2ρ(K∗, B)

=
R

D
≤ p

2
=

q

q + 1
≤ n

n+ 1
(3.5)

and thus (1.5).

Suppose that λ ≥ s, hence K∗ + x ⊂ λK for some x ∈ X. Applying a homothety,
we may assume that 1

λK
∗ ⊂ K. The inclusion rB ⊂ int 1

λK
∗ would imply that r

is not the inradius of K, hence is impossible. Therefore, rB has some supporting
halfspace that contains 1

λK
∗. This means that r is not less than 1

2λ times the width
of K in the corresponding direction, hence r ≥ d/2λ. Since this holds for all λ ≥ s,
we get

2ρ(B,K)
ρ(B,K∗)

=
d

r
≤ 2s = q + 1 ≤ n+ 1 (3.6)

and thus (1.6).

Turning to stability estimates, we assume that, for some convex body K and some
unit ball B, inequality (1.1) holds with approximate equality, namely

R

D
>

n− ε
n− ε+ 1

with some ε satisfying 0 < ε < 1/n. Since the function q 7→ q/(q + 1) is strictly
increasing, (3.5) gives q > n− ε.

Similarly, if (1.2) holds with approximate equality,
d

r
> n− ε+ 1,

then (3.6) gives q > n− ε. Theorem 2.1 thus yields the following result.

Theorem 3.1. Let 0 < ε < 1
n . If the diameter D and the circumradius R of a

convex body K with respect to some Minkowski metric on X satisfy
R

D
>

n− ε
n− ε+ 1

,

or if the minimal width d and the inradius r of K satisfy
d

r
> n− ε+ 1,
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then

dBM (K,∆) < 1 +
(n+ 1)ε
1− nε

where ∆ is an n-dimensional simplex.

4. Stability for Assertion (C)

For a proof of (1.7), we can assume that ρ(K∗, L∗) = 1, hence K∗ ⊂ L∗. Using
this together with (3.1), (3.2), we get, with suitable x, y,

K + x ⊂ p(K)K∗ ⊂ p(K)L∗ ⊂ p(K)s(L)L+ y,

hence with (3.3) and (3.4) we obtain

ρ(K,L) ≤ p(K)s(L) =
2q(K)
q(K) + 1

q(L) + 1
2

≤ n

n+ 1
(n+ 1) = n (4.1)

and thus (1.7).

Although the equality case is covered by the stability estimate below, we prove it
separately, in the hope that it makes the subsequent stability proof more perspic-
uous. Suppose that equality holds in (1.7). Then q(K) = n and q(L) = n, hence
K and L are simplices. After a dilatation of L we can assume that

ρ(K∗, L∗) = 1, (4.2)

then
ρ(K,L) = n. (4.3)

We use an auxiliary Euclidean structure with scalar product 〈·, ·〉 and the corre-
sponding notation. For example, H−(K,u) and H(K,u) are the supporting half-
space and the supporting hyperplane with outer unit normal vector u, respectively,
of a convex body K, and h(K, ·) denotes the support function of K.

Let u0, u1, . . . , un be the unit normal vectors of the facets of the simplex L. We
may assume that the origin o is the centre of gravity of L, then

h(L,−ui) = nh(L, ui) for i = 0, . . . , n. (4.4)

There is a unique translate of K, and w.l.o.g. we may assume that K itself is this
translate, such that

K ⊂
n⋂
i=1

H−(nL, ui), K ∩H(nL, ui) 6= ∅ for i = 1, . . . , n. (4.5)

From (4.3) it follows that then also

K ⊂ H−(nL, u0), K ∩H(nL, u0) 6= ∅. (4.6)

Relation (4.2) implies K∗ ⊂ L∗, hence

h(K,ui) + h(K,−ui) ≤ h(L, ui) + h(L,−ui) for i = 0, . . . , n.
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Since h(K,ui) = h(nL, ui) by (4.5) and (4.6), together with (4.4) this gives
h(K,−ui) ≤ h(L, ui), thus h(−K,ui) ≤ h(L, ui) for i = 0, . . . , n and hence
−K ⊂ L. From h(K,ui) = h(nL, ui) = h(L,−ui) we get h(−K,−ui) = h(L,−ui).
Therefore, −K contains the vertices of L, which yields that −K = L. Hence,
equality holds in (1.7) if and only if K is a simplex and L is homothetic to −K.

Our corresponding stability result reads as follows.

Theorem 4.1. If K,L are convex bodies satisfying
ρ(K,L)
ρ(K∗, L∗)

≥ n− n

n+ 1
ε, (4.7)

where 0 ≤ ε < 1/(5n3 + n), then there is a simplex ∆ with centroid at the origin
such that suitable homothets K ′, L′ of K and L satisfy

(1− anε)∆ ⊂ −K ′ ⊂ ∆

and
(1− bnε)∆ ⊂ L′ ⊂ ∆

with an = 5n3 + n and bn = 2n.

(The factor n
n+1 in (4.7) is chosen for convenience.) We prepare the proof by a

lemma.

Lemma 4.2. Let T ⊂ X be a simplex with vertices v0, . . . , vn and centroid o. For
0 < r < 1

n+1 define

Ti(r) := r(T − vi) + vi, i = 0, . . . , n.

Let s := 1− (n+ 1)r. If xi ∈ Ti(r) for i = 0, . . . , n, then

sT ⊂ conv{x0, . . . , xn}.

Proof. Since the assertion is invariant under linear transformations, we can intro-
duce a scalar product 〈·, ·〉 so that the simplex T becomes regular, then 〈vi, vj〉 =
−1/n for i 6= j. Let

H−(u, t) := {x ∈ X : 〈x, u〉 ≤ t}
be a supporting halfspace of conv{x0, . . . , xn}. The vector u is in the positive hull
of some n vectors of v0, . . . , vn, say

u =
n∑
k=1

αkvk with αk ≥ 0.

For j = 1, . . . , n,

〈vj , u〉 − 〈v0, u〉 = αj

(
〈vj , vj〉+

1
n

)
≥ 0.

Let i ∈ {0, . . . , n}. For j ∈ {0, . . . , n}, let vij be the vertex of Ti(r) corresponding
to vj under the homothety that maps T to Ti(r); then also

〈vij , u〉 ≥ 〈vi0, u〉, j = 1, . . . , n.
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Since xi ∈ Ti(r) and xi ∈ H−(u, t), we get

t ≥ 〈xi, u〉 ≥ min{〈vij , u〉 : j = 0, . . . , n} = 〈vi0, u〉, i = 0, . . . , n.

Choose i with
〈vi, u〉 ≥ 〈vk, u〉, k = 1, . . . , n,

then

n〈vi, u〉 ≥
n∑
k=1

〈vk, u〉 = −〈v0, u〉.

Since s = 1− r − nr, we obtain

〈svi, u〉 − 〈vi0, u〉 = (1− r)〈vi, u〉 − nr〈vi, u〉 − 〈rv0 + (1− r)vi, u〉
= −nr〈vi, u〉 − r〈v0, u〉 ≤ 0.

Thus, for k = 1, . . . , n,

〈sv0, u〉 ≤ 〈svk, u〉 ≤ 〈svi, u〉 ≤ 〈vi0, u〉 ≤ t.

Hence, all vertices of the simplex sT are contained in H−(u, t). Since the latter was
an arbitrary supporting halfspace of conv{x0, . . . , xn}, this convex hull contains
sT . �

Proof of Theorem 3. Let 0 ≤ ε < 1/(5n3 + n), and assume that

ρ(K,L)
ρ(K∗, L∗)

≥ n− n

n+ 1
ε =: µ.

First we apply a dilatation to L so that ρ(K∗, L∗) = 1. Then, by (4.1) and (2.1),

n− n

n+ 1
ε ≤ ρ(K,L) ≤ q(K)

q(K) + 1
(q(L) + 1) ≤ n

n+ 1
(q(L) + 1),

hence
q(L) ≥ n− ε.

Since also q(µL) ≥ n− ε, inspection of the proof of Theorem 2.1 shows that there
exists a simplex ∆ with centroid at the origin o such that, after replacing L by a
suitable translate, we have

∆ ⊂ µL ⊂ λ∆ with λ = 1 + 2nε.

We use a scalar product 〈·, ·〉 for which ∆ is regular. Let u0, u1, . . . , un be the outer
unit normal vectors of the facets of ∆. There is translate of K, w.l.o.g. K itself,
such that

K ⊂
n⋂
i=1

H−(λ∆, ui), K ∩H(λ∆, ui) 6= ∅ for i = 1, . . . , n.

For i = 1, . . . , n we then have

h(K,ui) = h(λ∆, ui) ≥ h(µL, ui) = µh(L, ui). (4.8)



Stability results for simplices 11

Let v0 be the vertex of λ∆ opposite to the facet with normal vector u0. Shrinking
λ∆ from v0 by the factor 1/λ, we obtain the simplex ∆′ = ∆ + (1 − λ−1)v0. If
h(K,u0) < h(∆′, u0), then a smaller homothet of ∆′ contains K, which implies
that a smaller homothet of µL can cover K, in contradiction to ρ(K,L) = µ.
Hence,

h(K,u0) ≥ h(∆′, u0) = h(∆, u0) + (1− λ−1)〈v0, u0〉
= h(∆, u0)− (1− λ−1)nh(λ∆, u0) = βh(λ∆, u0) (4.9)
≥ βh(µL, u0) = βµh(L, u0) (4.10)

with
β :=

n+ 1
λ
− n ≥ 1− 3n2ε.

The relation ρ(K∗, L∗) = 1 implies K∗ ⊂ L∗, hence

h(K,ui) + h(K,−ui) ≤ h(L, ui) + h(L,−ui) for i = 0, . . . , n. (4.11)

For i = 0, . . . , n we have

h(µL,−ui) ≤ h(λ∆,−ui) = nh(λ∆, ui) = nλh(∆, ui) ≤ nλh(µL, ui),

hence
h(L,−ui) ≤ nλh(L, ui). (4.12)

For i = 1, . . . , n we obtain from (4.8), (4.11), (4.12) that

h(−K,ui) = h(K,−ui) ≤ (1 + nλ− µ)h(L, ui). (4.13)

Similarly, from (4.10), (4.11), (4.12) we get

h(−K,u0) = h(K,−u0) ≤ (1 + nλ− βµ)h(L, u0). (4.14)

Since h(µL, ui) ≤ h(λ∆, ui) for i = 0, . . . , n, we see from (4.13) and (4.14) that

h(−K,ui) ≤ (1 + nλ− µ)
λ

µ
h(∆, ui), i = 1, . . . , n,

h(−K,u0) ≤ (1 + nλ− βµ)
λ

µ
h(∆, ui).

These inequalities show that
−K ⊂ ∆1,

where ∆1 is the simplex with

h(∆1, ui) = (1 + nλ− µ)
λ

µ
h(∆, ui), i = 1, . . . , n, (4.15)

h(∆1, u0) = (1 + nλ− βµ)
λ

µ
h(∆, ui). (4.16)

For i = 1, . . . , n we have

h(−K,−ui) = h(K,ui) = h(λ∆, ui) =
λ

n
h(∆,−ui)
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and for i = 0 similarly, by (4.9),

h(−K,−u0) = h(K,u0) ≥ βh(λ∆, u0) =
βλ

n
h(∆,−u0).

Writing
H+(M,u) := {x ∈ X : 〈x, u〉 ≥ h(M,u)}

for a convex body M , we see from the preceding that −K contains points in each
of the sets

∆′i := ∆1 ∩H+

(
λ

n
∆,−ui

)
, i = 1, . . . , n,

∆′0 := ∆1 ∩H+

(
βλ

n
∆,−u0

)
,

The simplex ∆1 is homothetic to ∆, thus ∆1 = s∆ + t with a homothety factor s
and a vector t. For a regular simplex T with unit normal vectors u0, . . . , un (hence∑n
i=0 ui = o), the quantity

∑n
i=0 h(T, ui) is invariant under translations. Using

this fact, one finds from (4.15) and (4.16) that the homothety factor is given by

s = (1 + nλ− µ)
λ

µ
+

(1− β)λ
n+ 1

.

Each simplex ∆′i, i = 0, . . . , n, is homothetic to ∆ and thus to ∆1, say ∆′i =
ri∆1 + ti. To determine the homothety factor ri, we write h(∆, ui) =: a and
obtain from

h(∆1, ui) + h(∆1,−ui) = s(n+ 1)a

and (4.15), (4.16) that

h(∆1,−ui) = a
nλ

µ
(1 + nλ− µ) + a(1− β)λ

for i = 1, . . . , n and

h(∆1,−u0) = a
nλ

µ
(1 + nλ− µ).

From this, we get

ri =
h(∆1,−ui)− h(λn∆,−ui)

(n+ 1)as

=
n(1 + nλ− µ)− βµ

(n+ 1)(1 + nλ− µ) + (1− β)µ
(4.17)

for i = 1, . . . , n and

r0 =
n(1 + nλ− µ)− µ

(n+ 1)(1 + nλ− µ) + (1− β)µ
.

In particular, ri ≥ r0 for i = 1, . . . , n. Therefore, we can replace ∆′0 by a simplex
with homothety factor r1 instead of r0 and then apply Lemma 4.2. From this we



Stability results for simplices 13

conclude that −K contains the simplex ∆2 that is obtained from ∆1 by shrinking
it from its centroid by the factor s = 1− (n+ 1)r1.

Altogether we have found that suitable homothetic copies K ′ of K and L′ of L
satisfy

1
λ

∆ ⊂ L′ ⊂ ∆, s∆ ⊂ −K ′ ⊂ ∆.

Here 1/λ ≥ 1− 2nε, and for the estimation of s we use (4.17), where we estimate
the denominator from below by n + 1 and the numerator from above by using
β ≥ 1− 3n2ε. This yields the assertion. �
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