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1 Introduction
The theory of stochastic partial differential equations has been widely applied in scien-
tific fields such as physics, mechanical engineering, and economics. Especially, the study
of stochastic neutral functional differential equations has received a great deal of atten-
tion in recent years. For example, Bao et al. [] extended the existence and uniqueness of
mild solutions to a class of more general stochastic neutral partial functional differential
equations under non-Lipschitz conditions. Caraballo et al. [] investigated the exponen-
tial stability and ultimate boundedness of the solutions to a class of neutral stochastic
semilinear partial delay differential equations.
Also the stability in a distribution is an important notion like the stability in probability

or in themoment of stochastic differential equations. Such a stability is much weaker than
stability in probability and it is useful sometimes to know whether or not the probability
distribution of the solution will converge to some distribution but not necessarily to zero.
There is an extensive literature concerned with the stability in the distribution of stochas-
tic differential equations. Using an excellent stopping time technique and an M-matrix
trick, Yuan and Mao [] investigated the stability in the distribution of nonlinear SDEs
with Markovian switching. Yuan et al. [] discussed a class of stochastic differential delay
equation with Markovian switching, where the sufficient conditions of stability in the dis-
tribution were established. Tan et al. [] considered weak convergence of functional SDEs
with variable delays. For the case of stochastic partial differential equations, we refer to
Bao et al. [, ]. Furthermore, for the nonlinear regime switching jump diffusion, we can
refer to Yang and Yin [].
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Although many scholars have discussed the stability in the distribution of SDEs or
functional SDEs where the noises are Brownian motion and jumps, the methods applied
therein will not work if the considered noises are α-stable processes. As we know, for an α-
stable process ( < α < ), it only has a p < α moment. Therefore, some useful techniques
involved in the above references, such as the Burkholder-Davis-Gundy inequality and Da
Prato-Kwapien-Zabczyk’s factorization technique [], are not available.On the other hand,
it seems that little is known about the stability in the distribution of the neutral stochastic
partial differential equations driven by an α-stable process, and there are few systematic
works so far in which the noise source is an α-stable process as well. For more studies of
stochastic systems driven by stable processes, we refer to [–].
In this paper, we study the existence, uniqueness, and stability in the distribution of mild

solutions for the following neutral stochastic differential equation with finite delay:
⎧⎨
⎩
d[X(t) + g(X(t – τ ))] = [AX(t) + f (X(t – τ ))]dt + dZ(t),  ≤ t ≤ T ,

X(·) = ξ ∈D([–τ , ],H),
()

whereD([–τ , ],H) is the space of all càdlág functions paths from [–τ , ] intoH , a Hilbert
space, equipped with the supremum norm ‖ϕ‖∞ = sup–τ≤t≤ ‖ϕ(t)‖H . And g, f : H → H
are given functions to be specified later.
The contents of the paper are as follows. In Section , we briefly present some basic

notations and preliminaries. In Section  the existence and uniqueness of mild solutions
are proved. In the last section, we devote to give the sufficient conditions of the stability
in the distribution of the mild solution to Eq. ().

2 Preliminary
Let (H , 〈·, ·〉H ,‖ · ‖H ) be a real separable Hilbert space. Denote by D := D([–τ , ];H) the
space of allH-valued càdlág functions defined on [–τ , ] equipped with the uniform norm
‖ξ‖∞ := sup–τ≤θ≤ ‖ξ (θ )‖H . Recall that a path f : [–τ , ] 	→ H is called càdlág if it is right-
continuous having finite left-hand limits.
Let Z(t) be a cylindrical α-stable process, α ∈ (, ), defined by

Z(t) :=
∞∑
m=

βmZm(t)em. ()

Here {em}m≥ is an orthonormal basis ofH , {Zm(t)}m≥ are independent, real-valued, nor-
malized, symmetric α-stable Lévy processes defined on stochastic basis (�,F , {Ft},P),
and {βm}m≥ is a sequence of positive numbers. Recall that a stochastic process {Zα,β (t) :
t ≥ } is called an α-stable Lévy process if

(i) Zα,β () =  a.s.;
(ii) Zα,β (t) has independent increments;
(iii) Zα,β (t) – Zα,β (s)∼ η for any  ≤ s < t < ∞,

where η stands for an α-stable random variable, which is uniquely determined by its char-
acteristic function involving four parameters: α ∈ (, ], the index of stability; β ∈ [–, ],
the skewness parameter; σ ∈ (,∞), the scale parameter; μ ∈ (–∞,∞), the shift, and
which has the form

φη(u) = E exp(iuη) = exp
{
–σα|u|α(

 – iβ sgn(u)�
)
+ iμu

}
, u ∈R,
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where� = tan(πα/) for α �=  and� = –(/π ) log |u| for α = .We call η is strictly α-stable
whenever μ = , and if, in addition, β = , η is said to be symmetric α-stable. For a real-
valued normalized (standard) symmetric α-stable Lévy process z(t), α ∈ (, ), it has the
characteristic function

E exp
(
iuz(t)

)
= e–t|u|α , u ∈R,

and the Lévy measure λα(dx) := cα
|x|+α , x ∈ R – , where cα is some constant. For more

details of α-stable processes, we can refer to [] and [].
Throughout the paper we impose the following assumptions:
(H) The operator (A,D(A)) is a self-adjoint compact operator on the Hilbert space H

which is separable such that –A has discrete spectrum
 < λ ≤ λ ≤ · · · ≤ λm ≤ · · · ≤ limm→∞ λm =∞ with corresponding eigenbasis
{em}m≥ of H . In this case A generates a compact C-semigroup S(t) = etA, t ≥ ,
such that ‖etA‖ ≤ e–λt .

(H) There exists a positive constant K such that for all x, y ∈H

∥∥f (x) – f (y)
∥∥
H ≤ K‖x – y‖H ,

∥∥f (x)∥∥H ≤ K
(
 + ‖x‖H

)
.

(H) There exist k ∈ (, ) and a positive constant K such that for all x, y ∈H and
(i) ‖(–A)kg(x) – (–A)kg(y)‖H ≤ K‖x – y‖H ;
(ii) ‖(–A)kg(x)‖H ≤ K( + ‖x‖H );
(iii) The constants K and k satisfy Kp

 ‖(–A)–k‖p < .
(H) There exists θ ∈ (,k) such that αθ ∈ (, ) and δ :=

∑∞
m=

βα
m

λ–αθ
m

<∞.
The following two lemmas will play an important role in proving our main results. So

let us state them now.

Lemma . [] Under (H), for any k ∈ (, ] and x ∈ D((–A)k)

etA(–A)kx = (–A)ketAx

and there exists Mk >  such that for any t > 

∥∥(–A)ketA∥∥ ≤Mkt–ke–λt .

Lemma . [] Let T >  be arbitrary. For all  ≤ θ < β – 
α and all  < p < α, we have

E sup
≤t≤T

∥∥(–A)θZA(t)
∥∥p
H ≤ CT

p
α ,

where ZA(t) :=
∫ t
 e

(t–s)A dZ(s), Z(s) is a cylindrical α-stable process having the form of ()
and C depends on α, θ , β , p.

Remark . In Lemma ., the constant β satisfies β > 
 + 

α so that the convolutions
ZA(t) are in H . Moreover, there exist some C,C >  such that Cλ

–β

k ≤ |βk| ≤ Cλ
–β

k .
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3 Existence and uniqueness
The aim of this section is to establish the existence and uniqueness of the mild solution to
Eq. (). First, we give the following definition of mild solutions for Eq. ().

Definition . An Ft-adapted càdlág stochastic process X(t), t ∈ [–τ ,T], is called a mild
solution of Eq. () if it has the following properties:
(a) X = ξ ∈ D([–τ , ],H).
(b) For arbitrary t ∈ [,T]

X(t) = etA
(
ξ () + g

(
ξ (–τ )

))
– g

(
X(t – τ )

)

–
∫ t


Ae(t–s)Ag

(
X(s – τ )

)
ds +

∫ t


e(t–s)Af

(
X(s – τ )

)
ds

+
∫ t


e(t–s)A dZ(s), a.s. ()

We shall denote by ST the Banach space of all of càdlág H-valued processes X(t) ∈
D([–τ ,T],H) with initial data X(t) = ξ (t) for t ∈ [–τ , ], and

∥∥X(t)∥∥ST
:=

(
E sup

–τ≤t≤T

∥∥X(t)∥∥p
H

) 
p < ∞.

We have the following result.

Theorem . Suppose the assumptions (H)-(H) hold and let p ∈ (,α), α ∈ (, ). Then,
for any initial datum ξ ∈ Lp(�,D([–τ , ];H)), there exists a unique mild solution X(t) of
Eq. () in ST and there exists a constant CT , independent of ξ , such that

E sup
t∈[,T]

∥∥X(t)∥∥p
H ≤ CT

(
 + E‖ξ‖p∞

)
. ()

Proof For arbitrary ξ ∈ Lp(�,D([–τ , ];H)) and X ∈ ST , define an operator � on ST by
that �(X)(t) = ξ (t), t ∈ [–τ , ], and

�(X)(t) = etA
(
ξ () + g

(
ξ (–τ )

))
– g

(
X(t – τ )

)
–

∫ t


Ae(t–s)Ag

(
X(s – τ )

)
ds

+
∫ t


e(t–s)Af

(
X(s – τ )

)
ds +

∫ t


e(t–s)A dZ(s), t ∈ [,T].

The required assertion follows if we show that the operator� has a fixed point in the space
ST by the Banach fixed-point theorem. We divide the proof into two steps.
Step . We show that �(X)(t)⊂ ST for t ∈ [–τ ,T]. It is trivial for the case t ∈ [–τ , ]. For

 ≤ t ≤ T , and for any fixed X ∈ ST , using the trivial inequality: (
∑n

i= ai)p ≤ Cr(
∑n

i= a
p
i ),

here Cr =  when p≤ , Cr = np– when p > , we have

E sup
≤t≤T

∥∥�(X)(t)
∥∥p
H ≤ p–E sup

≤t≤T

∥∥etA(
ξ () + g

(
ξ (–τ )

))∥∥p
H

+ p–E sup
≤t≤T

∥∥g(X(t – τ )
)∥∥p

H
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+ p–E sup
≤t≤T

∥∥∥∥
∫ t


Ae(t–s)Ag

(
X(s – τ )

)
ds

∥∥∥∥
p

H

+ p–E sup
≤t≤T

∥∥∥∥
∫ t


e(t–s)Af

(
X(s – τ )

)
ds

∥∥∥∥
p

H

+ p–E sup
≤t≤T

∥∥∥∥
∫ t


e(t–s)A dZ(s)

∥∥∥∥
p

H

=:
∑
i=

Ii. ()

From (H), (H), and the boundedness of (–A)–k for k ∈ (, ), we get

I = p–E sup
≤t≤T

∥∥(–A)–ketA(–A)k(ξ () + g
(
ξ (–τ )

))∥∥p
H

≤ p–E‖ξ‖p∞ + p–
∥∥(–A)–k∥∥pKp

E
(
 + ‖ξ‖∞

)p
≤Mk,p

(
 + E‖ξ‖p∞

)
, ()

where Mk,p is a constant only depending on k and p. For the second term, I, using the
assumption (H) again, we have

I ≤ p–
∥∥(–A)–k∥∥pE sup

≤t≤T

∥∥(–A)kg(X(t – τ )
)∥∥p

H

≤ p–
∥∥(–A)–k∥∥pKp

E sup
≤t≤T

(
 +

∥∥X(t – τ )
∥∥
H

)p

≤ p–
∥∥(–A)–k∥∥pKp



(
 + E sup

–τ≤t≤T

∥∥X(t)∥∥p
H

)
. ()

We consider the third term, I: apply Lemma ., use the assumption (H) and Hölder’s
inequality, and we derive

I = p–E sup
≤t≤T

∥∥∥∥
∫ t


(–A)–ke(t–s)A(–A)kg

(
X(s – τ )

)
ds

∥∥∥∥
p

H

≤ p–Mp
–kK

p
E sup

≤t≤T

(∫ t


(t – s)–(–k)e–λ(t–s)( + ∥∥X(s – τ )

∥∥
H

)
ds

)p

≤ p–TMp
–kK

p
λ(–pk)

∣∣∣∣�
(
pk – 
p – 

)∣∣∣∣
p–(

 + E sup
–τ≤t≤T

∥∥X(t)∥∥p
H

)
. ()

Similarly, for the fourth term, I, using Hölder’s inequality, we obtain

I ≤ p–Kp
 E sup

≤t≤T

(∫ t


e–λ(t–s)( + ∥∥X(s – τ )

∥∥
H

)
ds

)p

≤ p–Kp
 sup
≤t≤T

(∫ t


e–λ(t–s) ds

)p–

E sup
≤t≤T

∫ t



(
 +

∥∥X(s – τ )
∥∥
H

)p ds
≤ p–TKp

 λ(–p)
(
 + E sup

–τ≤t≤T

∥∥X(t)∥∥p
H

)
. ()
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Noting that I ≤ p–‖(–A)–θ‖pE sup≤t≤T ‖(–A)θZA(t)‖pH , and by Lemma ., we immedi-
ately get

I ≤ p–
∥∥(–A)–θ

∥∥pCT
p
α . ()

Thus, we derive from () to () that, for some constants c, c, c,

E sup
≤t≤T

∥∥�(X)(t)
∥∥p
H ≤ c + cE‖ξ‖p∞ + cE sup

≤t≤T

∥∥X(t)∥∥p
H . ()

Hence, �(X)(t)⊂ ST .
Step . We shall show that the mapping � is contractive. Let X,Y ∈ ST . For any fixed

t ∈ [,T], we have

E sup
≤t≤T

∥∥�(X)(t) –�(Y )(t)
∥∥p
H

≤ p–E sup
≤t≤T

∥∥g(X(t – τ )
)
– g

(
Y (t – τ )

)∥∥p
H

+ p–E sup
≤t≤T

∥∥∥∥
∫ t


Ae(t–s)A

[
g
(
X(s – τ )

)
– g

(
Y (s – τ )

)]
ds

∥∥∥∥
p

H

+ p–E sup
≤t≤T

∥∥∥∥
∫ t


e(t–s)A

[
f
(
X(s – τ )

)
– f

(
Y (s – τ )

)]
ds

∥∥∥∥
p

H
.

By the assumptions (H), (H), and Hölder’s inequality, we obtain

E sup
≤t≤T

∥∥�(X)(t) –�(Y )(t)
∥∥p
H

≤ p–Kp

∥∥(–A)–k∥∥pE sup

≤t≤T

∥∥X(t) – Y (t)
∥∥p
H

+ p–Mp
–kK

p
Tλ(–pk)

∣∣∣∣�
(
pk – 
p – 

)∣∣∣∣
p–

E sup
≤t≤T

∥∥X(t) – Y (t)
∥∥p
H

+ p–Kp
 Tλ(–p)E sup

≤t≤T

∥∥X(t) – Y (t)
∥∥p
H

≤ p–
(
Kp

∥∥(–A)–k∥∥p +CT

)
E sup

≤t≤T

∥∥X(t) – Y (t)
∥∥p
H ,

where X(t) = Y (t) on [–τ , ], and C >  is a bounded constant. Hence, by the condition
Kp

 ‖(–A)–k‖p < , choosing sufficiently small T such that p–(Kp
 ‖(–A)–k‖p + CT) < ,

we can conclude that � is contractive. Therefore, by the contraction principle, we have a
mild solution of Eq. () on [,T].Moreover with such aT we get from () for the solution
of Eq. ()

E sup
≤t≤T

∥∥X(t)∥∥p
H ≤ 

 – c

[
c + cE‖ξ‖p∞

]
,

which is inequality (). The solution can be extended to the entire interval [,T] in finite
steps by repeating the above procedure on intervals [,T], [T, T], . . . with T such that
c(T) < . This completes the proof. �
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4 Asymptotic stability in the distribution
In this section, we shall derive some sufficient conditions on the stability in the distribu-
tion for the process Y (t) = Xt on t ≥ . We need to introduce some more notations. For
t ≥ , let X(t; ξ ) be the solution of Eq. () with initial datum X = ξ ∈ D([–τ , ],H). Corre-
spondingly, Xt(ξ ) = {X(t + θ ; ξ ) : –τ ≤ θ ≤ } on t ≥ . As usual, {Xt}t≥ is called the seg-
ment process of {X(t)}t≥–τ . Denote by p(ξ , t,dζ ) the transition probability of the process
Y (t) = Xt(ξ ), then Y (t) is a time homogeneous Markov process according to Mohammed
[].
Now, we introduce the concept of stability in the distribution and prepare some useful

lemmas as follows.

Definition . [] The process Y (t) is said to be asymptotically stable in the distribu-
tion if there exists a probability measure π (·) on D([–τ , ];H) such that the transition
probability function p(ξ , t,dζ ) of Y (t) converges weakly to π (dζ ) as t → ∞ for every
ξ ∈ D([–τ , ];H). Equation () is said to be asymptotically stable in the distribution if the
solution process Y (t) = Xt(ξ ) is asymptotically stable in the distribution.

By Yuan et al. [], to show the stability in the distribution of Eq. (), it is sufficient to
verify that for some p >  and bounded subset U ⊂D,
(N) supt≥ supξ∈U E‖Xt(ξ )‖p∞ <∞;
(N) limt→∞ supξ ,η∈U E‖Xt(ξ ) –Xt(η)‖p∞ = , for every x, y, z ∈ X .
In what follows, we need to prepare some useful lemmas to demonstrate that (N) and

(N) hold under some imposed conditions.

Lemma . Let y : [–τ , +∞) → [, +∞) be Borel measurable. If y(t) is a solution of the
delay integral inequality, then

y(t) ≤
⎧⎨
⎩

‖φ‖∞e–rt + b‖yt‖∞ + b
∫ t
 e

–r(t–s)‖ys‖∞ ds + J , t ≥ ,

φ(t), t ∈ [–τ , ],

where φ(t) ∈D([–τ , ], [, +∞)), r > , b, b, and J are nonnegative constants. If ‖φ‖∞ ≤ K
for some constant K >  and

b +
b
r
:= ρ < ,

then there are constants γ ∈ (, r) and N ≥ K such that

y(t) ≤Ne–γ t +
J

 – ρ
, ∀t ≥ ,

where γ and N satisfy

ργ := beγ τ +
beγ τ

r – γ
<  and N ≥ K

 – ργ

,

or b �=  and

ργ ≤  and N ≥ (r – γ )[K – bJ
r(–ρ) ]

beγ τ
.

http://www.advancesindifferenceequations.com/content/2014/1/13
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Proof The proof is similar to Lemma . of [], so we omit it here. �

Lemma . Assume that (H)-(H) hold, and that the inequality

ρ := 
(∥∥(–A)–k∥∥pKp

 +Mp
–kK

p
λ–pk

∣∣∣∣�
(
pk – 
p – 

)∣∣∣∣
p–

+ λ–pKp


)
<  ()

holds for k ∈ (, ], p ∈ (,α), where �(·) is the gamma function. Then

sup
≤t<∞

E
∥∥Xt(ξ )

∥∥p
∞ <∞ ()

for any ξ ∈D([–τ , ],H).

Proof First, we shall show sup–τ≤t<∞ E‖X(t)‖pH < ∞. For p ∈ (,α), we obtain from () that

E
∥∥X(t)∥∥p

H ≤ E
∥∥etA[

ξ () + g
(
ξ (–τ )

)]∥∥p
H

+ E
∥∥g(X(t – τ )

)∥∥p
H + E

∥∥∥∥
∫ t


Ae(t–s)Ag

(
X(s – τ )

)
ds

∥∥∥∥
p

H

+ E
∥∥∥∥
∫ t


e(t–s)Af

(
X(s – τ )

)
ds

∥∥∥∥
p

H
+ E

∥∥∥∥
∫ t


e(t–s)A dZ(s)

∥∥∥∥
p

H

=:
∑
i=

Ji, ()

where Ji (i = , , . . . , ) stands for the ith term behind the first inequality. It follows from
Lemma . and the assumption (H) that

J = E
∥∥etA[

ξ () + g
(
ξ (–τ )

)]∥∥p
H

≤ e–λptE
[‖ξ‖∞ +

∥∥(–A)–k∥∥ · ∥∥(–A)kg(ξ (–τ )
)∥∥

H

]p
≤ e–λptE

[‖ξ‖∞ +K
∥∥(–A)–k∥∥(

 + ‖ξ‖∞
)]p

≤M∗e–λpt( + E‖ξ‖p∞
)
, ()

whereM∗ ≥  is an appropriate constant only depend on k and p. For the second term J,

J = E
∥∥g(X(t – τ )

)∥∥p
H ≤ E

[∥∥(–A)–k∥∥ · ∥∥(–A)kg(X(t – τ )
)∥∥

H

]p
≤ 

∥∥(–A)–k∥∥pKp
E

(
 +

∥∥X(t – τ )
∥∥
H

)p
≤ 

∥∥(–A)–k∥∥pKp


(
 + sup

–τ≤θ≤
E
∥∥X(t + θ )

∥∥p
H

)
. ()

Similarly, by using Lemma ., (H), and Hölder’s inequality, we obtain

J = E
∥∥∥∥
∫ t


Ae(t–s)Ag

(
X(s – τ )

)
ds

∥∥∥∥
p

H

≤ E
(∫ t



∥∥(–A)–ke(t–s)A(–A)kg(X(s – τ )
)∥∥

H ds
)p

http://www.advancesindifferenceequations.com/content/2014/1/13
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≤ Mp
–kK

p


[∫ t



e–λ(t–s)

(t – s)
p(–k)
p–

ds
]p– ∫ t


e–λ(t–s)E

(
 +

∥∥X(s – τ )
∥∥
H

)p ds

≤ Mp
–kK

p
λ–pk

∣∣∣∣�
(
pk – 
p – 

)∣∣∣∣
p– ∫ t


e–λ(t–s)

(
 + sup

–τ≤θ≤
E
∥∥X(s + θ )

∥∥p
H

)
ds. ()

By (H) and Hölder’s inequality, we obtain

J = E
∥∥∥∥
∫ t


e(t–s)Af

(
X(s – τ )

)
ds

∥∥∥∥
p

H

≤ E
(∫ t


e–λ(t–s)K

(
 +

∥∥X(s – τ )
∥∥
H

)
ds

)p

≤ λ–pKp


∫ t


e–λ(t–s)

(
 + sup

–τ≤θ≤
E
∥∥X(s + θ )

∥∥p
H

)
ds. ()

For the estimation of J, by the argument of [, Theorem .] and applying (H), we have

J = E
∥∥∥∥
∫ t


e(t–s)A dZ(s)

∥∥∥∥
p

H
≤ c̃p

(∑
m≥

βα
m
 – e–αλmt

αλm

)p/α

≤ c̃p
(
δ/

(
αλαθ


))p/α , ()

where c̃p depends only on p. Thus, substituting ()-() into (), we get

E
∥∥X(t)∥∥p

H ≤M∗e–λptE‖ξ‖p∞ + b sup
–τ≤θ≤

E
∥∥X(t + θ )

∥∥p
H

+ b
∫ t


e–λ(t–s) sup

–τ≤θ≤
E
∥∥X(s + θ )

∥∥p
H ds + J , ()

where b = ‖(–A)–k‖pKp
 , b = (Mp

–kK
p
λ–pk|�( pk–p– )|p– + λ–pKp

 ), and

J =M∗e–λpt + 
∥∥(–A)–k∥∥pKp

 + Mp
–kK

p
λ–pk

∣∣∣∣�
(
pk – 
p – 

)∣∣∣∣
p–

+ λ–pKp
 + c̃p

(
δ/

(
αλαθ


))p/α .

In the light of (), ρ = b + b
λ
<  holds. Furthermore, there exist K̄ ≥ , N̄ > , γ ∈ (,λ),

such that

M∗E‖ξ‖p∞ ≤ K̄ , ργ = beγ τ +
beγ τ

λ – γ
≤  and

(λ – γ )[K̄ – bJ
λ(–ρ̄) ]

beγ τ
≤ N̄ .

Consequently, combining (), () with Lemma ., we arrive at

sup
–τ≤t<∞

E
∥∥X(t)∥∥p

H ≤ N̄eγ τ +
J

( – ρ)
<∞. ()

Next, we use the following trivial inequality: for any a,b, c,d, e≥  and ε > ,

(a + b + c + d + e) ≤ ( + ε)a + 
(
 +


ε

)(
b + c + d + e

)
.
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For any integer n≥ , similar to the above computations, one has

E
∥∥Xnτ (ξ )

∥∥p
∞ ≤ ( + ε)

p
 E

∥∥g(X(n–)τ (ξ )
)∥∥p

∞

+ p
(
 +


ε

) p

{
E sup

–τ≤θ≤

∥∥e(θ+τ )A[
X

(
(n – )τ

)
+ g

(
X

(
(n – )τ

))]∥∥p
H

+ E sup
–τ≤θ≤

∥∥∥∥
∫ nτ+θ

(n–)τ
Ae(nτ+θ–s)Ag

(
X(s – τ )

)
ds

∥∥∥∥
p

H

+ E sup
–τ≤θ≤

∥∥∥∥
∫ nτ+θ

(n–)τ
e(nτ+θ–s)Af

(
X(s – τ )

)
ds

∥∥∥∥
p

H

+ E sup
–τ≤θ≤

∥∥∥∥
∫ nτ+θ

(n–)τ
e(nτ+θ–s)A dZ(s)

∥∥∥∥
p

H

}

≤ ( + ε)pKp

∥∥(–A)–k∥∥pE

∥∥X(n–)τ (ξ )
∥∥p

∞

+C
(
 + sup

(n–)τ≤t≤(n–)τ
E
∥∥X(t, ξ )∥∥p

H + E sup
≤t≤τ

∥∥∥∥
∫ t


e(t–s)A dZ̃(s)

∥∥∥∥
p

H

)
,

where Z̃(s) := Z(s+(n–)τ )–Z((n–)τ ) is also a cylindrical stable process, C is a constant
not depending on n and its value is not important andmay change fromone line to another.
Hence, according to () and Lemma .,

E
∥∥Xnτ (ξ )

∥∥p
∞ ≤ ( + ε)pKp


∥∥(–A)–k∥∥pE

∥∥X(n–)τ (ξ )
∥∥p

∞ +C

holds. In view of (iii) of (H) and (), there exist constantsϑ andM such that, for sufficient
small ε, ( + ε)pKp

 ‖(–A)–k‖p < ϑ < , and for any integer n≥ ,

E
∥∥Xnτ (ξ )

∥∥p
∞ ≤ ϑE

∥∥X(n–)τ (ξ )
∥∥p

∞ +M

≤ ϑn‖ξ‖p∞ +M
{
 + ϑ + · · · + ϑn–}

≤ ‖ξ‖p∞ +
M

 – ϑ
. ()

Observe that for any t ≥ , there exists an n≥  such that t ∈ [nτ , (n + )τ ) and

E
∥∥Xt(ξ )

∥∥p
∞ ≤ E

∥∥X(n+)τ (ξ )
∥∥p

∞ + E
∥∥Xnτ (ξ )

∥∥p
∞.

Then the desired assertion () follows immediately from (). �

Lemma . Let the conditions of (H)-(H) and () hold. Then for any bounded subset K
of D([–τ , ],H),

lim
t→∞E

∥∥Xt(ξ ) –Xt(η)
∥∥p

∞ =  ()

uniformly in ξ ,η ∈ K .

Proof Since the argument is similar to Lemma ., we only sketch the main proof to point
out the difference with that of Lemma . here. First, we shall prove that

lim
t→∞E

∥∥X(t, ξ ) –X(t,η)
∥∥p
H = 

http://www.advancesindifferenceequations.com/content/2014/1/13
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uniformly in ξ ,η ∈ K . Following a similar argument to derive (), we can get

E
∥∥X(t, ξ ) –X(t,η)

∥∥p
H = E

∥∥etA[
ξ () + g

(
ξ (–τ )

)
– η() – g

(
η(–τ )

)]∥∥p
H

+ E
∥∥g(X(t – τ , ξ )

)
– g

(
X(t – τ ,η)

)∥∥p
H

+ E
∥∥∥∥
∫ t


Ae(t–s)A

[
g
(
X(s – τ , ξ )

)
– g

(
X(s – τ ,η)

)]
ds

∥∥∥∥
p

H

+ E
∥∥∥∥
∫ t


e(t–s)A

[
f
(
X(s – τ , ξ )

)
– f

(
X(s – τ ,η)

)]
ds

∥∥∥∥
p

H

≤ b̃e–λpt + b̃ sup
–τ≤θ≤

E
∥∥X(t + θ , ξ ) –X(t + θ ,η)

∥∥p
H

+ b̃
∫ t


e–λ(t–s) sup

–τ≤θ≤
E
∥∥X(s + θ , ξ ) –X(s + θ ,η)

∥∥p
H ds, ()

where b̃ = E‖ξ – η‖p∞( +Kp
 ‖(–A)–k‖p), b̃ = Kp

 ‖(–A)–k‖p and

b̃ = 
(
Mp

–kK
p
λ(–pk)

∣∣∣∣�
(
pk – 
p – 

)∣∣∣∣
p–

+ λ–pKp


)
.

As a result, noting the condition () and using [, Lemma .], we derive from () that

E
∥∥X(t, ξ ) –X(t,η)

∥∥p
H ≤Me–μt , t ≥ –τ ,

where μ is a positive root of the equation (b̃ + (b̃/λ – μ)) =  and M = max{b̃(λ –
μ)/b̃eμτ , b̃}. Hence,

lim
t→∞E

∥∥X(t, ξ ) –X(t,η)
∥∥p
H = . ()

Now, for t ≥ τ and –τ ≤ θ ≤ , according to the fundamental inequality and assumptions
(H)-(H), we arrive at

E
∥∥Xt(ξ ) –Xt(η) + g

(
Xt–τ (ξ )

)
– g

(
Xt–τ (η)

)∥∥p
∞

≤ E sup
–τ≤θ≤

∥∥e(θ+τ )A[
X(t – τ , ξ ) –X(t – τ ,η) + g

(
X(t – τ , ξ )

)
– g

(
X(t – τ ,η)

)]∥∥p
H

+ E sup
–τ≤θ≤

∥∥∥∥
∫ t+θ

t–τ

Ae(t+θ–s)A[
g
(
X(s – τ , ξ )

)
– g

(
X(s – τ ,η)

)]
ds

∥∥∥∥
p

H

+ E sup
–τ≤θ≤

∥∥∥∥
∫ t+θ

t–τ

e(t+θ–s)A[
f
(
X(s – τ , ξ )

)
– f

(
X(s – τ ,η)

)]
ds

∥∥∥∥
p

H

≤ E
∥∥X(t – τ , ξ ) –X(t – τ ,η)

∥∥p
H + Kp


∥∥(–A)–k∥∥pE

∥∥X(t – τ , ξ ) –X(t – τ ,η)
∥∥p
H

+ Mp
–kK

p
 e

λpτ λ–pk
∣∣∣∣�

(
pk – 
p – 

)∣∣∣∣
p– ∫ t

t–τ

e–λ(t–s)E
∥∥X(s – τ , ξ ) –X(s – τ ,η)

∥∥p
H ds

+ Kp
 e

λpτ λ–p
∫ t

t–τ

e–λ(t–s)E
∥∥X(s – τ , ξ ) –X(s – τ ,η)

∥∥p
H ds. ()
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This, together with (), yields

lim
t→∞E

∥∥Xt(ξ ) –Xt(η) + g
(
Xt–τ (ξ )

)
– g

(
Xt–τ (η)

)∥∥p
∞ = . ()

Finally, we claim that the desired equation ()must hold. If Eq. () is not true, then there
exist positive constants L and T , where, when t ≥ T ,

E
∥∥Xt(ξ ) –Xt(η)

∥∥p
∞ ≥ L.

On the other hand, when t → ∞,

E

p
∥∥Xt(ξ ) –Xt(η) + g

(
Xt–τ (ξ )

)
– g

(
Xt–τ (η)

)∥∥p
∞

≥ E

p
∥∥Xt(ξ ) –Xt(η)

∥∥p
∞ –K

∥∥(–A)–k∥∥E 
p
∥∥Xt–τ (ξ ) –Xt–τ (η)

∥∥p
∞

≥ (
 –K

∥∥(–A)–k∥∥)
L.

This obviously contradicts (). Therefore, () holds. �

In what follows we aim to prove the stability in the distribution of Eq. (). Denote
by P (D([–τ , ];H)) the space of all probability measures on D([–τ , ];H). For P,P ∈
P (D([–τ , ];H)), define

dL(P,P) = sup
f∈L

∣∣∣∣
∫
H
f (ξ )P(dξ ) –

∫
H
f (η)P(dη)

∣∣∣∣,

where, for any ξ ,η ∈D([–τ , ];H),

L =
{
f :D

(
[–τ , ];H

) → R :
∣∣f (ξ ) – f (η)

∣∣ ≤ ‖ξ – η‖ and
∣∣f (·)∣∣ ≤ 

}
.

Lemma . Let assumptions (H)-(H), (), and () hold. Then, for any initial data ξ ∈
D([–τ , ];H), {p(ξ , t, ·) : t ≥ } is Cauchy in the space P (D([–τ , ],H)) with the metric dL.

Proof For any fixed ξ ∈ D([–τ , ];H), we need to show that for any ε > , there is a T > 
such that

dL
(
p(ξ , t + s, ·),p(ξ , t, ·)) ≤ ε ∀t ≥ T, s > . ()

That is,

sup
f∈L

∣∣Ef (Xt+s(ξ )
)
– Ef

(
Xt(ξ )

)∣∣ ≤ ε

for any t ≥ T and s > . Now, for any f ∈ L and t, s > , we compute

∣∣Ef (Xt+s(ξ )
)
– Ef

(
Xt(ξ )

)∣∣
=

∣∣E[
E
(
f
(
Xt+s(ξ )

)|Fs
)]
– Ef

(
Xt(ξ )

)∣∣
=

∣∣∣∣
∫
H
Ef

(
Xt(ζ )

)
p(ξ , s,dζ ) – Ef

(
Xt(ξ )

)∣∣∣∣

http://www.advancesindifferenceequations.com/content/2014/1/13
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≤
∫
H

∣∣Ef (Xt(ζ )
)
– Ef

(
Xt(ξ )

)∣∣p(ξ , s,dζ )

≤ p(ξ , s,HR) +
∫
HR

∣∣Ef (Xt(ζ )
)
– Ef

(
Xt(ξ )

)∣∣p(ξ , s,dζ ), ()

whereHR = {ξ ∈ D([–τ , ],H) : ‖ξ‖ ≤ R} andHR =D([–τ , ],H)\HR. By the argument (),
there exists a positive number R sufficiently large for which

p(ξ , s,HR) <
ε


, ∀s > . ()

On the other hand, by Lemma ., there exists a T >  such that

sup
f∈L

∣∣Ef (Xt(ζ )
)
– Ef

(
Xt(ξ )

)∣∣ ≤ ε


, t ≥ T. ()

Substituting (), () into () yields

∣∣Ef (Xt+s(ξ )
)
– Ef

(
Xt(ξ )

)∣∣ ≤ ε, t ≥ T, s > .

Since f is arbitrary, the desired inequality () must hold. �

Based on the results above, we can now state our main result.

Theorem . Let the assumptions (H)-(H) and () hold; then the process Y (t) = Xt is
stable in the distribution.

Proof By Definition ., it suffices to prove that there is a probability measure π (·) ∈
P (D([–τ , ],H)) such that for any ξ ∈ D([–τ , ],H), the transition probabilities {p(ξ , t, ·) :
t ≥ } converge weakly to π (·). According to the well-known fact that the weak conver-
gence of probabilitymeasure is ametric concept (see []), we therefore need to show that,
for any ξ ∈D([–τ , ],H),

lim
t→∞dL

(
p(ξ , t, ·),π (·)) = .

By Lemma ., {p(η, t, ·) : t ≥ } is Cauchy in the metric space P (D([–τ , ],H)) for any
fixed η ∈D([–τ , ],H). Therefore, there exists a probability measure π (·) such that

lim
t→∞dL

(
p(η, t, ·),π (·)) = .

Furthermore, for any ξ ∈ D([–τ , ],H), Lemma . shows that

lim
t→∞dL

(
p(ξ , t, ·),p(t,η, ·)) = .

Hence

lim
t→∞dL

(
p(ξ , t, ·),π (·)) ≤ lim

t→∞
[
dL

(
p(ξ , t, ·),p(η, t, ·)) + dL

(
p(η, t, ·),π (·))]

= 

as required. �
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To demonstrate the applications of Theorem ., we give an illustrative example, moti-
vated by [, Example .].

Example . Let φ :R 	→R be Lipschitzian, i.e., there exists L >  such that |φ(x)–φ(y)| ≤
L|x – y|, x, y ∈ R. Assume further that ϕ : [–τ , ]× [,π ]× [,π ] 	→R is measurable such
that ϕ(·, ·, ) = ϕ(·, ·,π ) =  and

N :=
∫ π



∫ π



(
∂

∂x
ϕ(–τ , ζ ,x)

)

dζ dx < ∞. ()

Consider the following stochastic neutral partial functional differential equation:

d
[
u(t,x) +

∫ π


ϕ(–τ , ζ ,x)u(t – τ , ζ )dζ

]

=
[

∂

∂x
u(t,x) + φ

(
u(t – τ ,x)

)]
dt + dZ(t,x), ()

with the Dirichlet boundary condition

u(t, ) = u(t,π ) = , t ∈ [,T],

and the initial condition

u(θ ,x) =ψ(θ ,x), θ ∈ [–τ , ],x ∈ (,π ).

Let H = L[,π ]; A is given by
⎧⎨
⎩
A := ∂

∂x ,

D(A) =H(,π )∩H
(,π ),

whereHk(,π ), k = , , represent Sobolev spaces, andH
(,π ) is the subspace ofH(,π )

of all functions vanishing at  and π . Then we get

Au =
∞∑
n=

–n〈u, en〉Hen,

where en(x) =
√


π
sinnx, n = , , . . . , x ∈ [,π ]. Let Z(t,x) :=

∑∞
n= nβZn(t)en(x), where

αβ ∈ (, ) and {Zn(t)}n≥ is an independent, real-valued, normalized, symmetric α-stable
process sequence. It is trivial to see that δ =

∑∞
n=


n(–αθ )–αβ . Due to αβ ∈ (, ), we have

 <  – αβ < . Hence there exists θ ∈ (, ) such that  < ( – αθ ) – αβ < , and therefore
δ =

∑∞
n=


n(–αθ )–αβ <∞. In other words, the assumption (H) holds for such a case.

For t ∈ [,T] and x ∈ [,π ], let

X(t)(x) := u(t,x), g
(
X(t – τ )

)
(x) :=

∫ π


ϕ(–τ , ζ ,x)u(t – τ , ζ )dζ

and

f
(
X(t – τ )

)
(x) := φ

(
u(t – τ ,x)

)
.
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Then Eq. () can be rewritten in the form (). Observe that A generates a strongly con-
tinuous semigroup {etA}t∈[,T], which is compact, analytic and self-adjoint, and

etAu =
∞∑
n=

e–n
t〈u, en〉Hen, u ∈H .

Thus (H) holds and ‖etA‖ ≤ e–t . Furthermore note that

(–A)–

 ζ =

∞∑
n=


n

〈ζ , en〉en, ζ ∈ H ,

(–A)

 ζ =

∞∑
n=

n〈ζ , en〉en, ζ ∈D
(
(–A)



) ()

which in particular yields ‖(–A)– 
 ‖ = . As a result, using ϕ(·, ·, ) = ϕ(·, ·,π ) = , together

with (), (), and Hölder’s inequality, we get

∥∥(–A)  (g(X(t – τ )
)
– g

(
Y (t – τ )

))∥∥
H

=

∥∥∥∥∥
∞∑
n=

n
〈
g
(
X(t – τ )

)
– g

(
Y (t – τ )

)
, en

〉
Hen

∥∥∥∥∥


H

=
∞∑
n=

(
n

∫ π



(
g
(
X(t – τ )

)
(x) – g

(
Y (t – τ )

)
(x)

)
en(x)dx

)

=
∞∑
n=

(
n

∫ π



∫ π


ϕ(–τ , ζ ,x)C(t – τ , ζ )dζ en(x)dx

)

=
∞∑
n=

(∫ π



∫ π



∂

∂x
ϕ(–τ , ζ ,x)C(t – τ , ζ )dζ ẽn(x)dx

)

=
∞∑
n=

〈∫ π



∂

∂x
ϕ(–τ , ζ , ·)C(t – τ , ζ )dζ , ẽn

〉
H

=
∥∥∥∥
∫ π



∂

∂x
ϕ(–τ , ζ , ·)C(t – τ , ζ )dζ

∥∥∥∥


H

=
∫ π



(∫ π



∂

∂x
ϕ(–τ , ζ ,x)C(t – τ , ζ )dζ

)

dx

≤
∫ π



∫ π



(
∂

∂x
ϕ(–τ , ζ ,x)

)

dζ dx ·
∫ π


C(t – τ , ζ )dζ

≤N
∥∥X(t – τ ) – Y (t – τ )

∥∥
H ,

where C(t) = X(t) – Y (t) and ẽn :=
√


π
cosnx, which is also a complete orthonormal

system of H . Hence, (H) holds. Consequently, by Theorem ., there exists a unique
mild solution to Eq. (). In addition, Let p = 

 , k = 
 , λ = , K = L, K =

√
N ; if

(N 
 +M





N 

 |�(– 
 )|


 + L 

 ) < , then by Theorem ., Eq. () is stable in the distribu-
tion.
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