
STABILITY IN H 1 OF THE SUM OF K

SOLITARY WAVES FOR SOME NONLINEAR
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Abstract
In this article we consider nonlinear Schrödinger (NLS) equations in R

d for d = 1, 2,
and 3. We consider nonlinearities satisfying a flatness condition at zero and such that
solitary waves are stable. Let Rk(t, x) be K solitary wave solutions of the equation
with different speeds v1, v2, . . . , vK . Provided that the relative speeds of the solitary
waves vk − vk−1 are large enough and that no interaction of two solitary waves takes
place for positive time, we prove that the sum of the Rk(t) is stable for t � 0 in
some suitable sense in H 1. To prove this result, we use an energy method and a new
monotonicity property on quantities related to momentum for solutions of the nonlinear
Schrödinger equation. This property is similar to the L2 monotonicity property that
has been proved by Martel and Merle for the generalized Korteweg–de Vries (gKdV)
equations (see [12, Lem. 16, proof of Prop. 6]) and that was used to prove the stability
of the sum of K solitons of the gKdV equations by the authors of the present article
(see [15, Th. 1(i)]).
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1. Introduction
We first consider nonlinear Schrödinger (NLS) equations in R of the form{

i ∂tu = −∂2
xu − f (|u|2)u, (t, x) ∈ R × R,

u(0) = u0,
(1.1)

where u0 ∈ H 1(R) and f : R → R is a function of class C1 such that f (0) = 0,
satisfying assumption (A1) in Theorem 1. We denote

F (s) =
∫ s

0
f (s ′) ds ′.

The NLS equation set in R
2 or R

3 is also considered later in the introduction.
Recall that Ginibre and Velo [7] proved that equation (1.1) is locally well posed

in H 1(R); for any u0 ∈ H 1, there exist T > 0 and a unique maximal solution
u ∈ C([0, T ),H 1) of (1.1) on [0, T ). Moreover, either T = +∞ or T < +∞, and
then limt→T ‖∂xu(t)‖L2 = +∞. Finally, H 1-solutions of (1.1) satisfy the following
three conservation laws; for all t ∈ [0, T ),
� L2-norm: ∫

|u(t)|2 =
∫

|u0|2, (1.2)

� Energy:

E
(
u(t)

) =
∫

|∂xu(t)|2 −
∫

F
(|u(t)|2) = E(u0), (1.3)

� Momentum:

Im
∫

∂xu(t) u(t) = Im
∫

∂xu0 u0. (1.4)

It is also well known that equation (1.1) admits the following symmetries.
� Space-time translation invariance: If u(t, x) satisfies (1.1), then for any t0, x0 ∈

R, w(t, x) = u(t − t0, x − x0) also satisfies (1.1).
� Phase invariance: If u(t, x) satisfies (1.1), then for any γ0 ∈ R, w(t, x) =

u(t, x)eiγ0 also satisfies (1.1).
� Galilean invariance: If u(t, x) satisfies (1.1), then for any v0 ∈ R,

w(t, x) = u(t, x − v0t)e
(i(v0/2))(x−(v0/2)t) (1.5)

also satisfies (1.1).
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This article is concerned with questions related to special solutions of equation (1.1),
called solitary wave solutions, which are fundamental in the dynamics of the equation.
For ω0 > 0,

u(t, x) = eiω0tQω0 (x) (1.6)

is an H 1-solution of (1.1) if Qω0 : R → R is an H 1-solution of

Q′′
ω0

+ f (Q2
ω0

)Qω0 = ω0Qω0, Qω0 > 0. (1.7)

By the symmetries of the equation, for any v0 ∈ R, x0 ∈ R, and γ0 ∈ R,

u(t, x) = Qω0 (x − x0 − v0t)e
i((1/2)v0x−(1/4)v2

0 t+ω0t+γ0) (1.8)

is also a solution of (1.1).
Recall that a necessary and sufficient condition for existence of nontrivial solutions

of (1.7) is known; there exists a solution of (1.7) in H 1 if and only if

r0 = inf
{
r > 0 such that F (r) = ω0r

}
exists and satisfies f (r0) > ω0 (1.9)

(see Section 2.1 for more details). Note that (1.9) also implies that there exists a unique
positive solution Qω of (1.7) for all ω in a neighborhood of ω0; moreover, by standard
ordinary differential equation (ODE) theory, the map ω �→ Qω ∈ H 1 is C1 locally
around ω0.

A first question concerning the solitary wave solutions of (1.1) is whether or not
they are stable by perturbation of the initial data in the energy space, that is, whether
or not the following property is satisfied.

Definition 1 (Stability of solitary waves)
A solitary wave solution of the form (1.8) is H 1-stable if for all ε > 0, there exists
δ > 0 such that if

‖u(0) − Qω0 (· − x0)ei((1/2)v0x+γ0)‖H 1 ≤ δ,

then for all t ∈ R, there exist x(t), γ (t) ∈ R such that the solution u(t) of (1.1) satisfies∥∥u(t, ·) − Qω0

( · −x(t)
)
ei((1/2)v0x+γ (t))

∥∥
H 1 ≤ ε.

By the invariances of the NLS equation, whether or not this property is satisfied does
not depend on v0, x0, or γ0. This question for solitary waves of the NLS equation has
been addressed by several authors (not only in the one-space dimension but also in
the case of NLS equations set in R

d for any d � 1). Let us review the known results.
In 1982, Cazenave and Lions [3] proved the stability of these solutions when they

are minimizers, in a certain sense, of the energy functional and when a compactness
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condition on minimizing sequences holds. Their approach makes use of the concen-
tration compactness method of P.-L. Lions [9]. The condition obtained on f is sharp
for the case of power nonlinearities f (s2) ≡ sp−1. (Stability requires 1 < p < 5.)

Later, in 1986, by a different approach based on the expansion of the conservation
laws around the solitary wave, Weinstein [22] proved the stability in H 1 of a solitary
wave solution in the case where Qω0 is a ground state under the nondegeneracy
condition

d

dω

∫
R

Q2
ω(x) dx

∣∣∣
ω=ω0

> 0 (1.10)

plus some assumptions on the spectrum of the linearized operator around Qω0 . These
assumptions are checked in [22] for subcritical power nonlinearities for d = 1 and
d = 3 and can also be checked under less-restrictive conditions. We refer to Section 2.1
for more information in the case where d = 1. See also Section 2.3 for details on
Weinstein’s proof of the H 1-stability.

Conversely, it is also known from a work of Grillakis, Shatah, and Strauss [8] that
if

d

dω

∫
R

Q2
ω(x) dx

∣∣∣
ω=ω0

< 0,

then the solitary wave Qω0 is unstable in H 1.
We consider now the problem of stability of the sum of decoupled solitary waves.

Known results on the question of stability of multisolitary wave solutions are based on
asymptotic stability. (This notion means that the solution converges (in some sense)
as t → +∞ to the sum of several solitary waves.) A first result is this direction was
given by Perelman [18], following Buslaev and Perelman [2] on asymptotic stability
of a single solitary wave for the NLS equation. In [18], Perelman proves that in the
one-dimensional case, the sum of several solitary waves is stable and asymptotically
stable under a set of conditions on the initial conditions, the solitary waves, and the
nonlinearity; the nonlinearity has to be flat at zero (|f (s2)|s � sq for q � 9), and
the initial condition has to be close to the sum of two solitary waves in a weighted
space. (The norm is related to ‖u‖H 1 + ‖xu‖L2 + ‖û‖L1 .) It is also required that
the relative velocities be large but without a precise control of how large. The other
assumptions concern the spectrum of the linearized operator around the solitary waves
and cannot be checked easily; in particular, these spectral assumptions are not simple
consequences of (1.10) as in Weinstein’s article [22].

For d � 3, the question of asymptotic completeness of K solitary waves for non-
linear Schrödinger equations was considered simultaneously by Perelman [19] and
Rodnianski, Schlag, and Soffer [20], who prove similar results, both using dispersive
estimates first due to Cuccagna [4]. Both results require large velocities, flatness of
f (r) for r near zero, and some spectral assumptions (assumptions on the general-
ized null space of the linearized operator, nonexistence of nonzero eigenvalues, and
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nonresonance conditions). The closeness of the initial data to the sum of solitary waves
is assumed in different norms. In [19], the initial data is in H 1 and is close to the sum
of solitary waves in the norm ‖u‖L1 + ‖û‖Lm for some m > 2. In [20], closeness is
required in the norm

∑s
k=1 ‖∇ku‖L1∩L2 for some s > d/2 integer.

As we can see, known stability and asymptotic stability results rely on spectral
assumptions and on dispersive estimates in spaces strictly included in the energy space.

In this article, we propose a different approach for the NLS equation, following
[15] concerning the case of the subcritical generalized Korteweg–de Vries (gKdV)
equations:

ut + uxxx + (up)x = 0 (1.11)

for p = 2, 3, 4. The first point that one can make from [15] is that the problem of
stability of the sum of K decoupled solitons has to be considered independently from
the problem of asymptotic stability. Indeed, these two properties rely on different
tools; the stability is related to conserved quantities and monotonicity properties in
time, whereas the asymptotic stability is related to local virial properties.

Recall that Weinstein’s stability proof for a single solitary wave [22] is based only
on conserved quantities, the L2-norm and energy. (The proof is thus the same for the
gKdV equations and for the NLS equations.) Recall also that a result of stability of
K-soliton solutions for the KdV equation (i.e., the integrable case p = 2) in HK was
proved by Maddocks and Sachs [10], where HK -regularity is really needed since the
proof makes use of K + 1 conserved quantities of the equation.

In [15], we could prove the first result of stability of K-solitons in the energy
space for the subcritical gKdV equations (without the use of integrability theory) by
using the two H 1 conserved quantities in addition to K − 1 monotonicity properties.
The monotonicity properties are related to L2-quantities and allow us to decouple the
different solitary waves from an energetic point of view. They were introduced in the
subcritical case by Martel and Merle in [13] (see Section 3.1 for more information in
the case of the gKdV equation). Note that in [15], the proof of stability applies equally
well to a general subcritical f (u) instead of up in (1.11) as in [22]. Therefore, under
the condition that solitons of the gKdV equations are nonlinearly stable, considered
independently, we prove that their sum is stable if they are sufficiently decoupled.

In [15], after the stability is proved, a completely different argument is used to
prove the asymptotic stability of the sum of several solitons for the generalized KdV
equations. The argument is mainly based on virial identities (see also [12], [13]).

Note that the tools developed for this approach of the stability problem for the
gKdV equations have been used further by Martel [11] in order to construct asymptotic
multisoliton solutions of the gKdV equations in the critical and subcritical cases
(1 < p � 5). Finally, note also that similar results can be proved by similar tools for
the generalized Benjamin-Bona-Mahony (BBM) equations (see El Dika [5] and El
Dika and Martel [6]).
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Turning back to nonlinear Schrödinger equations, we introduce in this arti-
cle a property of monotonicity, related to momentum, which is similar to the L2

monotonicity property for the gKdV equation used in [15]. This new property, together
with an expansion of a functional related to the invariant quantities for a solution close
to the sum of K solitary waves, allows us to follow the same strategy as for the
gKdV equations in [15]. The main result in the one-dimensional case is the following
theorem.

THEOREM 1 (Stability of the sum of K solitary waves in one dimension)
Assume that f : R → R is a function of class C1 such that f (0) = 0 and the following
hold.
(A1) Flatness at zero:

there exists C > 0 such that for all r ∈ [0, 1], f ′(r) � Cr.

Let K ∈ N, and for all k ∈ {1, . . . , K}, let ω0
k > 0 be such that there exists

Qω0
k
∈ H 1(R), a positive solution of (1.7) satisfying

(A2) Nonlinear stability of each wave:

d

dω

∫
R

Q2
ω(x) dx

∣∣∣
ω=ω0

k

> 0.

For all k ∈ {1, . . . , K}, let x0
k ∈ R, let γ 0

k ∈ R, and let vk ∈ R with v1 < v2

< · · · < vK . Assume further that for all k ∈ {1, . . . , K−1},
(A3) Condition on relative speeds:

(vk+1 − vk)2 > 4 |ω0
k+1 − ω0

k |.

There exist L0 > 0, θ0 > 0, A0 > 0, and α0 > 0 such that for any u0 ∈ H 1(R),
L > L0 and 0 < α < α0 if

∥∥∥u0 −
K∑

k=1

Qω0
k
(· − x0

k )ei((1/2)vkx+γ 0
k )

∥∥∥
H 1

� α, (1.12)

and if for all k ∈ {1, . . . , K−1},

x0
k+1 − x0

k > L, (1.13)

then the solution u(t) of (1.1) is globally defined in H 1 for t � 0, and there exist
C1-functions x1(t), . . . , xK (t) ∈ R and γ1(t), . . . , γK (t) ∈ R such that for all t � 0,

∥∥∥u(t) −
K∑

k=1

Qω0
k

( · −xk(t)
)
ei((1/2)vkx+γk(t))

∥∥∥
H 1

� A0(α + e−θ0L). (1.14)



STABILITY IN H 1 OF THE SUM OF K SOLITARY WAVES 411

Moreover, for all t � 0,

|ẋk(t) − vk| +
∣∣∣γ̇k(t) −

(
ω0

k − v2
k

4

)∣∣∣ � A0(α + e−θ0L). (1.15)

Comments on Theorem 1
(1) Stability result in H 1. Our first comment is that in contrast with previously

existing results for the nonlinear Schrödinger equation, Theorem 1 is a stability result
in the energy space. Moreover, no spectral assumption on the linearized operator is
required, except the natural assumption that the various solitary waves are indepen-
dently nonlinearly stable. This is due to the fact that our proof of stability is not a
consequence of an asymptotic stability result.

(2) Assumption on the nonlinearity. We now comment on assumption (A1). The
assumption on f which we really use in the proof of Theorem 1 is the following:

There exists C > 0 such that for all s ∈ [0, 1], f (s2)s2 − F (s2) � Cs6,

which is a consequence of (A1). The reason why we need such an assumption in this
article is technically clear in our method (see the proof of Proposition 3.1); however,
we do not claim that it is necessary for the result to hold.

Recall that in the case of a pure power nonlinearity f (s2) ≡ sp−1, the critical
exponent for the stability of the solitary waves is p = 5, which means that the
stability condition (A2) holds on the solitary waves if and only if 1 < p < 5. But for
f (s2) ≡ sp−1, assumption (A1) requires p � 5, which means that Theorem 1 does
not apply to the pure power case for any p.

However, there are important explicit examples of nonlinearities f to which
Theorem 1 applies. Let us give one such class of examples constructed from the pure
power case.

Let 1 < p < 5 and q � 5. Consider f (s2) = sp−1, for s > s0, f (s2) = sq−1, for
0 � s < s0/2 and f increasing and of class C1. For s0 > 0 small, equation (1.1) is a
perturbation of the pure power subcritical Schrödinger equation, and (A1) holds since
q � 5. Thus, since (A2) is true for any solitary wave for f (s2) = sp−1, and since
such a condition depends continuously on f , it follows that for small s0, the solitary
waves for ω > ω0 > 0 are stable in the sense of Weinstein (i.e., (A2) is true; see [21],
[22]). Therefore, provided that assumption (A3) on the speeds is satisfied, Theorem 1
applies to this case.

(3) Integrable case. For f (s2) ≡ s2, by the previous comment, Theorem 1 does
not apply because (A1) breaks down. It is, however, a very important special case
since (1.1) then becomes a completely integrable equation. In particular, following
Zakharov and Shabat [23], by integrability theory, one can exhibit special solutions of
(1.1) which are multisolitary wave solutions. It is in particular possible to construct
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multisolitary waves with solitary waves of different speeds with arbitrary sizes. More
surprisingly, one can also construct multisolitary waves for which the various solitary
waves remain parallel for all time or separate as log t in large time (see [23, pp. 66 –
67]). One may expect that a further investigation of these solutions would provide
more insight on the set of assumptions of Theorem 1.

(4) Assumption (A2). Note that by the equation of Qω, the function Sω ∈ H 1

defined by Sω = ∂
∂ω

Qω satisfies L+
ωSω = −Qω, where

L+
ω = −∂2

x + ω − (
f (Q2

ω) + 2Q2
ωf ′(Q2

ω)
)
.

Therefore, assumption (A2) is equivalent to

(Sω0,Qω0 ) > 0, (1.16)

where ( , ) denotes the scalar product in L2. Moreover, it turns out that (A2) implies

inf
{ (L+

ω0
v, v)

(v, v)
; v ∈ H 1(R), (v,Qω0 ) = (v,Q′

ω0
) = 0

}
> 0 (1.17)

(see Lemma 2.2). Property (1.17) is what is really used in the proof of stability in [22]
and in the present article.

(5) Assumption (A3). Assumption (A3) means that if ω0
k and ω0

k+1 are different,
then the relative speed of the corresponding solitary waves, that is, vk+1 − vk , has to
be sufficiently large. A remarkable fact is that any speeds vk < vk+1 are possible if
ω0

k = ω0
k+1. Note that condition (A3) is invariant by the Galilean transform (1.5).

Case of dimensions 2 and 3
Now we turn to the NLS equation set in R

d ,{
i ∂tu = −�u − f (|u|2)u, (t, x) ∈ R × R

d,

u(0) = u0,
(1.18)

with f of class C1 satisfying

f (0) = 0 and ∀s � 1, |f ′(s2)| < Csp−2, for some p <
d + 2

d − 2
.

(1.19)

It is well known that this equation has properties similar to the ones described above in
the one-dimensional case d = 1; local H 1 well-posedness (see [7]), conservation laws,
and symmetries (translation and phase invariance and Galilean invariance). There may
also exist traveling wave solutions; if, for ω0 > 0, Qω0 is the solution of the elliptic



STABILITY IN H 1 OF THE SUM OF K SOLITARY WAVES 413

problem

�Qω0 + f (Q2
ω0

)Qω0 = ω0Qω0, Qω0 > 0, (1.20)

then

u(t, x) = Qω0 (x − x0 − v0t)e
i((1/2)v0.x−(1/4)|v0|2t+ω0t+γ0)

is the solution of (1.18), where v0 ∈ R
d , x0 ∈ R

d , γ0 ∈ R, where |v0|2 = ∑d
j=1 v2

0,j ,
and where v0 · x is the scalar product in R

d .
As was mentioned above, the stability problem for one traveling wave solution

is solved in a similar way for d � 2 as for d = 1 (see Weinstein [22]). From [22], a
natural assumption for nonlinear stability is the existence of λ > 0 such that for any
real-valued function η ∈ H 1,
(A2′)

(η, Qω) = (η, ∇Qω) = 0⇒
∫ {|∇η|2+ω|η|2−(

f (Q2
ω)+2Q2

ωf ′(Q2
ω)

)|η|2}�λ‖η‖2
H 1 .

Note that this condition is equivalent to subcriticality in the pure power case.
It turns out that the proof of Theorem 1 given in this article cannot be extended in

general to higher dimensions d � 2. However, the method still applies to d = 2 and
d = 3 for some nonlinearities and with a suitable condition on the relative speeds of
the solitary waves. We claim the following result.

THEOREM 2 (Stability of the sum of K solitary waves in dimensions two and three)
Let d = 2 or 3. Assume that f : R → R is a function of class C1 such that (1.19)
holds, and assume for some constant C > 0 that
(A1′)

for all r � 0, f ′(r) � Cr.

Let K ∈ N, and for all k ∈ {1, . . . , K}, let ω0
k > 0 be such that Qω0

k
> 0 is a solution

of (1.20) satisfying (A2′). For all k ∈ {1, . . . , K}, let x0
k ∈ R

d , let γk ∈ R, and let
vk ∈ R

d , satisfying,

for all k = k′, vk = vk′ . (1.21)

There exist ω0 = ω0(v1, . . . , vK ) > 0, T0 > 0, θ0 > 0, A0 > 0, and α0 > 0 such that
if,
(A3′)

for all k = k′, |ω0
k − ω0

k′ | < ω0,

and if, for any u0 ∈ H 1(Rd ), T > T0, and 0 < α < α0,

∥∥∥u0 −
K∑

k=1

Qω0
k
(· − x0

k − vkT )ei((1/2)vk ·x+γ 0
k )

∥∥∥
H 1

≤ α, (1.22)
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then the solution u(t) of (1.18) is globally defined in H 1, and there exist
x1(t), . . . , xK (t) ∈ R

d and γ1(t), . . . , γK (t) ∈ R such that, for all t � T ,

∥∥∥u(t) −
K∑

k=1

Qω0
k

( · −xk(t)
)
ei((1/2)vk ·x+γk(t))

∥∥∥
H 1

≤ A0(α + e−θ0T ). (1.23)

Moreover, for all t � T ,

|ẋk(t) − vk| +
∣∣∣γ̇k(t) −

(
ω0

k − |vk|2
4

)∣∣∣ � A0(α + e−θ0T ). (1.24)

Comments on Theorem 2
(1) First result for d = 2. To our knowledge, it is the first result of stability

of the sum of solitary waves for semilinear Schrödinger equations in space
dimension 2, which is in some sense a critical dimension for this problem.
Moreover, as in Theorem 1, Theorem 2 holds in the energy space and without
spectral assumptions. Therefore, for d = 3, it is different from the existing
results described above (see [19], [20]).

(2) Condition (A1′). Condition (A1′) is similar to condition (A1) in Theorem 1.
We impose, in addition, that this condition is satisfied for any r and not only
for r close to zero. The fact that it is satisfied for r close to zero is essential
in our proof, which consists in fact in going back to the one-dimensional
case. It removes the possibility to apply Theorem 2 to the case of pure power
nonlinearities. Again, we do not claim optimality.

(3) Assumption (A3′). Assumption (A3′) is less precise than condition (A3) im-
posed in the one-dimensional case since the constant ω0 is not given explicitly
in terms of the (vk). Indeed, from the proof, the condition needed depends in
an intricate way on the geometry of the vectors (vk). In simple cases, however,
it can be chosen explicitly; for example, when the vectors {vj } are colinear, the
condition is the same as in the one-dimensional case.

(4) Elliptic problem. The existence and uniqueness problem for (1.20) is not com-
pletely solved as in the one-dimensional case. In case of existence, it is expected
that condition (A2′) is equivalent to condition (A2) also for d = 2, 3.

(5) Note that in Theorem 2, we assume that T is large enough. Since the vectors vk

are all different, this is a way to assume that the solitary waves are sufficiently
decoupled since they move on different lines. This replaces assumption (1.13)
in Theorem 1.

The article is organized as follows. Sections 2, 3, and 4 concern the case d = 1. In
Section 2, we recall some well-known properties of solitary waves, that is, of solutions
of (1.7). In Section 3, we present the new monotonicity result for the nonlinear
Schrödinger equations for d = 1, and in Section 4, we prove Theorem 1. Finally,
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Section 5 concerns the case where d = 2 and 3 and contains a sketch of the proof of
Theorem 2.

The proof of some technical results are left to Appendices A, B, and C.

2. Properties of the solitary waves in one dimension
In this section, we recall some standard properties of solitary waves for equation (1.1).
In Section 2.3, we recall the proof of the stability of the solitary waves for the sake of
completeness. Note that it is slightly different from the proof due to Weinstein [22].

2.1. Existence of solitary waves
The problem of existence and uniqueness of solutions of the following elliptic problem
in one space dimension,

Q′′
ω + f (|Qω|2)Qω = ωQω, Qω(x0) > 0 for some x0 ∈ R, Qω ∈ H 1(R),

(2.1)

is completely understood. Indeed, by Berestycki and Lions [1, Sec. 6], we have the
following result.

LEMMA 2.1 (See [1, Th. 5])
A necessary and sufficient condition for the existence of a solution Qω of problem
(2.1) is that

r0 = inf
{
r > 0 such that F (r) = ωr

}
exists and satisfies f (r0) > ω. (2.2)

Moreover, if (2.2) is satisfied, then
(1) problem (2.1) has a unique solution Qω up to translation;
(2) Qω(0) = √

r0; Qω(x) = Qω(−x) for all x ∈ R; Qω(x) > 0 for all x ∈ R;
Q′

ω(x) < 0 for all x > 0;
(3) there exists C > 0 such that

|Qω(x)| + |Q′
ω(x)| + |Q′′

ω(x)| � Ce−(
√

ω/2)|x| for all x ∈ R. (2.3)

Note that since f (0) = 0, we have, for all ω > 0, F (r) < ωr in a neighborhood of
zero. Therefore, condition (2.2) means that there exists r > 0 such that F (r) = ωr

and that at the first such point r0, the nondegeneracy condition F ′(r0) = f (r0) > ω

holds.
By C1-regularity of f , if this condition is satisfied for some ω0 > 0, then it is

also satisfied in a neighborhood of ω0. Moreover, by standard ODE arguments, the
map ω ∈ (ω0 − ω, ω0 + ω) �→ Qω ∈ H 1 is of class C1.
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Solitary waves of interest for this article are nonlinearly stable solitary waves.
This means, following Weinstein’s condition [22], that we assume (A2):

d

dω

∫
Q2

ω(x) dx

∣∣∣
ω=ω0

> 0. (2.4)

Note that the condition in Cazenave and Lions [3] implies d
dω

∫
Q2

ω(x) dx
∣∣
ω=ω0

� 0;
thus, (2.4) is a nondegeneracy condition. Weinstein’s stability proof [22] is based on
an analysis of the linearized operator around Qω0 . Define, for a real-valued v ∈ H 1,

L+
ωv = −vxx + ωv − (

f (Q2
ω) + 2Q2

ωf ′(Q2
ω)

)
v, L−

ωv = −vxx + ωv − f (Q2
ω)v.

(2.5)

As we have seen in the introduction, by the equation of Qω, the function Sω ∈ H 1

defined by Sω = ∂
∂ω

Qω satisfies L+
ωSω = −Qω, and condition (2.4) is equivalent to

1

2

d

dω

∫
Q2

ω(x) dx

∣∣∣
ω=ω0

= (Sω0,Qω0 ) = −(L+
ω0

Sω0, Sω0 ) > 0. (2.6)

(Recall that ( , ) denotes the scalar product in L2(R).) The next lemma relates condition
(2.4) to positivity properties of L+

ω .

LEMMA 2.2 (Weinstein [21])
If ω0 satisfies (2.2) and (2.4), then we have the following.
(1) There exists λ+ > 0 such that for any real-valued v ∈ H 1,

(v, Qω0 ) = (v,Q′
ω0

) = 0 implies (L+
ω0

v, v) � λ+‖v‖2
H 1 . (2.7)

(2) There exists λ− > 0 such that for any real-valued v ∈ H 1,

(v,Qω0 ) = 0 implies (L−
ω0

v, v) � λ−‖v‖2
H 1 . (2.8)

Proof
The proof of this result was given by Weinstein [21] for the power case f (s2) = sp−1.
Under the assumptions on f in the present article, exactly the same arguments apply
to prove Lemma 2.2. �

We also recall some variational properties of Qω0 . Let

Fω0 (z) = E(z) + ω0

∫
|z|2. (2.9)

Then we have the following result.
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LEMMA 2.3
For η ∈ H 1 small, we have

Fω0 (Qω0 +η) = Fω0 (Qω0 )+ (L+
ω0

Re η, Re η)+ (L−
ω0

Im η, Im η)+‖η‖2
H 1β(‖η‖H 1 )

with β(ε) → 0 as ε → 0. In particular, for ω close to ω0,

Fω0 (Qω) = Fω0 (Qω0 ) + (ω − ω0)2(L+
ω0

Sω0, Sω0 ) + |ω − ω0|2β(|ω − ω0|),

and

|Fω0 (Qω) − Fω0 (Qω0 )| � C|ω − ω0|2.

Proof
See, for example, Weinstein [22, Sec. 2, (2.5)]. �

Observe that since (L+
ω0

Sω0, Sω0 ) = −(Qω0, Sω0 ) < 0 by assumption (A2), Fω0 (Qω)
is strictly smaller than Fω0 (Qω0 ) for ω close but different from ω0.

2.2. Decomposition of a solution close to the sum of K solitary waves
Let v1 < · · · < vK , and let ω0

1, . . . , ω
0
K ∈ R be such that (1.9) and (A2) hold. Set

θ1 = 1

4
min

(
v2 − v1, . . . , vK − vK−1,

√
ω0

1, . . . ,

√
ω0

K

)
> 0. (2.10)

For α, L > 0, we consider the H 1-neighborhood of size α of the sum of K solitary
waves with parameters {vk, ω

0
k}, sorted by increasing speeds and located at distances

larger than L:

U(α,L) =
{
u ∈ H 1; inf

yk>yk−1+L
δk∈R

∥∥∥u(t, ·) −
K∑

k=1

Qω0
k
(· − yk)ei((1/2)vkx+δk)

∥∥∥
H 1

< α
}
.

The following lemma is a standard result.

LEMMA 2.4
There exist L1, α1, C1 > 0, and for any k ∈ {1, . . . , K}, there exist unique C1-
functions (ωk, xk, γk) : U(α1, L1) → (0, +∞) × R × R such that if u ∈ U(α1, L1)
and if one defines

ε(x) = u(x) −
K∑

k=1

Qωk
(· − xk)ei((1/2)vkx+γk), (2.11)
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then for all k = 1, . . . , K ,

Re
∫

Qωk
(· − xk)ei((1/2)vkx+γk)ε(x) dx = Im

∫
Qωk

(· − xk)ei((1/2)vkx+γk)ε(x) dx

= Re
∫

Q′
ωk

(· − xk)ei((1/2)vkx+γk)ε(x) dx = 0.

Moreover, if u ∈ U(α,L) for 0 < α < α1, 0 < L1 < L, then

‖ε‖H 1 +
K∑

k=1

|ωk − ω0
k | � C1α, xk − xk−1 > L − C1α >

L

2
. (2.12)

We refer to Appendix A for the proof of this result. Note that it applies to time-
independent functions.

A consequence of this decomposition for fixed u is the following result on a
solution u(t) of (1.1) which is close to the sum of sufficiently decoupled solitary
waves on some time interval [0, t0].

COROLLARY 3
There exist L1, α1, C1 > 0 such that the following is true. If for L > L1, 0 < α < α1,
and t0 > 0,

u(t) ∈ U(α,L) for all t ∈ [0, t0], (2.13)

then there exist unique C1-functions ωk : [0, t0] → (0, +∞), xk, γk : [0, t0] → R

such that if we set

ε(t, x) = u(t, x) − R(t, x), (2.14)

where

R(t, x) =
K∑

k=1

Rk(t, x), Rk(t, x) = Qωk(t)
(
x − xk(t)

)
ei((1/2)vkx+γk(t)), (2.15)

then ε(t) satisfies, for all k = 1, . . . , K and all t ∈ [0, t0],

Re
∫

Rk(t)ε(t) = Im
∫

Rk(t)ε(t) = Re
∫

∂xRk(t)ε(t) = 0. (2.16)

Moreover, for all t ∈ [0, t0] and for all k = 1, . . . , K ,

‖ε(t)‖H 1 +
K∑

k=1

|ωk(t) − ω0
k | � C1α, xk(t) − xk−1(t) >

L

2
, (2.17)
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|ω̇k(t)| + |ẋk(t) − vk|2 +
∣∣∣γ̇k(t) −

(
ωk(t) − v2

k

4

)∣∣∣2

� C1

∫
e−θ1|x−xk(t)|ε2(t, x) dx + C1e

−θ1(L+θ1t). (2.18)

Note that in Corollary 3 as in Lemma 2.4, we do not change the vk . In particular, in
this article, vk are constant fixed in Theorem 1 and do not depend on t . The proof of
Corollary 3 is given in Appendix A.

2.3. Stability of a solitary wave
We repeat the proof of the stability of a solitary wave following Weinstein [22]
but without using the Galilean transformation and using modulation in the scaling
parameter ω. This gives us the opportunity to introduce the functional G(t) and to
prove the result directly, which is fundamental for the stability problem of the sum of
decoupled solitary waves later in the article.

Let ω0 satisfy (1.9) and (1.10). Let u(t) be a solution of (1.1) satisfying, for some
x0 ∈ R, v0 ∈ R, and γ0 ∈ R,

‖u0 − Qω0 (x − x0)ei((1/2)v0x+γ0)‖H 1 < α

for α small.

(1) Decomposition of the solution. We argue on a time interval [0, t∗], so that for
all t ∈ [0, t∗], u(t) is close in H 1 to Qω(t)(x − x(t))ei((1/2)v0x+γ (t)) for some ω(t), x(t),
and γ (t). We can modify the parameters ω(t), x(t), and γ (t) such that

ε(t, x) = u(t, x) − R0(t, x),

where

R0(t, x) = Qω(t)
(
x − x(t)

)
ei((1/2)v0x+γ (t))

satisfies the orthogonality conditions

Re
(
ε(t), R0(t)

) = Im
(
ε(t), R0(t)

) = Re
(
ε(t), ∂xR0(t)

) = 0. (2.19)

This is standard in the case of a single solitary wave (see Section 2.2 with K = 1).
This choice of orthogonality conditions is well adapted to the positivity properties on
L+

ω and L−
ω (see Lemma 2.2), and thus it is suitable to apply an energy method.

Note that as in Lemma 2.4, we have

‖ε(0)‖H 1 + |ω(0) − ω0| � Cα. (2.20)
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(2) Introduction of a functional adapted to the stability problem. Following
Weinstein [22], we prove the stability property by using the conservation in time
of a functional related to the three invariant quantities. We introduce, for z ∈ H 1,

G(z) = E(z) +
(
ω(0) + v2

0

4

) ∫
|z|2 − v0 Im

∫
∂xz z. (2.21)

The introduction of G(z) is quite natural, and it comes from the following.

CLAIM 1
Let z(x) = z0(x − x0)ei((1/2)v0x+γ0). Then

G(z) = E(z0) + ω(0)
∫

|z0|2 = Fω(0)(z0).

Proof
We have

∫ |z|2 = ∫ |z0|2,
∫

F (|z|2) = ∫
F (|z0|2),∫

|∂xz|2 =
∫

|∂xz0|2 + v2
0

4

∫
|z0|2 + v0 Im

∫
∂xz0 z0,

and

v0 Im
∫

∂xz z = v0 Im
∫

∂xz0 z0 + v2
0

2

∫
|z0|2,

and thus, the result follows. �

By expanding u(t) = R0(t)+ ε(t) in the definition of G(u(t)), we obtain the following
formula.

LEMMA 2.5
The following holds:

G
(
u(t)

) = Fω(0)(Qω(0))+H0
(
ε(t), ε(t)

)+‖ε(t)‖2
H 1β

(‖ε(t)‖H 1

)+O
(|ω(t)−ω(0)|2)

with β(ε) → 0 as ε → 0, where

H0(ε, ε) =
∫

|∂xε|2 −
∫ {

f (|R0|2)|ε|2 + 2f ′(|R0|2)[Re(R0ε)]2}
+

(
ω(t) + v2

0

4

) ∫
|ε|2 − v0Im

∫
∂xε ε.
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Proof
First, we consider the term

∫ |∂xu|2 coming from the energy:∫
|∂xu|2 =

∫
|∂xR0|2 + 2 Re

∫
∂xR0 ∂xε +

∫
|∂xε|2

=
∫

|∂xR0|2 − 2 Re
∫

∂2
xR0 ε +

∫
|∂xε|2.

Second, we consider the term
∫

F (|u|2) by expanding F near |R0|2:

F (|R0 + ε|2) = F
(|R0|2 + 2 Re(R0ε) + |ε|2)

= F (|R0|2) + F ′(|R0|2)
(
2Re(R0ε) + |ε|2)

+ 1

2
F ′′(|R0|2)[2 Re(R0ε)]2 + |ε(t)|2β(‖ε(t)‖H 1

)
= F (|R0|2) + 2f (|R0|2)Re(R0ε) + f (|R0|2)|ε|2

+ 2f ′(|R0|2)[Re(R0ε)]2 + |ε(t)|2β(‖ε(t)‖H 1

)
.

Summing up the two expressions, we obtain

E
(
u(t)

) = E
(
R0(t)

) − 2 Re
∫ (

∂2
xR0 + f (|R0|2)R0

)
ε +

∫
|∂xε|2

−
∫ {

f (|R0|2)|ε|2 + 2f ′(|R0|2)[Re(R0ε)]2
} + ‖ε(t)‖2

H 1β
(‖ε(t)‖H 1

)
.

For the term
∫ |u|2, we have∫

|u|2 =
∫

|R0|2 + 2 Re
∫

R0 ε +
∫

|ε|2.

Finally, for the term Im
∫

∂xu u, we have

Im
∫

∂xu u = Im
∫

∂xR0 R0 − 2 Im
∫

∂xR0 ε + Im
∫

∂xε ε.

Therefore, if we set H0(ε, ε) as in the statement of the lemma, we obtain

G
(
u(t)

) = G
(
R0(t)

)++H0
(
ε(t), ε(t)

)−(
ω(t)−ω(0)

) ∫
|ε|2+‖ε(t)‖2

H 1β
(‖ε(t)‖H 1

)
,

where

 = −2 Re
∫ (

∂2
xR0 +f (|R0|2)R0

)
ε+2

(
ω(0) + v2

0

4

)
Re

∫
R0 ε+2v0 Im

∫
∂xR0 ε

= 2 Re
∫ [

−∂2
xR0 −f (|R0|2)R0 +

(
ω(0)+ v2

0

4

)
R0 + iv0∂xR0

]
ε.
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We have

|ω(t) − ω(0)|
∫

|ε|2 � 1

2
|ω(t) − ω(0)|2 + 1

2

( ∫
|ε|2

)2
,

which takes care of this term.
Moreover, G(R0(t)) = Fω(0)(Qω(t)) by Claim 1, and |Fω(0)(Qω(t)) − Fω(0)

(Qω(0))| � C|ω(t) − ω(0)|2 by Lemma 2.3.
Finally, let us prove that  is zero. The proof of this would complete the proof of

Lemma 2.5. Recall that

R0(t, x) = Qω(t)
(
x − x(t)

)
ei((1/2)v0x+γ (t)),

so that

∂xR0(t, x) =
(
Q′

ω(t)

(
x − x(t)

) + i

2
v0Qω(t)

(
x − x(t)

))
ei((1/2)v0x+γ (t)),

and, by the equation of Qω(t),

∂2
xR0(t, x) =

(
Q′′

ω(t)

(
x−x(t)

)+iv0Q
′
ω(t)

(
x − x(t)

)−v2
0

4
Qω(t)

(
x−x(t)

))
ei((1/2)v0x + γ (t))

= ω(t)R0 − f (|R0|2)R0 + iv0∂xR0 + v2
0

4
R0.

Therefore,

 = 2
(
ω(0) − ω(t)

)
Re

∫
R0 ε,

but this is zero by the orthogonality condition chosen on ε in (2.19). Thus Lemma 2.5
is proved. �

We now recall that the quadratic form H0 is positive for ε satisfying the chosen
orthogonality conditions.

LEMMA 2.6
There exists λ1 > 0 such that if ε(t) ∈ H 1 satisfies

Re
(
ε(t), R0(t)

) = Im
(
ε(t), R0(t)

) = Re
(
ε(t), ∂xR0(t)

) = 0,

then

H0
(
ε(t), ε(t)

)
� λ1‖ε(t)‖2

H 1 .

Remark. The constant λ1 > 0 can be chosen independent of ω(t) for ω(t) close to ω0.

We refer to Appendix B for the proof of Lemma 2.6.
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(3) Control of ‖ε(t)‖H 1 . Since G(u(t)) is the sum of three conserved quantities,
we have

G
(
u(t)

) = G
(
u(0)

)
.

Thus, by Lemma 2.5, it follows that

H0
(
ε(t), ε(t)

)
� H0

(
ε(0), ε(0)

) + C|ω(t) − ω(0)|2 + C‖ε(0)‖2
H 1β

(‖ε(0)‖H 1

)
+ C‖ε(t)‖2

H 1β
(‖ε(t)‖H 1

)
.

By Lemma 2.6, and since H0(ε(0), ε(0)) � C‖ε(0)‖2
H 1 , we obtain

λ1‖ε(t)‖2
H 1 �H0

(
ε(t), ε(t)

)
�C|ω(t) − ω(0)|2+C‖ε(0)‖2

H 1 +C‖ε(t)‖2
H 1β

(‖ε(t)‖H 1

)
,

which gives

‖ε(t)‖2
H 1 � C|ω(t) − ω(0)|2 + C‖ε(0)‖2

H 1 (2.22)

for ‖ε(t)‖H 1 small enough.
Thus it remains to estimate |ω(t) − ω(0)|2 to conclude the proof.

(4) Control of |ω(t)−ω(0)|. We prove that |ω(t)−ω(0)| is quadratic in ε(t). Note
that by the conservation of

∫ |u(t)|2 and the orthogonality condition Re
∫

R0ε = 0,
we have ∫

Q2
ω(t) −

∫
Q2

ω(0) = −
∫

|ε(t)|2 +
∫

|ε(0)|2. (2.23)

Recall that we assume that

d

dω

∫
Q2

ω(x) dx

∣∣∣
ω=ω0

> 0

and that ω(t), ω(0) are close to ω0. Thus,(
ω(t) − ω(0)

)( d

dω

∫
Q2

ω(x) dx

∣∣∣
ω=ω0

)
=

∫
Q2

ω(t) −
∫

Q2
ω(0) + β

(
ω(t) − ω(0)

)(
ω(t) − ω(0)

)2

with β(ε) → 0 as ε → 0, which implies that for some constant C = C(ω0),

|ω(t) − ω(0)| � C

∣∣∣ ∫ Q2
ω(t) −

∫
Q2

ω(0)

∣∣∣.
Therefore, by (2.23), we obtain

|ω(t) − ω(0)| � C‖ε(t)‖2
L2 + C‖ε(0)‖2

L2 . (2.24)
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(5) Conclusion. Putting together (2.22), (2.24), and (2.20), we obtain, for some
constant C > 0,

‖ε(t)‖2
H 1 + |ω(t) − ω(0)| � C‖ε(0)‖2

H 1 � Cα

for ‖ε(t)‖H 1 and |ω(t) − ω(0)| small enough. Thus, for α small enough,∥∥u(t) − Qω0

(
x − x(t)

)
ei((1/2)v0+γ (t))

∥∥
H 1

� ‖u(t) − R0(t)‖H 1 + ∥∥R0(t) − Qω0

(
x − x(t)

)
ei((1/2)v0+γ (t))

∥∥
H 1

� ‖ε(t)‖H 1 + C|ω(t) − ω0| � ‖ε(t)‖H 1 + C|ω(t) − ω(0)| + C|ω(0) − ω0| � Cα.

This completes the proof of stability of a single solitary wave.

3. Monotonicity property for the NLS equations

3.1. Monotone localized functional
Since we consider several solitary waves with different speeds v1, . . . , vK , we cannot
use the Galilean transform to make the solitary waves be all standing waves (i.e., for
all k, vk = 0). We have seen in Section 2.3, in the case of a single solitary wave, that
if we do not make use of the Galilean transform, then the relevant functional to prove
the stability result is G(u(t)), defined by

G
(
u(t)

) = E
(
u(t)

) +
(
ω(0) + v2

0

4

) ∫
|u(t)|2 − v0 Im

∫
∂xu(t) u(t).

In the case of several solitary waves Rk , the strategy is to introduce a functional
that, locally around each solitary wave, looks like the preceding functional with the
parameters vk and ωk(0) of the solitary waves.

This idea is reminiscent of an article by the present authors (see [15]) on the
generalized KdV equations. Let us recall the situation for the subcritical generalized
KdV equations for p = 2, 3, 4:

ut + uxxx + (up)x = 0. (3.1)

In this case, the traveling waves are of the form Qω0 (x − x0 − ω0t). Observe that the
speed of propagation of the wave is related to the scaling w0. The suitable functional
to study the stability of the one traveling wave is

E
(
u(t)

) + ω(0)
∫

u2(t).

Therefore, in the case of K traveling waves Qωk
(x − xk(t)), we have introduced a

functional

E
(
u(t)

) = E
(
u(t)

) +
∫

ω(t, x)u2(t),
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where locally around the kth traveling wave, ω(t, x) takes the value ωk . Of course,
this is not a conserved quantity in time; however, we have proved that E(u(t)) is in
some suitable sense decreasing in time, which allows us to conclude as in the case of
the 1-soliton. Recall that the monotonicity in time of the functional

∫
ω(t, x)u2(t) is

related to the fact that ω(t, x) for fixed t is a nondecreasing function of x (since the
traveling waves are sorted by increasing speeds). Indeed, for the gKdV equation, the
Kato identity leads to

d

dt

∫
g(x − ωt)u2(t) dx

= −
∫ {(

3u2
x + ωu2 − 2p

p + 1
up+1

)
g′(x − ωt) + u2g′′′(x − ωt)

}
dx. (3.2)

If g′′′ is small (this is the case for a slowly varying g), and if u is small where g′ is
large (i.e., g varies only far away from the centers of the traveling waves), then we
can control the positive part of the right-hand side of (3.2), which proves that this
functional is almost decreasing in time. We refer to [15] for a precise result on the
generalized KdV equations.

We turn back to the problem for the NLS equations. In the formula of G(u(t)),
two parameters appear: ω(0) and v0. Both have to be adapted to suitable values around
each solitary wave.

The analogue of Kato’s identity in the case of the Schrödinger equation is the
following virial formula.

LEMMA 3.1
Let z(t) be a solution of (1.1). Let g : x ∈ R �→ g(x) be a C3 real-valued function
such that g′ and g′′′ are bounded. Then for all t ∈ R,

1

2

d

dt
Im

∫
∂xz z g(x)

=
∫

|∂xz|2g′(x) − 1

4

∫
|z|2g′′′(x) − 1

2

∫ {
f (|z|2)|z|2 − F (|z|2)

}
g′(x).

Proof
It is a standard identity. By elementary calculations, we have

d

dt
Im

∫
∂xz z g = Im

∫
∂xz ∂tz g + Im

∫
∂x∂tz z g

= Im
∫

∂xz ∂tz g − Im
∫

∂tz ∂xz g − Im
∫

∂tz z g′

= 2 Im
∫

∂xz ∂tz g + Im
∫

∂tz z g′ = Im
∫

∂tz(2∂xz g + z g′),
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but ∂tz = −i(∂2
x z + f (|z|2)z ), so that

d

dt
Im

∫
∂xz z g = Im

[
−i

∫ (
∂2
x z + f (|z|2)z

)
(2∂xz g + z g′)

]
.

We have

Re
∫

∂2
x z(2∂xz g + z g′)

= −2
∫

|∂xz|2g′ − Re
∫

∂xz z g′′ = −2
∫

|∂xz|2g′ + 1

2

∫
|z|2g′′′.

Thus, finally, we obtain

d

dt
Im

∫
∂xz z g = 2

[ ∫
|∂xz|2g′ − 1

4

∫
|z|2g′′′ − 1

2

∫ {
f (|z|2)|z|2 − F (|z|2)

}
g′

]
.

This proves Lemma 3.1. �

Compared to the case of the gKdV equation, the term g′′′ in Lemma 3.1 causes
additional difficulties here. Indeed, for the gKdV equation, the term g′′′ in (3.2) is
controlled by ω

∫
u2g′ for functions g such that |g′′′| < g′ (see [15]). In the case of

the Schrödinger equation, there is no such L2-term. To get around this problem, we
take a cutoff function of the form g(x/�(t)) whose support depends on time. It turns
out that a support �(t) of size

√
t is suitable. (In fact, any choice tβ for β ∈ (1/3, 1)

would provide the same results.) We deduce from Lemma 3.1 the following result.

LEMMA 3.2
Let z(t) be a solution of (1.1). Let g : x ∈ R �→ g(x) be a C3 real-valued function
such that g′ � 0 and x2g′, g′′′ are bounded. Let a > 0. Then for all t � 0,

1

2

d

dt
Im

∫
∂xz z g

( x√
t + a

)
� 3

4
√

t + a

∫
|∂xz|2g′

( x√
t + a

)
− ‖g′′′‖L∞ +‖x2g′‖L∞

4(t + a)3/2

×
∫

x/
√

t+a∈supp g′
|z|2 − 1

2
√

t + a

∫ {
f (|z|2)|z|2 − F (|z|2)

}
g′

( x√
t + a

)
,

where supp g′ denotes the support of g′.

Observe that the second term in the right-hand side is now integrable in time since
the L2-norm of a solution is constant. Thus, in order to prove an almost-monotonicity
result in the spirit of the one for the gKdV equations, one only has to consider the
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nonlinear term; this is done in Section 3.2 for a solution that is close to the sum of K

solitary waves.

Proof
From Lemma 3.1, we have, by straightforward calculations,

1

2

d

dt
Im

∫
∂xz z g

( x√
t + a

)
= 1√

t + a

∫
|∂xz|2g′

( x√
t + a

)
− 1

4(t + a)3/2

∫
|z|2g′′′

( x√
t + a

)
− 1

2
√

t + a

∫ {
f (|z|2)|z|2 − F (|z|2)

}
g′

( x√
t + a

)
− 1

4(t + a)
Im

∫
(∂xz z)

( x√
t + a

)
g′

( x√
t + a

)
,

where the last term in the right-hand side is coming from the time dependence in the
function g. By the Cauchy-Schwarz inequality,∣∣∣ 1

2(t + a)
Im

∫
(∂xz z)

( x√
t + a

)
g′

( x√
t + a

)∣∣∣
� 1

4
√

t + a

∫
|∂xz|2g′

( x√
t + a

)
+ 1

4(t + a)3/2

∫
|z|2

( x√
t + a

)2
g′

( x√
t + a

)
,

so that we obtain

1

2

d

dt
Im

∫
∂xz z g

( x√
t + a

)
� 3

4
√

t + a

∫
|∂xz|2g′

( x√
t + a

)
− 1

4(t + a)3/2

∫
|z|2

{
g′′′

( x√
t + a

)
+

( x√
t + a

)2
g′

( x√
t + a

)}
− 1

2
√

t + a

∫ {
f (|z|2)|z|2 − F (|z|2)

}
g′

( x√
t + a

)
,

and the conclusion of Lemma 3.2 follows. �

3.2. First monotonicity result
From Lemma 3.2, we deduce a monotonicity property for a solution u(t) which is
close to the sum of K solitary waves on some time interval [0, t0] as in Corollary 3.

First, we choose a suitable cutoff function. Let ψ(x) be a C3-function such that

ψ(x) = 0 for x ≤ −1, ψ(x) = 1 for x > 1, ψ ′ � 0,
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and for some constant C > 0,(
ψ ′(x)

)2 �Cψ(x),
(
ψ ′′(x)

)2 �Cψ ′(x), for all x ∈ R,

ψ ′(x) =0 for x ∈ (−1, 1).

(Consider ψ(x) = (1/16)(1 + x)4 for x � −1 close to −1, and consider ψ(x) =
1 − (1/16)(1 − x)4 for x � 1 close to 1.)

Let σk ∈ R be such that for all k = 2, . . . , K ,

vk−1 < σk < vk,

and set

x 0
k = xk−1(0) + xk(0)

2
.

For

a = L2

64
,

let

ψk(t, x) = ψ
(x − x 0

k − σkt√
t + a

)
(k = 2, . . . , K), ψ1 ≡ 1, ψK+1 ≡ 0. (3.3)

We define, for k = 2, . . . , K ,

Ik(t) = σk

2

∫
|u(t, x)|2ψk(t, x) dx − Im

∫
∂xu(t, x) u(t, x) ψk(t, x) dx. (3.4)

From Lemma 3.2 applied on a Galilean transformation of the solution u(t), we claim
that for any k � 2, the variation in time of Ik(t) is controlled from above in the
following sense.

PROPOSITION 3.1
Let u(t) be a solution of (1.1) satisfying the assumptions of Corollary 3 on [0, t0].
There exist L2, α2, θ2, C2 > 0 such that if L > L2, 0 < α < α2, then for any
k = 2, . . . , K , t ∈ [0, t0],

Ik(t) − Ik(0) � C2

L
sup

t ′∈[0,t]
‖ε(t ′)‖2

L2 + C2e
−θ2L.

Before proving Proposition 3.1, we recall the following technical result from Merle
[16].



STABILITY IN H 1 OF THE SUM OF K SOLITARY WAVES 429

LEMMA 3.3
Let w = w(x) ∈ H 1(R), and let h = h(x) � 0 be a C2 bounded function such that√

h is of class C1 and satisfies (h′)2 � Ch. Then∫
|w|6h � 8

( ∫
supp h

|w|2
)2[ ∫

|w′|2h +
∫

|w|2 (h′)2

h

]
, (3.5)

where supp h denotes the support of h.

Proof
We repeat the proof from [16, Lem. 6]. First, we have∫

|w|6h � ‖w2
√

h‖2
L∞

∫
supp h

|w|2.

Next,

|w(x)|2
√

h(x) � 2
∫ x

−∞
|w||w′|

√
h + 1

2

∫ x

−∞
|w|2 |h′|√

h
.

Thus, using the Cauchy-Schwarz inequality,

‖w2
√

h‖L∞ �2
( ∫

|w′|2h
)1/2( ∫

supp h

|w|2
)1/2

+ 1

2

( ∫
|w|2 (h′)2

h

)1/2( ∫
supp h

|w|2
)1/2

,

which completes the proof of Lemma 3.3. �

Proof of Proposition 3.1
Set

0<θ2 = 1

16
min

(
σ2−v1, v2−σ2, . . . , σK−vK−1, vK−σK,

√
ω0

1

4
, . . . ,

√
ω0

K

4

)
<

θ1

16
.

(3.6)

Fix k = 2, . . . , K . For t ∈ [0, t0], x ∈ R, let

z(t, x) = zk(t, x) = u(t, x + x 0
k + σkt)e

−i(σk/2)(x+x 0
k +σkt/2). (3.7)

The function z(t, x) is also a solution of (1.1) by the translation and Galilean (see (1.5))
invariances of the NLS equation. Moreover, we have, by elementary calculations,

−Ik(t) = Im
∫

∂xz(t) z(t) ψ
( x√

t + a

)
.
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Thus, by Lemma 3.2 applied to z(t), we have

1

2

d

dt
Ik(t) � − 3

4
√

t + a

∫
|∂xz|2ψ ′

( x√
t + a

)
+ C

(t + a)3/2

∫
|x|<√

t+a

|z|2

+ 1

2
√

t + a

∫
|x|<√

t+a

{
f (|z|2)|z|2 − F (|z|2)

}
ψ ′

( x√
t + a

)
(3.8)

since supp ψ ′ ⊂ [−1, 1], and so ψ ′(x/
√

t + a ) = 0 if |x| >
√

t + a.
To treat the L2-term and the nonlinear terms, we claim the following.

CLAIM 2
For L2 large enough and α2 small enough, for any t ∈ [0, t0],

if |x| <
√

t + a, then |z(t, x)|2 < 1, (3.9)

and ∫
|x|<√

t+a

|z(t)|2 dx < Ce−θ2(L+θ2t) + 2
∫

|ε(t)|2. (3.10)

CLAIM 3
For L2 large enough and α2 small enough, for any t ∈ [0, t0],∫

|x|<√
t+a

{
f (|z|2)|z|2 − F (|z|2)

}
ψ ′

( x√
t + a

)
�

∫
|∂xz|2ψ ′

( x√
t + a

)
+ C

(t + a)

∫
|ε|2 + Ce−θ2(L+θ2t).

We assume Claims 2 and 3, and we finish the proof of Proposition 3.1. After this,
we prove Claims 2 and 3.

End of the proof of Proposition 3.1
Inserting Claim 3 and (3.10) into (3.8), we obtain, for all t ∈ [0, t0] and for all
t ′ ∈ [0, t],

d

dt
Ik(t ′) � C

(t ′ + a)3/2
sup

0<τ<t

∫
|ε(τ )|2 + Ce−θ2(L+θ2t

′)

for α small enough.
By integration between 0 and t , and since

√
a = L/8, we get

Ik(t) − Ik(0) � C

L
sup

0<τ<t

∫
|ε(τ )|2 + Ce−θ2L,

which completes the proof of Proposition 3.1, assuming Claims 2 and 3. �
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Proof of Claim 2
By the decomposition of Corollary 3 and the definition of z (see (3.7)), it follows that

|z(t, x)| = |u(t, x + x 0
k + σkt)| � |R(t, x + x 0

k + σkt)| + |ε(t, x + x 0
k + σkt)|.

(3.11)

We have ‖ε(t)‖L∞ � C‖ε(t)‖H 1 � Cα, and so for α small enough, we have
‖ε(t)‖2

L∞ � 1/2. For the other term, we have, by (2.3) and (2.17),

|R(t, x+x 0
k +σkt)|�

K∑
j=1

Qωj (t)
(
x+x 0

k +σkt − xj (t)
)
�C

K∑
j=1

e
−
(√

ω0
j /4

)
|x+x 0

k +σkt−xj (t)|
.

(3.12)

For |x| <
√

t + a �
√

t + √
a = √

t + L/8, we have

|x + x 0
k + σkt − xj (t)| � |x 0

k + σkt − xj (t)| − |x| � |x 0
k + σkt − xj (t)| − √

t − L

8
.

If j � k, then ẋj (t) � ẋk(t) � vk −8θ2 for α small by (2.18), and since xj (0) � xk(0),
we have xj (t) � xk(0) + vkt − 8θ2t . Since σk � vk − 16θ2, we have, by x 0

k =
(xk(0) + xk−1(0))/2,

|x 0
k + σkt − xj (t)| = xj (t) − x 0

k − σkt � xk(0) − xk−1(0)

2
+ 8θ2t,

and so for |x| <
√

t + a,

|x + x 0
k + σkt − xj (t)| � xk(0) − xk−1(0)

2
+ 8θ2t − √

t − L

8
� 8θ2t − √

t + L

8

since (xk(0) − xk−1(0))/2 > L/4 by (2.17). Choose L > 4/θ2; then

|x+x 0
k +σkt−xj (t)| � 8θ2t−

√
t+ L

8
� 4θ2t+ L

16
+

(
4θ2t−

√
t + L

16

)
� 4θ2t+ L

16
.

Doing the same for 1 � j � k − 1, we obtain, for |x| <
√

t + a,

K∑
j=1

e−(
√

ω0
j /4)|x+x 0

k +σkt−xj (t)| � Ce−16θ2(4θ2t+L/16) � Ce−θ2L.

Thus, for |x| <
√

t + a, for L large enough,

|R(t, x + x 0
k + σkt)| � Ce−16θ2(4θ2t+L/16) � Ce−θ2L � 1

2
. (3.13)

Therefore, for L large enough, for |x| <
√

t + a, we obtain |z(t, x)|2 � 1, which
proves (3.9).
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The proof of (3.10) is the same. From (3.11), we have

|z(t, x)|2 � 2|R(t, x + x 0
k + σkt)|2 + 2|ε(t, x + x 0

k + σkt)|2, (3.14)

and (3.13) then yields (3.10). Thus, Claim 2 is proved. �

Proof of Claim 3
From (A1) (see the statement of Theorem 1), we claim that there exists C > 0 such
that

if 0 � s < 1, then f (s2)s2 − F (s2) � Cs6. (3.15)

Indeed, we have (f (r)r − F (r))′ = f ′(r)r � Cr2 by (A1), and so we obtain f (r)r −
F (r) � Cr3 for 0 < r < 1.

Using (3.9) and (3.15), we obtain∫ {
f (|z|2)|z|2 − F (|z|2)

}
ψ ′

( x√
t + a

)
� C

∫
|z|6ψ ′

( x√
t + a

)
.

Applying Lemma 3.3, we have∫
|z|6ψ ′

( x√
t + a

)
� 8

( ∫
|x|<√

t+a

|z|2
)2[∫

|∂xz|2ψ ′
( x√

t + a

)
+ 1

t + a

∫
|z|2 (ψ ′′)2

ψ ′
( x√

t + a

)]
.

By (3.10), (ψ ′′)2 � Cψ ′, and for α and 1/L small enough, we obtain∫ {
f (|z|2)|z|2 − F (|z|2)

}
ψ ′

( x√
t + a

)
� 1

2

∫
|∂xz|2ψ ′

( x√
t + a

)
+ C

t + a

( ∫
|x|�√

t+a

|z|2
)3

� 1

2

∫
|∂xz|2ψ ′

( x√
t + a

)
+ C

t + a

( ∫
|ε|2

)3
+ Ce−θ2(L+θ2t).

But for α small enough, we have (
∫ |ε|2)3 �

∫ |ε|2, and thus Claim 3 is proved. �

3.3. Transformation into a localized monotonicity result
We establish in this section a monotonicity result that is directly suitable for the first
part of the proof of the stability result.

In view of the definition of G(u(t)) in (2.21), it is relevant to introduce and study
the variation in time of a functional that, locally around the kth solitary wave, is equal
to (

ωk(0) + v2
k

4

) ∫
|u(t)|2 − vkIm

∫
∂xu(t) u(t).
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For values of {σk}k=2,...,K such that vk−1 < σk < vk to be chosen later, and for the
functions ψk defined in (3.3), we set, for all k ∈ {1, . . . , K},

ϕk(t, x) = ψk(t, x) − ψk+1(t, x). (3.16)

Note that ϕk ≡ 1 around the solitary wave k, and note that ϕk ≡ 0 around the solitary
waves j for j = k, in particular, ϕk(xj (t)) = 0.

We set

J(t) =
K∑

k=1

{(
ωk(0) + v2

k

4

) ∫
|u(t)|2ϕk(t) − vk Im

∫
∂xu(t) u(t)ϕk(t)

}
, (3.17)

which is the sum of the energy functional related to the speed of the traveling wave
localized around each traveling wave. We claim the following result.

PROPOSITION 3.2
For k = 2, . . . , K , let

σk = 2
ωk(0) − ωk−1(0)

vk − vk−1
+ vk + vk−1

2
. (3.18)

Assume (A3); then, for α and 1/L small enough,

vk−1 < σk < vk. (3.19)

Moreover, taking these values of σk in the definition of Ik(t) and J(t), the following
is true:

J(t) =
∫ [(

ω1(0) + v2
1

4

)
|u(t)|2 − v1Im

(
∂xu(t) u(t)

)] +
N∑

k=2

(vk − vk−1)Ik(t).

Remark. If the parameters σk do not satisfy (3.19), then the monotonicity property on
Ik(t) breaks down, and it is unclear whether the stability property holds. Note also
that the set of σk which yields the monotonicity formula is open.

Proof of Proposition 3.2
Let us check the first assertion concerning the values of σk . We have, for k = 2, . . . , K ,
by assumption (A3) since ωk(0) is close to ω0

k (see (2.17)),

σk − vk−1 = 2
ωk(0) − ωk−1(0)

vk − vk−1
+ vk − vk−1

2

= 4(ωk(0) − ωk−1(0)) − (vk − vk−1)2

2(vk − vk−1)
> 0,
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and similarly,

vk − σk = −2
ωk(0) − ωk−1(0)

vk − vk−1
+ vk − vk−1

2
> 0

for α small enough. Thus vk−1 < σk < vk .
We now justify the second assertion, concerning J. By the Abel resummation

argument, we have

J(t) =
K∑

k=1

(
ωk(0) + v2

k

4

) ∫
|u|2ϕk −

K∑
k=1

vkIm
∫

∂xu uϕk

=
K∑

k=1

∫ [(
ωk(0) + v2

k

4

)
|u|2 − vkIm(∂xu u)

]
(ψk − ψk+1)

=
∫ [(

ω1(0) + v2
1

4

)
|u|2 − v1Im(∂xu u)

]
ψ1

−
∫ [(

ωK (0) + v2
K

4

)
|u|2 − vK Im(∂xu u)

]
ψK+1

+
K∑

k=2

∫ [(
ωk(0) + v2

k

4
− ωk−1(0) − v2

k−1

4

)
|u|2 − (vk − vk−1)Im(∂xu u)

]
ψk.

But by the definition of σk , we have

ωk(0) + v2
k

4
− ωk−1(0) − v2

k−1

4
= ωk(0) − ωk−1(0) + 1

4
(v2

k − v2
k−1) = 1

2
(vk − vk−1)σk,

and we have chosen

ψ1 ≡ 1, ψK+1 ≡ 0.

Thus, we obtain

J(t) =
∫ [(

ω1(0) + v2
1

4

)
|u(t)|2 − v1Im

(
∂xu(t) u(t)

)] +
N∑

k=2

(vk − vk−1)Ik(t).

Thus, Proposition 3.2 is proved. �

In particular, as a corollary of Propositions 3.2 and 3.1, we obtain the following
monotonicity result on J.
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COROLLARY 4
For the values of σk given in Proposition 3.2, for all t ∈ [0, t0],

J(t) − J(0) � C

L
sup

t ′∈[0,t]
‖ε(t ′)‖2

L2 + Ce−θ2L.

Proof
The first term in the expression of J(t) given in Proposition 3.2 is constant in time,
and the next terms satisfy Lemma 3.1. (Recall that vk − vk−1 > 0.) Thus Corollary 4
is proved. �

From now on, we fix the values of σk , as in Proposition 3.2.

3.4. Monotonicity results for different lines
In Section 3.3, we chose a set of values of σk related to (vk) and (ωk(0)). For use in
Section 4, we now introduce quantities Ik(t) for other values of σk . Indeed, we define
σ+

k and σ−
k as follows. For k = 2, . . . , K ,

σ+
k = vk + σk

2
, σ−

k = vk−1 + σk

2
. (3.20)

Note that vk−1 < σ−
k < σk < σ+

k < vk for any k = 2, . . . , K , and thus, we can define

ψ±
k (t, x) = ψ

(x − x 0
k − σ±

k t√
t + a

)
(k = 2, . . . , N) (3.21)

and

I±
k (t) = σ±

k

2

∫
|u|2ψ±

k (t) − Im
∫

∂xu u ψ±
k (t). (3.22)

By the same proof as that of Proposition 3.1, we have the following result.

COROLLARY 5
For θ3 > 0 and for all t ∈ [0, t0],

I±
k (t) − I±

k (0) � C

L
sup

t ′∈[0,t]
‖ε(t ′)‖2

H 1 + Ce−θ3L. (3.23)

4. Proof of the stability result
In this section, we prove the stability result, that is, Theorem 1.
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We fix θ0 = min(θ2, θ3) where θ2 and θ3 are defined in Proposition 3.1 and
Corollary 5. For A0, L, α > 0, we define

VA0 (α,L) =
{
u ∈ H 1; inf

yk>yk−1+Lδk∈R

∥∥∥u(t, ·) −
K∑

k=1

Qω0
k
(· − yk)ei((1/2)vkx+δk)

∥∥∥
H 1

� A0(α + e−(θ0/2)L)
}
.

Let ω0
k, vk, x0

k , and γ 0
k be defined as in the statement of Theorem 1. We claim that

Theorem 1 is a consequence of the following proposition.

PROPOSITION 4.1 (Reduction of the problem)
There exist A0 > 2, L0 > 0, and α0 > 0 such that for all u0 ∈ H 1, if

∥∥∥u0 −
K∑

k=1

Qω0
k
(· − x0

k )ei((1/2)vkx+γ 0
k )

∥∥∥
H 1

� α, (4.1)

where L > L0, 0 < α < α0, and x0
k − x0

k−1 > L, and if for some t∗ > 0,

∀t ∈ [0, t∗], u(t) ∈ VA0 (α,L), (4.2)

then

∀t ∈ [0, t∗], u(t) ∈ VA0/2(α,L). (4.3)

Before proving Proposition 4.1, we check that it implies Theorem 1. Indeed, suppose
that u0 satisfies the assumptions of Theorem 1. Let u(t) be the solution of (1.1);
then, by continuity of u(t) in H 1, there exists τ > 0 such that for any 0 � t � τ ,
u(t) ∈ VA0 (α, L). Let

t∗ = sup
{
t � 0, u(t ′) ∈ VA0 (α, L), ∀t ′ ∈ [0, t]

}
. (4.4)

Assume for the sake of contradiction that t∗ is not +∞; then by Proposition 4.1, for
all t ∈ [0, t∗], u(t) ∈ VA0/2(α,L). Since u(t) is continuous in H 1, there exist τ ′ > 0
such that for all t ∈ [0, t∗ + τ ′], u(t) ∈ V2A0/3(α,L), which contradicts the definition
of t∗. Therefore, t∗ = +∞, and (1.14) in Theorem 1 follows. The estimates (1.15)
follow from the proof of Proposition 4.1.

The rest of this section is thus devoted to the proof of Proposition 4.1. Note that
in all of the proof, we consider u(t) for t ∈ [0, t∗].
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Proof
Let A0 > 0, L0 = L0(A0), and α0 = α0(A0) > 0 be chosen later. Recall that
θ0 = min(θ2, θ3) is fixed independently of A0.

(1) Decomposition of the solution around K solitary waves. First, since for all
t ∈ [0, t∗], u(t) ∈ VA0 (α,L), by choosing L0 = L0(A0, θ0) and α0 = α0(A0) > 0
small enough (so that A0(α0 + e−θ0L) is small), we can apply Corollary 3 to u(t) on
the time interval [0, t∗]. It follows that there exist unique C1-functions ωk : [0, t∗] →
(0, +∞), xk, γk : [0, t∗] → R such that if we set

ε(t, x) = u(t, x) − R(t, x), (4.5)

where

R(t, x) =
K∑

k=1

Rk(t, x), Rk(t, x) = Qωk(t)
(
x − xk(t)

)
ei((1/2)vkx+γk(t)), (4.6)

then ε(t) satisfies, for all k = 1, . . . , K and for all t ∈ [0, t∗],

Re
(
ε(t), Rk(t)

) = Im
(
ε(t), Rk(t)

) = Re
(
ε(t), ∂xRk(t)

) = 0 (4.7)

and, for all t ∈ [0, t∗],

‖ε(t)‖H 1 +
K∑

k=1

|ωk(t) − ω0
k | + |ω̇k(t)| + |ẋk(t) − vk| +

∣∣∣γ̇k(t) −
(
ωk(t) − v2

k

4

)∣∣∣
� C1A0(α + e−(θ0/2)L). (4.8)

Observe that in (4.8), the estimate depends on A0. However, directly from assumption
(4.1) on u0 and Lemma 2.4 applied to u0, we have

‖ε(0)‖H 1 +
K∑

k=1

|ωk(0) − ω0
k | � C1α, (4.9)

where C1 does not depend on A0. This is a main point in the proof of Propo-
sition 4.1.

(2) Introduction of a functional adapted to the stability problem for K solitary
waves. We define

GK (t) = E
(
u(t)

) + J(t), (4.10)

where J(t) is defined in (3.17) with the (σk) as in (3.18).
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The analogue of Lemma 2.5 for the case of multisolitary wave solutions is the
following result.

PROPOSITION 4.2 (Expansion of GK with respect to parameters)
For all t ∈ [0, t∗], we have

GK (t) =
K∑

k=1

Fωk(0)(Qωk(0)) + HK

(
ε(t), ε(t)

)

+
K∑

k=1

O
(|ωk(t)−ωk(0)|2)+‖ε(t)‖2

H 1β
(‖ε(t)‖H 1

)+O(e−θ0(L+θ0t)) (4.11)

with β(ε) → 0 as ε → 0, where

HK (ε, ε) =
∫

|∂xε|2 −
K∑

k=1

∫ (
f (|Rk|2)|ε|2 + 2f ′(|Rk|2)[Re(Rkε)]2

)

+
K∑

k=1

{(
ωk(t) + v2

k

4

) ∫
|ε|2ϕk(t) − vk Im

∫
∂xε εϕk(t)

}
.

Remark. As one can expect from the single solitary wave case, the terms O(|ωk(t) −
ωk(0)|2) in (4.11) have the wrong sign (i.e., they are nonpositive).

The proof of Proposition 4.2, similar to that of Lemma 2.5, is given in Appendix C.
The analogue of Lemma 2.6 in the multisolitary wave case is the following result.

LEMMA 4.1 (Coercivity of HK )
There exists λK > 0 such that

HK

(
ε(t), ε(t)

)
� λK‖ε(t)‖2

H 1 .

Proof
As in the proof of Lemma 2.6, the proof of Lemma 4.1 is based on Lemma 2.2,
concerning the operators L+

ω and L−
ω . It also requires localization arguments similar

to those used in [15]. We refer to Appendix B for the proof. �

As in the proof of the stability result in Section 2.2, we now proceed in two steps; first,
we control the size of ε(t) in H 1, and second, we check that for any k, |ωk(t) − ωk(0)|
is quadratic in |ε(t)|. Both steps use the monotonicity properties of Section 3.

(3) Energetic control of ‖ε(t)‖H 1 . We claim the following lemma from the con-
servation laws and the monotonicity of J(t).
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LEMMA 4.2
For all t ∈ [0, t∗],

‖ε(t)‖2
H 1 +

K∑
k=2

|Ik(t) − Ik(0)|

� C

L
sup

t ′∈[0,t]
‖ε(t ′)‖2

H 1 + C‖ε(0)‖2
H 1 + C

K∑
k=1

|ωk(t) − ωk(0)|2 + Ce−θ0L.

(4.12)

Proof
First, we write (4.11) at t > 0 and at t = 0:

E
(
u(t)

) + J(t) =
K∑

k=1

Fωk(0)(Qωk(0)) + HK

(
ε(t), ε(t)

)

+
K∑

k=1

O
(|ωk(t) − ωk(0)|2)+‖ε(t)‖2

H 1β
(‖ε(t)‖H 1

)+O(e−θ0(L+θ0t)),

and

E
(
u(0)

) + J(0)

=
K∑

k=1

Fωk(0)(Qωk(0)) + HK

(
ε(0), ε(0)

) + ‖ε(t)‖2
H 1β

(‖ε(t)‖H 1

) + O(e−θ0L).

We take the difference of these two equalities. Since E(u(t)) = E(u(0)) and
HK (ε(0), ε(0)) � C‖ε(0)‖2

H 1 , we obtain

HK

(
ε(t), ε(t)

)
�

(
J(t) − J(0)

) + C‖ε(0)‖2
H 1 + C

K∑
k=1

|ωk(t) − ωk(0)|2

+ C‖ε(t)‖2
H 1β

(‖ε(t)‖H 1

) + Ce−θ0L.

Using Proposition 3.2, the conservation of
∫ |u(t)|2 and Im

∫
∂xu u, and

Lemma 4.1, we obtain, for α small enough,

λK

2
‖ε(t)‖2

H 1 �
K∑

k=2

(vk−vk−1)
(
Ik(t) − Ik(0)

)

+ C‖ε(0)‖2
H 1 + C

K∑
k=1

|ωk(t)−ωk(0)|2 + Ce−θ0L, (4.13)

where vk − vk−1 > θ0 > 0.
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By Proposition 3.1, we have, for all k = 2, . . . , K ,

Ik(t) − Ik(0) � C

L
sup

t ′∈[0,t]
‖ε(t ′)‖2

H 1 + Ce−θ0L, (4.14)

and thus, inserting (4.14) into (4.13), we obtain

λK

2
‖ε(t)‖2

H 1 � C

L
sup

t ′∈[0,t]
‖ε(t ′)‖2

H 1 + C‖ε(0)‖2
H 1 + C

K∑
k=1

|ωk(t)−ωk(0)|2 + Ce−θ0L.

Using this and (4.14) and (4.13) again, we finally obtain

θ0

K∑
k=2

|Ik(t) − Ik(0)| � C

L
sup

t ′∈[0,t]
‖ε(t ′)‖2

H 1

+ C‖ε(0)‖2
H 1 + C

K∑
k=1

|ωk(t)−ωk(0)|2 + Ce−θ0L.

This proves Lemma 4.2. �

(4) Quadratic control of |ωk(t) − ωk(0)|. We claim the following result from the
monotonicity of Ik(t) and I±

k (t).

LEMMA 4.3
For all t ∈ [0, t∗],

K∑
k=1

|ωk(t) − ωk(0)| � C sup
t ′∈[0,t]

‖ε(t ′)‖2
H 1 + Ce−θ0L. (4.15)

To prove Lemma 4.3 in the case where K = 1, one only has to use the L2-norm
conservation. In the case of several solitary waves, the idea is to use the monotonicity
results of Proposition 3.1. Recall that in Step 1, we use Ik for the value of σk defined
in Proposition 3.2. This is necessary to relate J(t) to the Ik(t) as in Proposition 3.2
and to prove Lemma 4.2. Now we use the monotonicity property for different channels
(i.e., different but close values of σk). Since, in the formula of Ik , there is a weight
in front of the L2-term related to σk , different values of σk allow us to isolate the
local L2-norm of the solution. (At the first order, we isolate ωk(t).) This argument is
new compared to the gKdV equations, for which the monotonicity property (related
only to L2-quantities) gives directly a similar result without having to consider several
channels.

Consider I±
k , defined with the values of σ±

k introduced in Section 3.4. We claim
the following result.
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CLAIM 4
The following hold:

∣∣∣I+
k (t) − Ik(t) − vk − σk

4

K∑
k′=k

∫
Q2

ωk′ (t)

∣∣∣ � C‖ε(t)‖2
H 1 + Ce−θ0L, (4.16)

∣∣∣Ik(t) − I−
k (t) − σk − vk−1

4

K∑
k′=k

∫
Q2

ωk′ (t)

∣∣∣ � C‖ε(t)‖2
H 1 + Ce−θ0L. (4.17)

Considering only the differences I+
k (t)−Ik(t) and Ik(t)−I−

k (t) allows us to ignore
the term related to momentum in Ik(t), which is not very handy since it contains a first
order term in ε(t) (Im

∫
∂xR ε ψk), which is not zero by the orthogonality conditions.

Proof
The proof of Claim 4 follows from explicit calculations. We prove (4.16) only; formula
(4.17) can be proved in exactly the same way. We have

I+
k (t) − Ik(t)

= σ+
k

2

∫
|u|2ψ+

k (t) − Im
∫

∂xu uψ+
k (t) − σk

2

∫
|u|2ψk(t) − Im

∫
∂xu u ψk(t)

= σ+
k − σk

2

∫
|u|2ψ+

k (t) − σk

2

∫
|u|2(ψk(t) − ψ+

k (t)
) + Im

∫
∂xu u

(
ψk(t)−ψ+

k (t)
)
.

On the one hand,∫
|ψk(t, x) − ψ+

k (t, x)|(|R(t, x)| + |∂xR(t, x)|) dx � e−θ0L

since ψ+
k − ψk ≡ 0 for x > xk(t) − 4θ0t and x < xk−1(t) + 4θ0t . Therefore,∣∣∣ ∫ |u|2(ψk(t) − ψ+

k (t)
)∣∣∣ +

∣∣∣Im ∫
∂xu u

(
ψk(t) − ψ+

k (t)
)∣∣∣ � C‖ε(t)‖2

H 1 + Ce−θ0L.

On the other hand, note that σ+
k − σk = (vk − σk)/2, ψ+

k ≡ 1 for x > xk(t) −
4θ0t , and ψ+

k ≡ 0 for x < xk−1(t) + 4θ0t . Thus, by the orthogonality condition
Re

∫
Rk′(t)ε(t) = 0 and by (C.1) (see Appendix C), we have

∣∣∣ ∫ |u|2ψ+
k (t) −

K∑
k′=k

∫
Q2

ωk′ (t)

∣∣∣ � C‖ε(t)‖2
H 1 + Ce−θ0L.

Thus, Claim 4 is proved. �

Let us now prove Lemma 4.3.
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Proof of Lemma 4.3
From Lemma 4.2 and Corollary 5, we have (L � 1)

K∑
k=1

|Ik(t) − Ik(0)| � C sup
t ′∈[0,t]

‖ε(t ′)‖2
H 1 + C

K∑
k=1

|ωk(t) − ωk(0)|2 + Ce−θ0L,

(4.18)

and, for all k = 1, . . . , K ,

I±
k (t) − I±

k (0) � C

L
sup

t ′∈[0,t]
‖ε(t ′)‖2

H 1 + Ce−θ3L. (4.19)

Combining (4.16), (4.19), and (4.18), we obtain, for all k = 2, . . . , K ,

K∑
k′=k

( ∫
Q2

ωk(t) −
∫

Q2
ωk(0)

)
� vk − σk

4

[(
I+

k (t) − Ik(t)
) − (

I+
k (0) − Ik(0)

)] + C sup
t ′∈[0,t]

‖ε(t ′)‖2
H 1 + Ce−θ0L

� vk − σk

4

(
I+

k (t)−I+
k (0)

) + vk − σk

4
|Ik(t) − Ik(0)|

+ C sup
t ′∈[0,t]

‖ε(t ′)‖2
H 1 + Ce−θ0L

� C sup
t ′∈[0,t]

‖ε(t ′)‖2
H 1 + C

K∑
k=1

|ωk(t) − ωk(0)|2 + Ce−θ0L.

Similarly, using (4.17) instead of (4.16), we have, for all k = 2, . . . , K ,

−
K∑

k′=k

( ∫
Q2

ωk(t) −
∫

Q2
ωk(0)

)
� σk−1 − vk

4

[(
I−

k (t) − Ik(t)
)−(

I−
k (0) − Ik(0)

)]+ C sup
t ′∈[0,t]

‖ε(t ′)‖2
H 1 + Ce−θ0L

� σk−1 − vk

4

(
I−

k (t) − I−
k (0)

) + σk−1 − vk

4
|Ik(t) − Ik(0)|

+ C sup
t ′∈[0,t]

‖ε(t ′)‖2
H 1 + Ce−θ0L

� C sup
t ′∈[0,t]

‖ε(t ′)‖2
H 1 + C

K∑
k=1

|ωk(t) − ωk(0)|2 + Ce−θ0L.
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Therefore, we obtain, for all k = 2, . . . , K ,

∣∣∣ K∑
k′=k

(∫
Q2

ωk′ (t) −
∫

Q2
ωk′ (0)

)∣∣∣ � C sup
t ′∈[0,t]

‖ε(t ′)‖2
H 1 +C

K∑
k=1

|ωk(t)−ωk(0)|2+Ce−θ0L.

(4.20)

By the L2-norm conservation
∫ ∣∣u(t)2 = ∫ |u(0)|2 and the orthogonality conditions

on ε, we also have directly (without using any monotonicity property)∣∣∣ K∑
k′=1

( ∫
Q2

ωk′ (t) −
∫

Q2
ωk′ (0)

)∣∣∣ � C sup
t ′∈[0,t]

‖ε(t ′)‖2
H 1 + Ce−θ0L, (4.21)

which means that (4.20) is also true for k = 1.
Recall that we assume (A2):

d

dω

∫
Q2

ω(x) dx

∣∣∣
ω=ω0

k

> 0,

and ωk(t), ωk(0) are close to ω0
k by (4.8). Thus, for any k = 1, . . . , K ,

|ωk(t) − ωk(0)| � C

∣∣∣ ∫ Q2
ωk(t) −

∫
Q2

ωk(0)

∣∣∣. (4.22)

From (4.20) and (4.22), for k = K , we obtain directly

|ωK (t) − ωK (0)| � C sup
t ′∈[0,t]

‖ε(t ′)‖2
H 1 + +C

K∑
k=1

|ωk(t) − ωk(0)|2 + Ce−θ0L.

Then, by a backward induction argument on k, using (4.20) and (4.22), we obtain, for
any k = K − 1, . . . , 1,

|ωk(t) − ωk(0)| � C sup
t ′∈[0,t]

‖ε(t ′)‖2
H 1 + C

K∑
k=1

|ωk(t) − ωk(0)|2 + Ce−θ0L.

And thus, for any k = 1, . . . , K ,

|ωk(t) − ωk(0)| � C sup
t ′∈[0,t]

‖ε(t ′)‖2
H 1 + Ce−θ0L.

This proves Lemma 4.3. �

(5) Conclusion of the proof of Proposition 4.1. Combining the conclusions of
Lemmas 4.2 and 4.3, we obtain, for all t ∈ [0, t∗],

‖ε(t)‖2
H 1 � C

L
sup

t ′∈[0,t]
‖ε(t ′)‖2

H 1 + C sup
t ′∈[0,t]

[
β
(‖ε(t ′)‖H 1

)‖ε(t ′)‖2
H 1

]
+ C‖ε(0)‖2

H 1 + Ce−θ0L.
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For α0 and 1/L0 small enough with L � L0 and C/L0 � 1/4, we have, for all
t ∈ [0, t∗],

‖ε(t)‖2
H 1 � 1

2
sup

t ′∈[0,t]
‖ε(t ′)‖2

H 1 + C‖ε(0)‖2
H 1 + Ce−θ0L,

and so, for all t ∈ [0, t∗],

‖ε(t)‖2
H 1 � C‖ε(0)‖2

H 1 + Ce−θ0L.

Using (4.15) again, we obtain, for all t ∈ [0, t∗],

‖ε(t)‖2
H 1 +

K∑
k=1

|ωk(t) − ωk(0)| � C‖ε(0)‖2
H 1 + Ce−θ0L. (4.23)

By (4.9), we thus obtain

‖ε(t)‖2
H 1 +

K∑
k=1

|ωk(t) − ωk(0)| +
K∑

k=1

|ωk(0) − ω0
k | � Cα2 + Ce−θ0L, (4.24)

where C is independent of A0.
To conclude the proof, we go back to u(t):

∥∥∥u(t) −
K∑

k=1

Qω0
k

(
x − xk(t)

)
ei((1/2)vk+γk(t))

∥∥∥
H 1

�
∥∥∥u(t) −

K∑
k=1

Rk(t)
∥∥∥

H 1
+

K∑
k=1

∥∥Rk(t) − Qω0
k

(
x − x(t)

)
ei((1/2)vk+γk(t))

∥∥
H 1

� ‖ε(t)‖H 1 + C

K∑
k=1

|ωk(t) − ω0
k | � ‖ε(t)‖H 1

+ C

K∑
k=1

|ωk(t) − ωk(0)| + C

K∑
k=1

|ωk(0) − ω0
k |

� C1(α + e−(θ0/2)L).

Observe that the constant C1 > 0 here does not depend on A0. Thus, we can choose
A0 = 2C1, and then for α0 = α0(A0) > 0 small enough and for L0 = L0(A0) large
enough, we obtain the conclusion of Proposition 4.1. �

5. The two- and three-dimensional cases: Proof of Theorem 2
In this section, we adapt to the two- and three-dimensional cases the arguments
developed in Sections 3 and 4 for the one-dimensional case; that is, we prove Theorem 2
with the tools used in the proof of Theorem 1.
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Let d = 2 or 3, and consider the nonlinear Schrödinger equation{
i ∂tu = −�u − f (|u|2)u, (t, x) ∈ R × R

d,

u(0) = u0,
(5.1)

under the assumptions of Theorem 2 on f . Let T > 0, and for ω0
k > 0, vk, x

0
k ∈ R

d ,
γk ∈ R, consider K solitary waves Rk(t, x) of the form

Rk(t, x) = Qω0
k

(
x − x0

k − vk(t + T )
)
ei((1/2)vk ·x+γk), (5.2)

where Qω0
k
> 0 is a solution of (1.20) and where the parameters (ω0

k) and (vk) satisfy
the assumptions of Theorem 2. Recall that Qω0

k
enjoy exponential decay properties as

in (2.3) (see [1]). We assume that (A2′) holds for all ω0
k ; that is, each solitary wave

considered independently is nonlinearly stable. Moreover, we impose that for any
k = k′, vk = vk′ . Since all the (vk) are different, the (x0

k ) being fixed, taking T large
enough in (5.2) ensures that the various solitary waves are decoupled for all t � 0.

The proof of Theorem 2 proceeds as follows. First, we observe that without loss
of generality, we can assume that the (vk,1)k∈{1,...,K} are all different, and similarly for
(vk,2) and (vk,3). (We denote by vk,j for j = 1, . . . , d the components of the vector
vk .) Second, we give monotonicity results for the case of dimension d which are very
similar to the ones introduced in Section 3 for the one-dimensional case. This is where
the restriction d = 2 or 3 appears. Then, we introduce a functional similar to J(t) in
the case where d � 2. Finally, we conclude the proof as in the one-dimensional case
by expanding conservation laws and using the monotonicity results.

5.1. Splitting of the solitary waves
First, we claim the following.

CLAIM 5
Let (vk) be K vectors of R

d such that for any k = k′, vk = vk′ . Then there exists
(e1, . . . , ed ), an orthonormal basis of R

d such that for any k = k′, and for any
j = 1, . . . , d, (vk, ej ) = (vk′, ej ).

Proof
This is an elementary geometrical property of R

d . For fixed k = k′, since vk = vk′ , the
set of unitary vectors (|e0| = 1) such that (e0, vk − vk′) = 0 is of measure zero on the
sphere. Therefore, the set of unitary vectors e0 such that for some k, k′ ∈ {1, . . . , K},
k = k′, (e0, vk −vk′) = 0 is also of measure zero. Thus, we can pick up a set of vectors
(e1, . . . , ed ) satisfying the desired property. �

Without any restriction, we can assume that the direction e1 given by Claim 5 is x1

since equation (1.18) is invariant by rotation. Therefore, we restrict ourselves to the
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case where the following holds:

for any k = k′ and for any j = 1, . . . , d, vk,j = vk′,j .

Without loss of generality, we can also assume that the (vk) are sorted by increasing
vk,1; that is,

v1,1 < v2,1 < · · · < vK,1. (5.3)

Then, for j = 2, . . . , d , the (vk,j ) are not necessarily sorted by increasing val-
ues. However, since they are all different, there exists a one-to-one mapping
φj : {1, . . . , K} → {1, . . . , K} such that

vφj (1),j < · · · < vφj (K),j . (5.4)

5.2. Reduction of the proof of Theorem 2
As for the proof of Theorem 1, we first reduce the proof of Theorem 2. For A0, L, α >

0, we define

VA0 (α,L)

=
{
u ∈ H 1 s.t. ∃ yk ∈R

d , δk ∈ R s.t. yk,1 > yk−1,1 + L, yφj (k),j > yφj (k−1),j + L,

∥∥∥u(t, ·) −
K∑

k=1

Qω0
k
(· − yk)ei((1/2)vk.x+δk)

∥∥∥
H 1

� A0(α + e−(θ0/2)L)
}
.

The following proposition implies Theorem 2 for T0 > 0 large enough.

PROPOSITION 5.1 (Reduction of the problem)
There exists A0 > 2, L0 > 0, and α0 > 0 such that for all u0 ∈ H 1, if

∥∥∥u0 −
K∑

k=1

Qω0
k
(· − y0

k )ei((1/2)vk ·x+γ 0
k )

∥∥∥
H 1

� α, (5.5)

where L > L0, 0 < α < α0, y0
k,1 > y0

k−1,1 + L, y0
φj (k),j > y0

φj (k−1),j + L, and if for
some t∗ > 0,

∀t ∈ [0, t∗], u(t) ∈ VA0 (α,L), (5.6)

then

∀t ∈ [0, t∗], u(t) ∈ VA0/2(α,L). (5.7)

Therefore, we are reduced to prove Proposition 5.1.
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5.3. Decomposition of the solution
Let u(t) be a solution of (5.1) satisfying the assumptions of Proposition 5.1. Since for
all t ∈ [0, t∗], u(t) ∈ VA0 (α, L), by choosing L0 = L0(A0, θ0) and α0 = α0(A0) > 0
small enough (A0(α0 + e−θ0L) small), we apply a variant of Corollary 3 to u(t) on the
time interval [0, t∗]. As for the one-dimensional case, it follows that there exist unique
C1-functions ωk : [0, t∗] → (0, +∞), xk : [0, t∗] → R

d , and γk : [0, t∗] → R such
that if we set

ε(t, x) = u(t, x) − R(t, x), (5.8)

where

R(t, x) =
K∑

k=1

Rk(t, x), Rk(t, x) = Qωk(t)
(
x − xk(t)

)
ei((1/2)vk ·x+γk(t)), (5.9)

then ε(t) satisfies, for all k = 1, . . . , K and for all t ∈ [0, t∗],

Re
(
ε(t), Rk(t)

) = Im
(
ε(t), Rk(t)

) = Re
(
ε(t), ∇Rk(t)

) = 0 (5.10)

and, for all t ∈ [0, t∗],

‖ε(t)‖H 1 +
K∑

k=1

|ωk(t) − ω0
k | + |ω̇k(t)| + |ẋk(t)−vk| +

∣∣∣γ̇k(t)−
(
ωk(t)−|vk|2

4

)∣∣∣
� C1A0(α + e−(θ0/2)L). (5.11)

At t = 0, as in the one-dimensional case, we have

‖ε(0)‖H 1 +
K∑

k=1

|ωk(0) − ω0
k | � C1α, (5.12)

where C1 does not depend on A0.

5.4. Monotonicity results in the dimension d case
We now present the monotonicity results in dimension d using (5.3) and (5.4). For this
purpose, we introduce quantities that are the natural analogues in higher dimensions
of the ones introduced in dimension 1. As in the one-dimensional case, the interest of
using such functionals is clear from the energy functional used to prove stability of a
solitary wave (see Section 5.6).

Let

a = L2

64
.
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By analogy with the quantities Ik(t) defined in the one-dimensional case, we intro-
duce, for k = 2, . . . , K and for t ∈ [0, t∗],

Ik,1(t) =
∫ {σk,1

2
|u(x)|2 − Im

(
∂x1u(x) u(x)

)}
ψ

(x1 − σk,1t√
t + a

)
dx, (5.13)

where σk,1 satisfies

vk−1,1 < σk,1 < vk,1.

Similarly, we introduce, for k = 2, . . . , K , j = 2, . . . , d, and t ∈ [0, t∗],

Ik,j (t) =
∫ {σk,j

2
|u(x)|2 − Im

(
∂xj

u(x) u(x)
)}

ψ
(xj − σk,j t√

t + a

)
dx, (5.14)

where σk,j satisfies

vφj (k−1),j < σk,j < vφj (k),j .

As in the one-dimensional case, we claim the following result.

LEMMA 5.1
There exist L2, α2, and θ2, C2 > 0 such that if L > L2 and 0 < α < α2, then for
j = 1, . . . , d, for any k = 2, . . . , K , and for any t ∈ [0, t∗],

Ik,j (t) − Ik,j (0) � C2

L
sup

0<t ′<t

‖ε(t ′)‖2
L2 + C2e

−θ2L.

The identity that allows us to prove monotonicity-type results in the multidimensional
case is the following.

CLAIM 6
Let z(t) be a solution of (1.18); let g : s ∈ R �→ g(s) be a real-valued C3-function.
Then for j = 1, . . . , d,

1

2

d

dt
Im

∫
∂xj

z(x) z(x) g(xj ) dx =
∫

|∂xj
z(x)|2g′(xj ) dx − 1

4

∫
|z(x)|2g′′′(xj ) dx

− 1

2

∫ {
f

(|z(x)|2)|z(x)|2 − F
(|z(x)|2)}g′(xj ) dx.

Observe that in the second member, the positive part contains only the partial derivative
in the xj -direction and not the full gradient.
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Proof
The proof follows from direct calculations. As in the proof of Lemma 3.1, we have

d

dt
Im

∫
∂xj

z z g = 2Im
∫

∂xj
z ∂tz g + Im

∫
∂tz z g′ = Im

∫
∂tz(2∂xj

z g + z g′),

and so

d

dt
Im

∫
∂xj

z z g = Im
[

− i
∫ (

�z + f (|z|2)z
)
(2∂xj

z g + z g′)
]
.

We have

Re
∫

∂2
xj

z(2∂xj
z g + z g′) = −2

∫
|∂xj

z|2g′ − Re
∫

∂xj
z z g′′

= −2
∫

|∂xj
z|2g′ + 1

2

∫
|z|2g′′′.

And for l = 1, . . . , d, l = j , by integration by parts, since g = g(xj ) does not depend
on xl ,

Re
∫

∂2
xl
z(2∂xj

z g + z g′) = −
∫

∂xj
(|∂xl

z|2) g −
∫

|∂xl
z|2g′ = 0.

Thus, Claim 6 is proved. �

The analogue of Lemma 3.3 in dimensions 2 and 3 is the following result.

LEMMA 5.2
Let d = 2 or 3. Let w = w(x) ∈ H 1(Rd ), and let h = h(x1) � 0 be a C1 bounded
function such that the support of h is a bounded interval [a, b], h > 0 on (a, b),

√
h

is of class C1 and (h′)2 � Ch. Then, in dimension 2,∫
R2

|w(x)|6h(x1) dx � C
( ∫

supp h

|w(x)|2 dx
)( ∫

supp h

|∂x2w(x)|2 dx
)

×
∫

R2

[
|∂x1w(x)|2h(x1) + |w(x)|2 (h′(x1))2

h(x1)

]
dx, (5.15)

and in dimension 3,∫
R3

|w(x)|6h(x1) dx � C

3∏
j=2

( ∫
supp h

|∂xj
w(x)|2 dx

)

×
∫

R3

[
|∂x1w(x)|2h(x1) + |w(x)|2 (h′(x1))2

h(x1)

]
dx, (5.16)

where supp h denotes the support of h.
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Proof
We prove the case where d = 3. First, we recall the Sobolev-type inequality∫

R3
|z(y)|6 dy � C

3∏
j=1

∫
R3

|∂yj
z|2, (5.17)

obtained from the Gagliado-Nirenberg inequality

‖v‖3/2 �
( 3∏

j=1

∫
R3

|∂yj
v|

)1/3

applied to v = |z|4.
Next, let a < b be such that [a, b] = supp h, and let c ∈ (a, b). For x1 ∈ (a, b),

set

q(x1) =
∫ x1

c

ds√
h(s)

.

The function q is increasing from (a, b) to R. Moreover, since
√

h is of class C1 on R,
we have q((a, b)) = R. (Indeed, 0 <

√
h(s) � C(b − s) for s < b close to b.) Thus q

is a one-to-one mapping from (a, b) to R. Let ζ1 = q−1. Let ζ (y) = (ζ1(y1), y2, y3).
By the change of variable x1 �→ y1 with x1 = ζ1(y1) and x2 �→ y2, x3 �→ y3, estimate
that (5.16) is equivalent to∫

R3
|z(y)|6g3/2(y1) dy � C

3∏
j=2

( ∫
R3

|∂yj
z(y)|2g1/2(y1) dy

)

×
∫

R3

[
|∂y1z(y)|2g1/2(y1) + |z(y)|2 (g′(y1))2

g3/2(y1)

]
dy, (5.18)

where z(y) = w(ζ (x)), g(y1) = h(ζ1(x1)). But (5.18) follows directly from (5.17)
applied to zg1/4 instead of z.

The case where d = 2 is completely similar; using the inequality

‖v‖L2 �
( 2∏

j=1

∫
|∂xj

v|
)1/2

applied to v = |z|3, we have∫
R2

|z(y)|6 dy � C
( ∫

R2
|z|2

)( 2∏
j=1

∫
R2

|∂xj
z|2

)
. (5.19)

The rest is done in exactly the same way. �
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Sketch of the proof of Lemma 5.1
Using Claim 6 and Lemma 5.2, the proof of Lemma 5.1 follows the same lines as the
proof of Proposition 3.1. Setting

z(t, x) = zk(t, x) = u
(
t, (x1 + σkt, x2)

)
e−i(σk/2)(x1+σkt/2),

we obtain, as in the proof of Proposition 3.1,

1

2

d

dt
Ik,1(t) � − 3

4
√

t + a

∫
|∂x1z|2ψ ′

( x1√
t + a

)
+ C

(t + a)3/2

∫
|x1|<

√
t+a

|z|2

+ C√
t + a

∫ {
f (|z|2)|z|2 − F (|z|2)

}
ψ ′

( x1√
t + a

)
. (5.20)

A difficulty is that in (5.20), only the partial derivative in x1, and not the full gradient,
appears on the right-hand side. A full gradient would have allowed us to control any
supercritical nonlinear term in any dimension. In the present situation, we can only
use Lemma 5.2, which is a variant of Lemma 3.3 for d = 2 and 3 but which does not
seem to have an analogue for d � 4.

Note that since f ′(r) � Cr (assumption (A1′) in Theorem 2), we have, for all
r � 0, (

f (r)r − F (r)
)′ = f ′(r)r � Cr2,

and so for all r � 0, f (r)r − F (r) � Cr3. Thus∫ {
f (|z|2)|z|2 − F (|z|2)

}
ψ ′

( x1√
t + a

)
� C

∫
Rd

|z|6ψ ′
( x1√

t + a

)
dx1 dx2.

Using Lemma 5.2 and the properties of ψ ′, the rest of the proof of Lemma 5.1 is
exactly the same as that of Proposition 3.1. Note that here, we do not need (3.9) since
assumption (A1′) is made for all r � 0. In fact, (3.9) is not true for d � 2. �

5.5. Introduction of a functional adapted to the stability problem
As in the one-dimensional case, we need to introduce a functional that locally in space
is adapted to each solitary wave, that is, which is locally around each solitary wave
equal to ∫ {(

ωk(0) + |vk|2
4

)
|u(t)|2 − vk Im

(
∂xu(t) u(t)

)}
. (5.21)

Indeed, this quantity is the one that appears in dimension d � 2 when proving the
stability of a single solitary wave.
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We set

v0 = min(v2,1 − v1,1, . . . , vK,1 − vK−1,1) > 0. (5.22)

We assume that for all k ∈ {1, . . . , K − 1},

|ω0
k+1 − ω0

k | <
1

4
v2

0, (5.23)

so that

|ωk+1(0) − ωk(0)| <
1

4
v2

0 (5.24)

is true by (5.11) for α and 1/L small enough. This is condition (A3′) in the statement
of Theorem 2. It is similar to condition (A3) of Theorem 1. Note that condition (5.24)
depends on the direction e1 chosen in Claim 5 through the value of v0. In particular,
there exists an optimal choice of e1, so that v0 is largest possible. However, it would
not necessarily give the optimal result in Theorem 2; another method could provide a
less-restrictive condition on ωk . Especially when there are a large number of solitary
waves, it is not clear how to provide the best possible condition on ω0

k . This is why
we do not try to optimize the set of conditions. Nevertheless, it may be an interesting
direction for further investigation.

We define

σk,1 = 2
ωk,1(0) − ωk−1,1(0)

vk,1 − vk−1,1
+ vk,1 + vk−1,1

2
,

and from (5.24), we easily check as in the proof of Proposition 3.2 that, for k =
2, . . . , K ,

vk−1,1 < σk,1 < vk,1.

We set ϕ1,1 ≡ 1, and for k = 2, . . . , K − 1,

ϕk,1(t, x1) = ψ
(x1 − σk,1t√

t + a

)
−ψ

(x1 − σk+1,1t√
t + a

)
, ϕK,1(t, x1) = ψ

(x1 − σK,1t√
t + a

)
.

For the xj -direction, where j = 2, . . . , d, we set, for k = 2, . . . , K ,

σk,j = vφj (k),j + vφj (k−1),j

2
.

It is immediate that

vφj (k−1),j < σk,j < vφj (k),j .
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We introduce ϕ1,j ≡ 1, and for k = 2, . . . , K − 1,

ϕk,j (t, xj ) = ψ
(xj − σk,j t√

t + a

)
−ψ

(xj − σk+1,j t√
t + a

)
, ϕK,j (t, xj ) = ψ

(xj − σK,j t√
t + a

)
.

We are now able to define quantities similar to J(t) in the x1- and xj -directions
(j = 2, . . . , d). We set

J1(t) =
K∑

k=1

{ ∫ [(
ωk(0) + v2

k,1

4

)
|u(t)|2 − vk,1 Im

(
∂x1u(t) u(t)

)]
ϕk,1(t, x1) dx

}
,

(5.25)

Jj (t) =
K∑

k=1

{ ∫ [ v2
φj (k),j

4
|u(t)|2 − vφj (k),j Im

(
∂xj

u(t) u(t)
)]

ϕk,j (t, xj ) dx
}
. (5.26)

Note that the expressions of Jj (t) are similar to those of J(t) introduced in the
one-dimensional case. In addition, the sum

∑d
j=1 Jj is locally around each solitary

wave equal to (5.21).
Now we check that Jj satisfy monotonicity properties as J. Indeed, we claim the

following, from the Abel transformation, Lemma 5.1, and the fact that the L2-norm
and the momentum are invariant in time.

PROPOSITION 5.2
For j = 1, . . . , d, the following is true:

Jj (t) − Jj (0) � C

L
sup

t ′∈[0,t]
‖ε(t ′)‖2

L2 + Ce−θ2L.

Remark. Here we use, for the property of Jj (t) with j = 2, . . . , d, the fact that in
dimension 1, if all the ωk are equal, then the condition for the parameters reduces to
the simple condition that the speeds vk are different.

Proof of Proposition 5.2
The proof is completely similar to that of Proposition 3.2. Indeed, thanks to the choice
of σk,j , we claim

J1(t) =
∫ {(

ω1(0) + v2
1,1

4

)
|u(t)|2 − v1,1 Im

(
∂x1u(t) u(t)

)}
+

K∑
k=2

(vk,1 − vk−1,1)Ik,1(t),



454 MARTEL, MERLE, and TSAI

and similarly, for j = 2, . . . , d,

Jj (t) =
∫ {v2

1,j

4
|u(t)|2 − v1,j Im

(
∂xj

u(t) u(t)
)} +

K∑
k=2

(vφj (k),j − vφj (k−1),j )Ik,j (t).

Thus, Proposition 5.2 follows directly from Lemma 5.1. �

5.6. Energetic control of ε(t)
The functional related to the stability of K solitary waves in the d dimensional case is

G(t) = E
(
u(t)

) +
d∑

j=1

Jd (t).

We claim the following result, whose proof is completely similar to that of Proposi-
tion 4.2.

PROPOSITION 5.3
The following holds:

G(t) =
K∑

k=1

{
E(Qωk(0)) + ωk(0)

∫
|Qωk(0)|2

}
+ H

(
ε(t), ε(t)

)

+
K∑

k=1

O
(|ωk(t) − ωk(0)|2) + ‖ε‖2

H 1β(‖ε‖H 1 ) + O(e−θ0t )

with β(ε) → 0 as ε → 0, where

H (ε, ε) =
∫

|∇ε|2 −
K∑

k=1

∫ (
f (|Rk|2)|ε|2 + 2f ′(|Rk|2)[Re(Rkε)]2

)

+
K∑

k=1

∫ {(
ωk(t) + v2

k,1

4

)
|ε|2 − vk,1Im(∂x1ε ε)

}
ϕk,1(t)

+
d∑

j=2

K∑
k=1

∫ {v2
φj (k),j

4
|ε|2 − vφj (k),j Im(∂xj

ε ε)
}
ϕk,j (t). (5.27)

Moreover, with the orthogonality conditions chosen on ε, that is, (5.10), we have, for
λ > 0,

H (ε, ε) � λ‖ε‖2
H 1 . (5.28)

The proof of (5.28) is the same as the proof of Lemma 4.1.
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5.7. Proof of Proposition 5.1
The proof of Proposition 5.1 proceeds exactly along the lines of the proof of Proposi-
tion 4.1. We check that steps 3 and 4 in the proof of Proposition 4.1 apply identically
to the case where d � 2.

First, we directly prove, from the conservation of E(u(t)), the monotonicity of
Jj (t), and the expansion of G(t) in Proposition 5.3, that for all t ∈ [0, t∗],

‖ε(t)‖2
H 1 +

d∑
j=1

K∑
k=2

|Ik,j (t) − Ik,j (0)|

� C

L
sup

t ′∈[0,t]
‖ε(t ′)‖2

H 1 + C‖ε(0)‖2
H 1 + C

K∑
k=1

|ωk(t) − ωk(0)|2 + Ce−θ0L. (5.29)

Second, we estimate |ωk(t) − ωk(0)| for all k. This is done exactly as for the one-
dimensional case by considering different channels and different quantities I±

k,1(t)
to which to apply the monotonicity property. Note that we need only do this in one
direction, for example, the direction x1. This is enough to split the different solitary
waves and to control their size. We obtain, for all t ∈ [0, t∗],

K∑
k=1

|ωk(t) − ωk(0)| � C sup
t ′∈[0,t]

‖ε(t ′)‖2
H 1 + Ce−θ0L. (5.30)

This is sufficient to finish the proof of Proposition 5.1 exactly as that of Proposition
4.1, from (5.29) and (5.30). �

Appendices

A. Proofs of Lemma 2.4 and Corollary 3

Proof of Lemma 2.4
The proof is a standard application of the implicit function theorem. Let α > 0, and
let L > 0. Let x0

1 , . . . , x
0
K be such that x0

k > x0
k−1 + L and γ 0

1 , . . . , γ 0
K ∈ R. Denote

by B0 the H 1-ball of center
∑K

k=1 Qω0
k
(· − x0

k )ei((1/2)vkx+γ 0
k ) and of radius 10α. For any

u ∈ B0 and parameters ω1, . . . , ωK ; x1, . . . , xK ; γ1, . . . , γK , let q = (ω1, . . . , ωK ;
x1, . . . , xK ; γ1, . . . , γK ; u), and define

ε(x) = u(x) −
K∑

k=1

Qωk
(· − xk)ei((1/2)vkx+γk). (A.1)
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Define the following functions of q,

ρ1
k (q) = Re

∫
Qωk

(x − xk)ei((1/2)vkx+γk)ε(q; x) dx,

ρ2
k (q) = Re

∫
Q′

ωk
(x − xk)ei((1/2)vkx+γk)ε(q; x) dx,

ρ3
k (q) = Im

∫
Qωk

(x − xk)ei((1/2)vkx+γk)ε(q; x) dx,

for q close to

q0 =
(
ω0

1, . . . , ω
0
K ; x0

1 , . . . , x
0
K ; γ 0

1 , . . . , γ 0
K ;

K∑
k=1

Qω0
k
(· − x0

k )ei((1/2)vkx+γ 0
k )

)
.

For q = q0, we have ε(q0) ≡ 0, and thus for j = 1, 2, 3, ρ
j

k (q0) = 0. We check by
applying the implicit function theorem that for any u ∈ B0, one can choose in a unique
way the coefficients (ω1, . . . , ωK ; x1, . . . , xK ; γ1, . . . , γK ), so that q is close to q0 and
verifies ρ

j

k (q) = 0 for j = 1, 2, 3. In order to apply the implicit function theorem
to this situation, we compute the derivatives of ρ

j

k for any k, j with respect to each
(ωk, xk, γk). Note that

∂ε

∂ωk

(q0) = −∂Qω

∂ω

∣∣∣
|ω=ω0

k

(· − x0
k )ei((1/2)vkx+γ 0

k ),

∂ε

∂xk

(q0) = Q′
ω0

k

(· − x0
k )ei((1/2)vkx+γ 0

k ),

∂ε

∂γk

(q0) = −iQω0
k
(· − x0

k )ei((1/2)vkx+γ 0
k ),

and thus,

∂ρ1
k′

∂ωk

(q0) = −Re
∫

Qω0
k′ (x − x0

k′)ei((1/2)vk′x+γ 0
k′ ) ∂Qω

∂ω

∣∣∣
ω=ω0

k

(x − x0
k )e−i((1/2)vkx+γ 0

k ) dx,

∂ρ1
k′

∂xk

(q0) = Re
∫

Qω0
k′ (x − x0

k′)ei((1/2)vk′x+γ 0
k′ )Q′

ω0
k

(x − x0
k )e−i((1/2)vkx+γ 0

k ) dx,

∂ρ1
k′

∂γk

(q0) = −Im
∫

Qω0
k′ (x − x0

k′)ei((1/2)vk′x+γ 0
k′ )Qω0

k
(x − x0

k )e−i((1/2)vkx+γ 0
k ) dx,

and similar formulas hold for
∂ρ2

k′
∂ωk

(q0),
∂ρ2

k′
∂xk

(q0),
∂ρ2

k′
∂γk

(q0),
∂ρ3

k′
∂ωk

(q0),
∂ρ3

k′
∂xk

(q0), and
∂ρ3

k′
∂γk

(q0).

Now, we finish the computations for k′ = k. By assumption (A2), ∂ρ1
k

∂ωk
(q0) = ak <

0; since Qωk
is even, ∂ρ1

k

∂xk
(q0) = 0; and finally, since Qωk

is real, ∂ρ1
k

∂γk
(q0) = 0. Doing
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the same for ρ2
k and ρ3

k , we obtain the following conclusions:

∂ρ1
k

∂ωk

(q0) = ak < 0,
∂ρ1

k

∂ωk

(q0) = 0,
∂ρ1

k

∂ωk

(q0) = 0,

∂ρ2
k

∂xk

(q0) = 0,
∂ρ2

k

∂xk

(q0) = bk > 0,
∂ρ2

k

∂xk

(q0) = 0, (A.2)

∂ρ3
k

∂γk

(q0) = 0,
∂ρ3

k

∂γk

(q0) = 0,
∂ρ3

k

∂γk

(q0) = ck > 0.

For k′ = k and j = 1, 2, 3, since the different Qωk
are exponentially decaying (see

Lemma 2.1) and located at centers distant at least of L, we have∣∣∣∂ρj

k′

∂ωk

(q0)
∣∣∣ +

∣∣∣∂ρj

k′

∂xk

(q0)
∣∣∣ +

∣∣∣∂ρj

k′

∂γk

(q0)
∣∣∣ � Ce−θ1L. (A.3)

These terms are arbitrarily small by choosing L large.
Therefore, by (A.2) and (A.3), the Jacobian of ρ = (ρ1

1 , . . . , ρ
1
K ; ρ2

1 , . . . , ρ
2
K ;

ρ3
1 , . . . , ρ

3
K ) as a function of (ω1, . . . , ωK ; x1, . . . , xK ; γ1, . . . , γK ) at the point q0 is not

zero. Thus we can apply the implicit function theorem to prove, for α small and u ∈ B0,
the existence and uniqueness of parameters (ω1, . . . , ωK ; x1, . . . , xK ; γ1, . . . , γK ) such
that ρ(q) = 0. We obtain directly estimates (2.12) with constants that are independent
of the ball B0. This proves the result for u ∈ B0. If we now take u ∈ U(α,L), then u

belongs to such a ball B0, and the result follows. �

Proof of Corollary 3
Assume that u(t) satisfies (2.13) on [0, t0]. Then, applying Lemma 2.4 to u(t) for
any t ∈ [0, t0], and since the map t �→ u(t) is continuous in H 1, we obtain for
any k = 1, . . . , K the existence of continuous functions ωk : [0, t0] → (0, +∞),
xk, γk : [0, t0] → R such that (2.16) holds. Note in particular that

Re
(
ε(t), ∂xRk(t)

) = Re
∫ {

Q′
ωk(t)

(
x − xk(t)

)
+ ivk

2
Qωk(t)

(
x − xk(t)

)}
ei((1/2)vkx+γk(t))ε(t) = 0.

Moreover, (2.17) is a consequence of (2.12). �

To prove that the functions (ωk), (xk), and (γk) are in fact of class C1, we use regular-
ization arguments and computations based on the equation of ε(t). These computations
also justify estimates (2.18). We refer to [14] for more details on standard regulariza-
tion arguments needed for the proof, and we just give the equation of ε(t) to justify
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formally estimates (2.18). It is straightforward to check that the equation of ε(t) is

i ∂tε + L̃Kε = −i
K∑

k=1

ω̇k(t)
∂Qω

∂ω

∣∣∣
ω=ωk(t)

(
x − xk(t)

)
ei((1/2)vkx+γk(t))

+ i
K∑

k=1

(
ẋk(t) − vk

)
Q′

ωk(t)

(
x − xk(t)

)
ei((1/2)vkx+γk(t))

+
K∑

k=1

(
γ̇k(t) −

(
ωk(t) − v2

k

4

))
Qωk(t)

(
x − xk(t)

)
ei((1/2)vkx+γk(t))

+ O(‖ε‖2
H 1 ) + O(e−θ1(L+θ1t)), (A.4)

where

L̃Kε = −∂2
x ε−

K∑
k=1

{
f (Q2

ωk(t))ε+2f ′(Q2
ωk(t))Re

(
Qωk(t)(x−xk(t))e−i((1/2)vkx+γk(t))ε

)}
.

(A.5)

From the equation of ε, it is straightforward by taking scalar products by Qωk(t) and
then by Q′

ωk(t) to check that |ω̇k(t)|2, |ẋk(t) − vk|2, and |γ̇k(t) − (ωk(t) − v2
k/4)|2 are

estimated by the second member in (2.18). In fact, looking more carefully, we see that
a specific cancellation implies that |ω̇k(t)| is quadratic; that is, (2.18) holds for |ω̇k(t)|.

B. Proof of positivity of quadratic forms
In this appendix, we prove Lemmas 2.6 and 4.1.

Proof of Lemma 2.6
Lemma 2.6 is a direct consequence of the following claim applied to Qω(t) and ε. �

CLAIM 7
Let ω0 > 0, v0, x0, and γ0 ∈ R. Assume that there exists a solution Qω0 of (1.7), and
assume that ω0 satisfies (1.10). Let

H0(w,w) =
∫ {

|∂xw|2 +
(
ω0 + v2

0

4

)
|w|2 − v0 Im(∂xw w)

}
−

∫ {
f

(|Qω0 (· − x0)|2)|w|2

+ 2f ′(|Qω0 (· − x0)|2)[Re
(
Qω0 (· − x0)e−i((1/2)v0x+γ0)w

)]2}
.
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There exists λ0 > 0 such that if w ∈ H 1(R) satisfies

Re
∫

Qω0 (· − x0)e−i((1/2)v0x+γ0)w = Re
∫

Q′
ω0

(· − x0)e−i((1/2)v0x+γ0)w

= Im
∫

Qω0 (· − x0)e−i((1/2)v0x+γ0)w = 0,

then

H0(w,w) � λ0‖w‖2
H 1 .

Proof
Consider η(x) such that

w(x) = η(x − x0)ei((1/2)v0x+γ0).

Note that
∫ |w|2 = ∫ |η|2,∫

|∂xw|2 =
∫

|∂xη|2 + v2
0

4

∫
|η|2 + v0 Im

∫
∂xη η, (B.1)

and

Im
∫

∂xw w = Im
∫

∂xη η + v0

2

∫
|η|2.

Thus,

H0(w, w) =
∫

|∂xη|2 + ω0

∫
|η|2 −

∫ {
f (|Qω0 |2)|η|2 + 2f ′(|Qω0 |2)Q2

ω0
[Re η]2 }

= (L+
ω0

Re η, Re η) + (L−
ω0

Im η, Im η).

The orthogonality conditions on w imply directly (Qω0 being real valued)

(Re η, Qω0 ) = (Re η, Q′
ω0

) = (Im η,Qω0 ) = 0,

and so by Lemma 2.2, we obtain, for λ > 0,

H0(w,w) � λ‖η‖2
H 1 .

Using (B.1), we also have∫
|∂xw|2 � 3

2

∫
|∂xη|2 + 3v2

0

4

∫
|η|2,

and so H0(w,w) � λ′‖w‖2
H 1, which completes the proof of Claim 7. �
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Proof of Lemma 4.1
First, we give a localized version of Lemma 2.6. Let � : R → R be a C2-function
such that �(x) = �(−x), �′ � 0 on R

+ with

�(x) = 1 on [0, 1]; �(x) = e−x on [2, +∞);

e−x � �(x) � 3 e−x on R.

Let B > 0, and let �B(x) = �(x/B). Set

H�B
(w, w) =

∫
�B(· − x0)

{
|∂xw|2 +

(
ω0 + v2

0

4

)
|w|2 − v0Im(∂xw w)

}
−

∫ {
f

(|Qω0 (· − x0)|2)|w|2 + 2f ′(|Qω0 (· − x0)|2)
× [

Re
(
Qω0 (· − x0)e−i((1/2)v0x+γ0)w

)]2}
.

�

CLAIM 8
Under the assumptions of Claim 7, there exists B0 > 2 such that for all B > B0, if
w ∈ H 1(R) satisfies

Re
∫

Qω0 (· − x0)e−i((1/2)v0x+γ0)w = Re
∫

Q′
ω0

(· − x0)e−i((1/2)v0x+γ0)w

= Im
∫

Qω0 (· − x0)e−i((1/2)v0x+γ0)w = 0,

then

H�B
(w,w) � λ0

4

∫
�B(· − x0){|∂xw|2 + |w|2}.

Proof
For the sake of simplicity, we assume that x0 = 0 and γ0 = 0. We set z = w

√
�B .

Then, by simple calculations,∫
|∂xw|2�B =

∫
|∂xz|2 + 1

4

∫
|z|2

(�′
B

�B

)2
−2 Re

∫
∂xz z

�′
B

�B

,

∫
|w|2�B =

∫
|z|2.

Since, by definition of �B , we have |�′
B | � (C/B)�B , we obtain∫

|∂xz|2 − C

B

∫
(|∂xz|2 + |z|2) �

∫
|∂xw|2�B �

∫
|∂xz|2 + C

B

∫
(|∂xz|2 + |z|2).
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Moreover, since (∂xw w)�B = ∂xz z − (�′
B/(2�B))|z|2, we have

Im(∂xw w)�B = Im(∂xz z).

We also have∫ {
f (|Qω0 |2)|w|2 + 2f ′(|Qω0 |2)[Re(Qω0e

−i((1/2)v0x)w)]2
}

=
∫ {

f (|Qω0 |2)|z|2 + 2f ′(|Qω0 |2)[Re(Qω0e
−i((1/2)v0x)z)]2} 1

�B

.

Since �B ≡ 1 on [−B,B] and Qω0 (x) � Ce−(
√

ω0/2)|x|, we have, for all x ∈ R,∣∣∣ 1

�B

− 1
∣∣∣Qω0 (x) � e−(

√
ω0−2/B)|x|/2 � Ce−√

ω0B/4 � 1

B

for B large enough. Thus,∫ {
f (|Qω0 |2)|w|2 + 2f ′(|Qω0 |2)[Re(Qω0e

−i((1/2)v0x)w)]2
}

�
∫ {

f (|Qω0 |2)|z|2 + 2f ′(|Qω0 |2)[Re(Qω0e
−i((1/2)v0x)z)]2} + C

B

∫
|z|2.

Gathering these calculations, we obtain

H�B
(w, w) � H0(z, z) − C

B

∫
(|∂xz|2 + |z|2).

Thanks to the orthogonality conditions on w, we verify easily using the property of
�B that ∣∣∣Re

∫
Qω0e

−i((1/2)v0x)z

∣∣∣ � Ce−√
ω0B/4 � 1

B

for B large enough, and similarly with the two other quantities: Re
∫

Q′
ω0

e−i((1/2)v0x)z

and Im
∫

Qω0e
−i((1/2)v0x)z. By Claim 7, we obtain, for B large enough,

H�B
(w, w) �

(
λ0 − C

B

)
‖z‖2

H 1 � λ0

2
‖z‖2

H 1 � λ0

2

(
1 − C

B

) ∫
(|w|2 + |∂xw|2)�B

� λ0

4

∫
(|w|2 + |∂xw|2)�B,

which proves Claim 8. �
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Now, we finish the proof of Lemma 4.1. Let B > B0, and let L > 0. Since∑K
k=1 ϕk(t) ≡ 1, we decompose HK (ε, ε) as follows:

HK (ε, ε) =
K∑

k=1

∫
�B

(· −xk(t)
){|∂xε|2 +

(
ωk(t) + v2

k

4

)
|ε|2 − vkIm(∂xε ε)

}

−
K∑

k=1

∫ (
f (|Rk|2)|ε|2 + 2f ′(|Rk|2)[Re(Rkε)]2

)

+
K∑

k=1

(
ϕk(t) − �B(· − xk(t))

){|∂xε|2+
(
ωk(t) + v2

k

4

)
|ε|2 − vkIm(∂xεε)

}
.

By Claim 8, for any k = 1, . . . , K , we have, for B large enough,∫
�B

(· −xk(t)
){|∂xε|2 +

(
ωk(t) + v2

k

4

)
|ε|2 − vkIm(∂xε ε)

}
−

∫ (
f (|Rk|2)|ε|2 + 2f ′(|Rk|2)[Re(Rkε)]2

)
� λk

∫
�B

(· −xk(t)
)
(|∂xε|2 + |ε|2).

Moreover, by the properties of �B and ϕk(t), for L large enough, we have

ϕk(t) − �B

(· −xk(t)
)

� −e−L/(4B),

and, for δk = δk(ωk, vk) > 0,

|∂xε|2 +
(
ωk(0) + v2

k

4

)
|ε|2 − vkIm(∂xε ε) � δk(|∂xε|2 + |ε|2) � 0,

and so∫ (
ϕk(t) − �B(· − xk(t))

){|∂xε|2+
(
ωk(0) + v2

k

4

)
|ε|2 − vkIm(∂xε ε)

}
� δk

∫ (
ϕk(t) − �B(· − xk(t))

)
(|∂xε|2 + |ε|2) − Ce−L/(4B)

∫
(|∂xε|2 + |ε|2).

Thus, putting everything together, we obtain, with λ′
k = min(λk, δk),

HK (ε, ε) � λ′
k

∫ ( K∑
k=1

ϕk

)
(|∂xε|2 + |ε|2) − Ce−L/(4B)

∫
(|∂xε|2 + |ε|2),

and since
∑K

k=1 ϕk(t) ≡ 1, we obtain the result by taking L large enough.
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C. Proof of Proposition 4.2
The proof is similar to that of Lemma 2.5 by expanding

u(t) = R(t) + ε(t) =
K∑

k=1

Rk(t) + ε(t)

in the expression of GK . Note from (3.3) and (3.16) that

1 = ψ1 ≡
K∑

k=1

ϕk,

so that

GK (t) =
K∑

k=1

∫ {
|∂xu|2 − F (|u|2) −

(
ωk(0) + v2

k

4

)
|u|2 − vkIm(∂xu u)

}
ϕk(t).

Since ϕk = 1 in a large neighborhood around the solitary wave k and equals zero
outside, we see in this expression that GK is the sum of the contributions of the K

solitary waves.
Expanding u(t) = R(t) + ε(t) in the expression of E(u(t)), we obtain, as in the

proof of Proposition 4.2,

E
(
u(t)

) = E
(
R(t)

) − 2 Re
∫ (

∂2
xR + f (|R|2)R

)
ε +

∫
|∂xε|2

−
∫ {

f (|R|2)|ε|2 + 2f ′(|R|2)[Re(Rε)]2} + ‖ε(t)‖2
H 1β

(‖ε(t)‖H 1

)
.

Note that the centers of Rk(t) and Rk−1(t) are located at the distance xk(t)−xk−1(t) >

L + θ0t , and since the Rk are exponentially decaying (see (2.3) in Lemma 2.1), we
have, for k = k′,∫

|RkRk′ | +
∫

|∂xRkRk′ | +
∫

|∂xRk∂xRk′ | < Ce−θ0(L+θ0t). (C.1)

Also, note that |F (s)| < Cs2, and note that |f (s)| < Cs in a neighborhood of zero.
Thus,

E
(
u(t)

) =
K∑

k=1

{
E

(
Rk(t)

) − 2 Re
∫ (

∂2
xRk + f (|Rk|2)Rk

)
ε
}

+ O(e−θ0(L+θ0t))

+
∫

|∂xε|2 −
K∑

k=1

{ ∫ {
f (|Rk|2)|ε|2 + 2f ′(|Rk|2)[Re(Rkε)]2}}

+ ‖ε(t)‖2
H 1β

(‖ε(t)‖H 1

)
.
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We turn now to J(t). Recall that

J(t) =
K∑

k=1

{(
ωk(0) + v2

k

4

) ∫
|u(t)|2ϕk(t) − vk Im

∫
∂xu(t) u(t)ϕk(t)

}
. (C.2)

For the first term, we have∫
|u(t)|2ϕk(t) =

∫
|R(t)|2ϕk(t) +

∫
|ε(t)|2ϕk(t) + 2 Re

∫
R(t)ε(t)ϕk(t).

By the properties of ϕk and R,∫
|R(t)|2ϕk(t) =

∫
|Rk(t)|2 + O(e−θ0(L+θ0t)),

and

Re
∫

R(t)ε(t)ϕk(t) = Re
∫

Rk(t)ε(t) + O(e−θ0(L+θ0t)) = O(e−θ0(L+θ0t)),

by the orthogonality conditions on ε(t).
For the second term in (C.2), we have, by similar arguments and integration by

parts,

Im
∫

∂xu u ϕk(t) = Im
∫

∂xRk Rk − Im
∫

Rk ε ϕ′
k(t) − 2 Im

∫
∂xRk ε

+ Im
∫

∂xε ε ϕk(t) + O(e−θ0(L+θ0t)).

By the properties of Rk and ϕ′
k , we have

∣∣∫ Rk ε ϕ′
k(t)

∣∣ � Ce−θ0(L+θ0t), and so

Im
∫

∂xu u ϕk(t) = Im
∫

∂xRk Rk − 2 Im
∫

∂xRk ε + Im
∫

∂xε ε ϕk(t) + O(e−θ0(L+θ0t)).

Gathering these calculations, we obtain, finally, for J(t),

J(t) =
K∑

k=1

(
ωk(0) + v2

k

4

){ ∫
|Rk(t)|2 + 2 Re

∫
Rk(t)ε(t) +

∫
|ε(t)|2ϕk(t)

}
− vk

{
Im

∫
∂xRk Rk − 2 Im

∫
∂xRk ε + Im

∫
∂xε εϕk(t)

}
+ O(e−θ0(L+θ0t)).

By the equation of Rk and the orthogonality conditions (4.7), as in the proof of
Lemma 2.5, we have

−2 Re
∫ (

∂2
xRk +f (|Rk|2)Rk

)
ε +2

(
ωk(0)+ v2

k

4

)
Re

∫
Rk ε +2vk Im

∫
∂xRk ε = 0,
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which means that the terms of order 1 in ε all disappear when we sum E(u(t)) and
J(t).

Therefore, with the definition of HK (ε, ε) given in the proposition, and

G
(
Rk(t)

) = E
(
Rk(t)

) +
(
ωk(0) + v2

k

4

) ∫
|Rk|2 − vk Im

∫
∂xRkRk = Fωk(0)(Qωk(t)),

we obtain

GK (t) =
K∑

k=1

Fωk(0)(Qωk(t))+HK

(
ε(t), ε(t)

)+‖ε(t)‖2
H 1β

(‖ε(t)‖H 1

)+O(e−θ0(L+θ0t)),

and we get (4.11) by using Lemma 2.3. �
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