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1. Introduction
School assignments, college admissions, and labor markets
can be viewed as two-sided matching markets. Stability
has been shown to be an important property of two-sided
matching markets, and as long as agents’ preferences are
substitutable, a stable matching always exists (see, e.g.,
Hatfield and Milgrom 2005). Agents’ preferences, however,
often have complementarities, and understanding when a
stable matching exists, as well as finding one when it exists,
are important market design issues.

In some labor markets, such as the National Resident
Matching Program (NRMP), couples participate and naturally
introduce complementarities by searching for a pair of jobs.
In this paper we characterize the (non)existence of a stable
matching in large random markets with couples. Furthermore,
the results can be extended, as shown, to more general
matching markets. The existing results are supported by data
from the U.S. market for psychology interns.

The NRMP and the market for psychology interns are two
examples for markets with couples that use clearinghouses to
perform the matching. Approximately 16,000 doctors partici-
pated in the NRMP in 2010 as singles1 and approximately
1,600 doctors participated as part of a couple (800 couples).
In the same year, approximately 3,000 psychologists par-
ticipated in the psychology clearinghouse as singles, and
38 participated as couples (19 couples). Until 1983 doctors
that were part of a couple had to participate as singles,
since clearinghouses for these markets used the deferred
acceptance algorithm to find a matching. These two markets

as well as many other markets currently use the algorithm
designed by Roth and Peranson (1999) (henceforth called
RP) that allows couples to express their joint preferences.
This algorithm has had great success in practice: every
year since it has been used, the NRMP has found a stable
matching with respect to the reported preferences. For a
comprehensive background and history of these markets see
Kojima et al. (2013), Roth (2009).

We consider many-to-one matching markets, in which one
side of the market consists of hospitals that have responsive
preferences2 and the other side consists of doctors. Gale
and Shapley (1962) introduced the well-known deferred
acceptance algorithm, and showed that if every doctor is
single (and in particular demands a single hospital), the
algorithm will always find a stable matching. Naturally,
when couples are present in the market, they may view pairs
of hospitals as complements, and a stable matching may not
exist (Roth 1984, Klaus and Klijn 2005).3

The Gale-Shapley algorithm simulates an application
process by having doctors applying to hospitals according to
their preference lists. Each doctor, when applying, “influ-
ences” other doctors through “rejection chains” (in order to
accept a doctor, a hospital might reject some other doctor
who will apply to a different hospital who might reject
some other doctor to accept the applying doctor and so
forth). When only singles are present, rejection chains never
cycle because of the singles’ substitutable preferences, and
therefore the Gale-Shapley ends in a stable matching. The
main difficulty that rises with the presence of couples is
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that rejection chains may cycle. To understand when such
cycles evolve in large markets, we introduce a notion of
an “influence tree” for a couple, which roughly captures
the set of possible doctors the couple may influence by
entering the market. This allows us to investigate the way
complementarities may interfere with each other (causing
cycles) thus precluding a stable matching from being found.

We introduce a new matching algorithm called sorted
deferred acceptance (SoDA). We show that when the number
of couples is growing in a near-linear rate, the probability
that a stable matching exists, and SoDA will find one,
converges to one as the market grows.4 This result is tight:
we show that if the number of couples grows in a linear rate,
with constant probability no stable matching exists.

Our positive result is supported by real data from the
market for psychology interns, in which we demonstrate not
only that SoDA performs well, but also that influence trees
can be used to predict whether an instance will have a stable
outcome or not. According to the data, it is often the case
that couples are influenced by other couples, but cycles of
such influences do not exist. We also simulate the behavior of
SoDA in various large random markets based on real data.5

When the number of couples grows in a near-linear
rate, we also show that truth telling is an approximated
Bayes-Nash equilibrium in the game induced by the SoDA
algorithm for any large enough n, and further that the ex
ante probability that a single doctor or a couple will obtain
its best stable matching tends to one as n tends to infinity.
In particular, we show that most agents do not have multiple
stable outcomes. Finally, we show how the results generalize
to many-to-one matching markets similar to the one in Roth
and Sotomayor (1990) with workers and firms (limiting the
number of firms that have nonsubstitutable preferences).6

SoDA, which runs in almost linear time, is the first
matching algorithm for matching markets with couples that
is proven to find a stable outcome in very general settings
(it can also be adapted to more general worker-firm settings).
This helps explains the fact that algorithms, RP in particular,
have been successful in finding stable matchings in real life.7

1.1. Related Work

The closest work is by Kojima et al. (2013) who initiated
the study of existence of stable matchings in large matching
markets with couples. They showed that if the number
of couples is asymptotically smaller than

√
n, where n is

the number of singles, a stable matching exists with high
probability (they also came with a simpler algorithm that also
extends deferred acceptance for finding a stable matching in
such markets). Although this might resemble our positive
result, there is a striking difference. Using our language, they
essentially show that no couple influences any other couple
with high probability. In other words, imagine that Alice,
who is part of a couple, applies to Mt. Sinai hospital (under
their algorithm), which has one position, and Mt. Sinai
temporarily assigns Alice (till they get a better application if
at all). Under their assumptions it follows that with high
probability Mt. Sinai will never get an application from an

applicant they like better than Alice if that applicant is either
a member of a couple or a doctor that is part of a rejection
chain beginning from a member of another couple (who got
temporarily assigned in some other hospital). Eliminating
such influences is too strong and is indeed violated in data.
In particular, cyclical influences should be avoided rather
than any one way influences.

In their model doctors have short preference lists, which
essentially implies an excess number of positions. Instead,
we assume an excess number of available positions8 and
further do not limit a priori the length of preference lists.9

One can view the results in this paper as a characterization
for the existence of a stable matching in large random
matching markets. The positive results, under which the
fraction of couples grows at a sublinear rate, add to a long
list of works that adopt large random markets to show
that various desired economic properties hold with high
probability in matching and auction settings; Immorlica
and Mahdian (2005) and Kojima and Pathak (2009) studied
random growing matching markets to show that the lack of
strategy-proofness in small markets vanishes in large random
markets (see also Lee 2011). Che and Kojima (2010) and
Kojima and Manea (2010) showed that in one-sided matching
markets, under the mechanism induced by probabilistic serial
dictatorship the desire to manipulate vanishes. Roberts and
Postlewaite (1976) and Jackson and Manelli (1997) showed
similar results in large exchange economies. Rustichini et al.
(1994) and Cripps and Swinkels (2006) show that the lack of
efficiency is small in large double auctions (see also Jackson
and Swinkels 2005 and Satterhwaite and Williams 1989).
All these works assumed, however, that agents’ preferences
have no complementarities. When the fraction of couples is
assumed to grow in a linear rate, our result implies that the
issues caused by complementarities do not vanish with the
size and randomness of the market.

Finally, this paper adds to a short but growing literature
for positive results in settings in which agents’ preferences
may have complementarities. See, e.g., Milgrom (2004), Gul
and Stacchetti (1999), Sun and Yang (2006), and Lahaie
and Parkes (2009) for auction settings, and Hatfield and
Kominers (2014) and Pycia (2012) for matching settings.
We believe the notion of influence trees introduced in this
paper is of independent interest for analyzing other settings
with complementarities.

2. Matching Markets with Couples

2.1. The Model

In a matching market there is a set of hospitals H , a set of sin-
gle doctors S, and a set of couples of doctors C . Each single
doctor s ∈ S has a strict preference relation �s over H ∪ 8�9,
where � denotes an outside option for doctors. If h�s �, we
say that hospital h is acceptable for s. Each couple c ∈C
denoted by c = 4f 1m5 has a strict preference relation �c

over 4H ∪ 8�95× 4H ∪ 8�95, i.e., over pairs of hospitals
including the outside option. If 4h1h′5 ∈H ∪ 8�9×H ∪ 8�9,
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4h1h′5�s 4�1�5 and 4h1h′5 6= 4�1�5 we say that the pair
4h1h′5 is acceptable for c. For every couple c we denote by
fc and mc the first and second members of c. Denote by D the
set of all doctors. That is, D = S ∪ 8mc � c ∈ C9∪ 8fc � c ∈ C9.
Each hospital h ∈ H has a fixed capacity kh > 0 and a
strict preference relation �h over the set D. For any set
D′ ⊆D hospital h’s choice given D′, Chh4D

′5, i.e., the most
preferred doctors h can employ from the set D′, is induced
by �h and kh as follows: d ∈ Chh4D

′5 if and only if there
exists no set D′′ ⊆D′\8d9 such that �D′′� = kh and d′ �h d
for all d′ ∈D′′. Note that we assume that all doctors are
acceptable for each hospital.10

A matching � is a function from H ∪C ∪ S such that
�4s5 ∈H ∪8�9 for every s ∈ S, �4c5 ∈ 4H ∪8�95×4H ∪8�95
for every c ∈C, �4h5 ∈ 2D for every h ∈H , and

(i) s ∈�4h5 if and only if �4s5= h;
(ii) �4c5= 4h1h′5 if and only if fc ∈�4h5 and mc ∈�4h′5;
(iii) �4c5= 4h1�5 if and only if fc ∈�4h5 and mc y�4h′5

for all h′ ∈H ;
(iv) �4c5= 4�1h5 if and only if mc ∈�4h5 and fc y�4h′5

for all h′ ∈H .
Here, �4s5 = � means that s is unassigned under �,

and similarly �4c5 = 4�1�5 means that the couple c is
unassigned.

We proceed to define stability. It will be convenient to
define Ch�4D5=D for every set of doctors D (capturing
that the outside option has sufficient capacity for all doctors).
Blocking coalitions for a given matching can be formed in
several ways:

• 4s1 h5 ∈ S × 4H ∪ 8�95 is a block of � if h�s �4s5 and
s ∈ Chh4�4h5∪ 8s95;

• 4c1h1h′5 ∈C × 4H ∪ 8�95× 4H ∪ 8�95 (where h 6= h′)
is a block of � if 4h1h′5�c �4c5, fc ∈ Chh4�4h5∪ 8fc95,
and mc ∈ Chh′4�4h′5∪ 8mc95;

• 4c1 h5 ∈ C × 4H ∪ 8�95 is a block of � if 4h1h5�c �4c5
and 8fc1mc9⊆ Chh4�4h5∪ c5.11

Finally a matching is stable if there is no block of �.
Gale and Shapley (1962) showed that the (doctor propos-

ing) the deferred acceptance algorithm described below
always produces a stable matching in a matching mar-
ket without couples. They further showed that the stable
matching produced by this algorithm is the one that is
weakly preferred by all single doctors. Roth (1982) showed
that the mechanism induced by this algorithm makes it a
dominant strategy for all single doctors to report their true
preferences.

Doctor-Proposing Deferred Acceptance
Algorithm (DA):

Input: A matching market 4H1S1�H 1�S5 without couples.
Step 1. Each single doctor s ∈ S applies to her most

preferred hospital. Each hospital rejects its least preferred
doctor in excess of its capacity among those who applied to
it, keeping the rest of the doctors temporarily.

Step t. Each doctor who was rejected in Step t− 1 applies
to her next highest choice if such exists. Each hospital

considers these doctors as well as the doctors who are
temporarily held from the previous step, and rejects the
least-preferred doctors in excess of its capacity keeping the
rest of the doctors temporarily.

The algorithm terminates at a step where no doctor is
rejected.

In the next section we introduce a new algorithm for
finding a matching in a market with couples. Roth (1984)
showed that when there are couples, sometimes a stable
matching does not exist. In §4 we show that as the size of
the market grows, for (essentially any) sublinear growth of
the number of couples the probability that the algorithm
produces a stable matching approaches one.

2.2. A New Matching Algorithm

The matching algorithm presented here first finds the stable
matching in the market without couples (using DA) and then
attempts to insert the couples, while maintaining the deferred
acceptance idea of letting rejected singles further propose
according to their preference lists. An informal description
of the sorted deferred acceptance algorithm is provided
below, and the formal definition is deferred to Appendix A.

Sorted Deferred Acceptance Algorithm (SoDA):
Step 1. Find a stable matching in the submarket without

couples using the DA algorithm.
Step 2. Fix an order � over the couples. In the order �,

each couple c applies to pairs of hospitals according to its
preference list �c (beginning with the most preferred) and
once it finds a pair of hospitals that accepts it, we assign
the couple to the pair of hospitals and stabilize the current
matching as follows:

Step 3 (Stabilize). Continue the DA algorithm, with the
doctors that were rejected from the their positions in the
pair of hospitals that the last couple c was assigned to (at
most two doctors).

(i) If during stabilizing one of the members the couple c
(the last to apply) gets rejected the algorithm fails.

(ii) If some other couple c′ 6= c gets rejected during
stabilizing, the order � is changed so that c will move and
apply one place ahead of c′, and Step 2 begins again with
the altered permutation; if however the new order � ′ has
been attempted previously (at Step 2) the algorithm fails.

Note that if the algorithm terminates without failure it
produces a stable matching.

Kojima et al. (2013) used a similar algorithm but allowed
couples to apply in only one order, i.e., if some couple
is evicted their algorithm fails, even though there might
be a different order of couples’ applications that will not
lead to such a failure. This is too conservative as naturally
couples are expected to get evicted in the application process.
In SoDA, if some couple has been evicted the algorithm
allows couples to apply again using a different ordering.
This difference is shown in real data in §6.1.
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Observe that the SoDA algorithm fails to produce a
matching in two cases: first, if a couple c that finds a pair of
positions causes a “rejection chain” leading to a member
of the couple c being rejected (Step 3(i)),12 and second, it
attempts to let couples apply in an order that has already
been attempted before (Step 3(ii)).13 Again, if the algorithm
does not fail, the matching produced is stable.

The following definition will be useful throughout the
paper.

Definition 1 (Evicting). Let d ∈D be a doctor and sup-
pose that d is (temporarily) assigned to some hospital h.
Let c ∈C. If during the execution of the SoDA algorithm
some member of the couple c who is not assigned to h
applies to h and causes d to be rejected by h, we say that
d was evicted by c. Furthermore, if d was evicted by c,
applies to some hospital h′ and causes some other doctor d′

who is assigned to h′ to be rejected, we also say that d′

is evicted by c, and so forth. Finally, if d was evicted by
c and d belongs to a couple c′ we say that c′ was evicted
by c.14

Remark 1. According to this definition c can evict itself.
Such a phenomenon may occur since one member of a given
couple can evict the other member of the couple (in the
algorithm this happens in Step 3(i)).

3. A Large Market Model
A random market is a tuple â = 4H1S1C1�H 1Z1Q5, where
Z = 4zh5h∈H∪8�9 and Q = 4qh5h∈H∪8�9 are probability distribu-
tions over H .

The preference list of each single doctor d ∈ S is inde-
pendently drawn as follows: for each k = 11 0 0 0 1 �H � given
d’s preference list up to her kth most preferred hospital,
draw a hospital h independently according to Z until h does
not appear in d’s k most preferred hospitals and let it be
d’s 4k+ 15th most preferred hospital. The preference list
for each couple c = 4f 1m5 is drawn from the distribution
Q×Q.15

We will consider a sequence of random markets â 11 â 21 0 0 0,
where â n = 4Hn1 Sn1Cn1�n

H 1Z
n1Qn5. The sequence of

markets will have growing size according to the following
definition.

Definition 2. A sequence of random markets â 11 â 21 0 0 0 is
called regular if there exist 0 < � < 1, �> 1, k̄ > 0, and
� ¾ 1 such that for all n

1. �Sn� = n and �Cn� =O4n1−�5 (the number of couples
grows almost linearly);

2. for each hospital h ∈Hn, kh < k̄ (bounded capacity);
3.
∑

h∈Hn kh ¾ �n (excess number of positions);
4. qh/qh′ ∈ 61/�1�7 and zh/zh′ ∈ 61/�1�7 for every h,

h′ ∈Hn (uniformly bounded preferences).

Importantly our results are true even if � is a “slow”
decreasing function of n converging to zero. The exact rate
is discussed in the last section. It will be useful to define
�max = maxh∈H max4qh1 zh5.

In their model, Kojima et al. (2013) assumed that each
doctor’s preference list is bounded by a constant, i.e., the
preference list contains a constant number of acceptable
hospitals, whereas in our setting preference lists can be
of any length. A key step in their proof is to show that
the number of unfilled positions grows linearly in n with
high probability. Instead, we make a weaker assumption by
starting with a linear excess number of positions.

4. Stability
In this section we show the following:

Theorem 1. Let â 11 â 21 0 0 0 be a regular sequence of random
markets. Then the probability that there exists a stable
matching tends to 1 as n goes to infinity.

We defer the formal proof to Appendix A.2 and give in
the next section an intuition and a brief outline of the proof.
In the proof we show that for random doctors preferences
the probability that the SoDA algorithm (outlined in §2.2)
yields a stable matching converges to 1 as n goes to infinity.
In Appendix A.2. we also show that the SoDA algorithm
runs in near linear time. Furthermore, the rate at which the
probability converges to one is approximately 1/n�.

Remark 2. Kojima et al. (2013) proved a similar result
allowing less than

√
n couples in the market. The difference

in the growth rate in both results is not cosmetic; they do
not allow couples to appear in any rejection chain that other
couples cause. In other words, if a couple has been rejected
at some point in the application process their algorithm
fails, even though some other order of couples application
may still result in a stable matching. By definition, SoDA
and our analysis allow such rejection chains as long as
they do not cycle (see the following section for further
discussion).

Remark 3. Although the growth rate is not linear, the
correctness of the proof of Theorem 1 is only a lower bound
on the performance of the algorithm, and it may perform
even better in practice. Technically, the proof will show that
the random market has a stable matching with probability at
least 1 − 4logn5O41/�5/nì4�5, which converges to 1 even if
� =ì4log logn/

√
logn5, and not just when � is constant.16

This means that the algorithm finds a stable outcome with
probability approaching 1 even when the number of couples
grows like n/2

√
logn·log logn. Such growth is close to linear.

Empirically it is indeed hard to distinguish between such
subpolynomial factors and constant factors when there are
n= 161000 doctors.

It is well known that in a matching market without couples,
under the doctors proposing deferred acceptance algorithm,
each doctor obtains his best stable match, i.e., for no doctor
there exists a stable matching in which he obtains a better
hospital than under DA.17 When couples are present one can
show that doctors and couples will not always obtain their
best stable matches. However, at least ex ante this holds in
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a large market, a corollary that follows from the proof of
Theorem 1:

Corollary 1. Let â 11 â 21 0 0 0 be a regular sequence of
random markets. The ex ante probability that a doctor or a
couple obtain their best stable match tends to 1 as n tends
to infinity.

A proof sketch is given in §A.3.

4.1. Intuition and Proof Outline for Theorem 1

The goal is to show that if the number of couples is m=

n1−� (for any 0 < � < 1) then as n approaches infinity the
probability a stable matching exists approaches 1. To better
understand our approach we begin with the intuition for why
the result holds for any � > 1

2 (essentially this will provide
the intuition for the result by Kojima et al. 2013), and then
for any � < 1.

1. Number of couples is n1/2−�. Consider the following
simplified version of the SoDA algorithm, which we call the
direct algorithm: after finding the stable matching in the
market without couples, the couples apply one by one and if
some couple evicts another couple (directly or indirectly as
defined in §2.2) the algorithm fails (i.e., it does not attempt to
change the permutation over the couples). Observe that if the
algorithm does not fail, it outputs a stable matching. Note that
the direct algorithm is equivalent to the algorithm presented
by Kojima et al. (2013), in which couples apply one by one
after a stable matching was found in the submarket without
couples, and only then all singles that got evicted can apply.

When the first couple applies it can evict itself. When the
second couple applies it can evict itself or the first couple,
and so on. We bound the probability that a couple evicts
some other couple. By way of example, we analyze the
probability that the second couple c evicts the first couple.

The second couple c creates a rejection chain, which
can cause several doctors who were temporarily assigned
to continue applying. To bound the length of this chain
consider fc. At some point she is temporarily assigned to a
hospital h. If h had a vacant position she did not evict any
doctor and therefore also no other couple and we are done.
Since there are more positions than doctors, the probability
that the hospital has a vacancy is 1 − 1/� (for simplicity
we assume here that each hospital has capacity one and
the preference distributions are uniform). If the hospital
has no vacancy, she evicts a doctor d1 who enters some
hospital h1. If h1 has a vacancy, we are done. If h1 is full, a
doctor d2 gets evicted, and looks for a new position. Say
d2 is assigned to h2. Again, h2 can have a vacancy, or be
full, and this goes onward. However, since at every step
of the chain there is a constant probability for a vacancy,
one can show that with probability 1 − 1/n3 the number
of hospitals h1h11 h21 0 0 0 in the chain is upper bounded by
3� logn/4�− 15.

Now, we can estimate the probability that the second
couple evicts the first or itself. The second couple evicts
doctors from at most 6� logn/4� − 15 hospitals. If this

list includes the hospitals that admitted the first couple,
or occupied by one of the spouses in c, we could be in
trouble. But since preferences are random, the chances that
the second couple influences any of these hospitals are upper
bounded by

4 ·
6� logn
4�− 15n

=
24� logn
4�− 15n

0

What about the third couple? Again, it influences at most
6� logn/4�− 15 hospitals. But now there are six hospitals
that must not be influenced: four hospitals (at most) for each
previously assigned couple and two hospitals for the third
couple. Generalizing this for the kth couple and summing
the probabilities we get

m
∑

k=1

12�k logn
4�− 15n

<
12�m2 logn
4�− 15n

=O

(

logn
n2�

)

1

which goes to zero as n goes to infinity.
Note that if m=

√
n this argument would not hold. In

fact one can show that the direct algorithm fails with high
probability if the number of couples is a large multiple of
√
n (we shall see that this is also supported by data and

simulation results).
The direct algorithm attempts to insert the couples accord-

ing to a single permutation. A natural attempt to find a stable
matching when more couples are in the market is to change
the permutation each time a couple evicts another cou-
ple. Suppose for example that couple c1 = 4m11 f15 applies
first and is temporarily assigned to 4h11h25. Then couple
c2 = 4m21 f25 applies to 4h11h35 and moreover, suppose
h1 prefers m2 over m1. In this case, c1 would be evicted,
and the direct algorithm would fail. However, if c2 applies
before c1, the algorithm would temporarily assign 4m21 f25
to 4h11h35, and when c1 applies, h1 would not accept m1,
so c1 would not be temporarily assigned to 4h11h25, and
just keep applying according to its list of preferences. This
simple example motivates changing the insertion order of
couples when some couple gets evicted, with the evicting
couple coming before the evicted one.

2. Number of couples is n1−� (sketch of proof of Theo-
rem 1).

The SoDA algorithm attempts to find an ordering of the
couples, such that if couples apply one by one according to
this order, no couple gets evicted by another couple. Whether
or not a couple c evicts another couple c′ depends on the
(current) matching and the preference profile. Identifying
worst-case scenarios, such as where c could “possibly”
evict c′ if there exists a configuration in which this happens,
are too weak to prove our result. Instead, we devise a notion
of whether c is “likely” to evict c′, and use this notion to
analyze the algorithm. To do so we define for each couple c
an influence tree; roughly speaking the influence tree of c
consists of the hospitals and doctors who are likely to be
part of rejection chains because of the presence of c. In
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other words, the influence tree of c is supposed to capture all
the dynamics that are likely to be caused by c’s assignment.

We want to show that there are not “many” influence tree
intersections, since an intersection implies that two couples
might influence the same hospital, and more importantly
might evict each other. A first key step in this direction is
the following:

(i) With high probability each influence tree is very small
4compared to n5.

If influence trees had not intersected each other, one could
have shown that any insertion order of the couples would
yield a stable matching with high probability. Essentially
Kojima et al. (2013) showed that if � > 005 then the proba-
bility that no two influence trees intersect approaches 1 as
n→ �. This however is not the case for all � < 1.

Influence trees, their intersections, and hospital preferences
induce a useful structure in the form of a directed graph,
which we call the couples graph; Informally speaking, in the
couples graph each couple is a node, and there is a directed
edge from couple c to another couple c′ if their influence
trees intersect at some hospital h and c can possibly evict
some doctor that caused h to be in the influence tree of c′

(the doctor can be a member of the couple c′). We will show
that the couples graph is sparse:

(ii) With high probability all weakly connected components
in the couples graph are small.18 Furthermore:

(iii) With high probability there are no directed cycles in
the couples graph.

Recall that an influence tree for one couple does not
involve other couples. In the next step we verify that influence
trees are indeed the right structure:

(iv) With high probability if in the algorithm a couple c
influences a hospital h under any ordering � over the
couples, then that hospital will also belong to the influence
tree of c.

Finally, by (iii) and (iv), if one can find a topological sort
� in the couples graph,19 then letting couples apply one by
one according to � yields a stable matching.

In the language of couples graphs, Kojima et al. (2013)
essentially showed that with less than

√
n couples, the

couples graph is empty with high probability, i.e., possible
rejection chains initiated by couples will never intersect
each other. In particular, not only that this is not expected
in practice, it misses the real difficulty couples bring to
this setting—rejection cycles. In the following sections we
discuss and define formally influence trees and the couples
graph.

Remark 4. In our model, each couple’s preference list is
drawn from a product distribution. The weakness of this
model is the lack of correlation in each couple’s preferences.
Our results hold, however, for a quite general city model in
which couples wish to be assigned to hospitals in the same
city. Suppose there is a constant number of cities k, each
with ��n hospitals (for some small �) and each hospital
belongs to a given city. Each single chooses a list of hospitals

at random, ignoring geographic constraints. Each couple
c = 4m1f 5, repeatedly, first randomly selects a city w and
then m and f independently draw a pair of hospitals that
are located in w. Suppose that every couple chooses one
city and then randomly chooses pairs of hospitals only
from that city. In this case, every city will essentially be
an independent market with its own couples. Although
singles may create some correlation (since they can move
between cities), the history of each single during the SoDA
algorithm will not make a difference: since each city is
of size ��n, with high probability at any given stage of
the SoDA algorithm the number of singles in the city will
be at most �n+

√
�n log4�n5, implying it will have many

vacancies with high probability. If couples can choose at
each iteration when drawing their preferences of a different
city, our result will still hold since the probability for a
stable matching, is higher than in a similar model with kn1−�

couples in which each couple is restricted to choose one city.

Remark 5. Another model that allows correlation in the
preferences of each couple is the following. Assume singles
and couples both have constant length preferences. Singles
preferences are drawn as usual. Each couple c, however,
first randomly draws a small (constant size) set of potential
hospitals Sc, and then a joint preference list of constant
length is created by choosing arbitrary tuples of pairs of
potential hospitals. For example, if Sc = 8h11h21h39, then
the joint preference list 4h11 h25, 4h11 h15, 4h31 h15, 4h21 h35,
4h31 h35 is a valid preference list for c.

Note that this model allows pairs to list the same hospital
for both members at the same entry. Under our original
model (as is shown in the proof) couples do not apply to
the same hospital at the same time with high probability.
This is not the case here, and we need another condition for
hospitals’ preferences over sets of doctors. Assume each
hospital h has lexicographical preferences, i.e., it prefers to
always hire a better doctor even it means not to fill capacity
or to hire a “bad” doctor. For example, suppose 4d11d45
and 4d41d35 are couples, and suppose h has capacity two
and has the ranking d11 d21 d31 d4 over doctors. Then h will
prefer to hire 4d11d45 over 4d21d35. Such a condition is
needed to prevent trivial cycles; if 4d21 d35 are preferred over
4d11 d45 then if d1 applies to h when d2 and d3 are assigned
to h, then they both will be rejected and then d4 can join d1

in h. But now d2 and d3 are preferred by h over d2 and d3.
Under this model, Theorem 1 will hold. The proof will

follow under very minor modifications since couples’ influ-
ence trees are still small. Further types of correlations in
preferences are left for future research.

4.2. Influence Trees

A main concept we introduce is that of an influence tree.
Note that whenever a couple applies and is assigned to a
pair of hospitals it causes a rejection chain of doctors that
apply down their preference lists to find new assignments
after they have been evicted from their previous assignments.
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The influence tree of a couple c will consist of the set of
pairs of doctors and hospitals that form new assignments in
the rejection chain c causes.

Observe that the order of applications of couples may
change the rejection chains a couple c causes. To avoid this
difficulty, we (constructively) define the influence tree for a
couple c on the submarket without all other couples, i.e.,
as if the couple c is the first to apply, but allowing r > 0
adversarial rejections. In particular the r rejections simulate
the presence of other couples and the rejection chains they
cause by an adversary that can reject doctors from settling
in hospitals. Thus the adversary is allowed to reject r times
(in addition to the natural rejections). In the analysis we will
choose r > 0 such that with high probability the presence
of other couples will only affect the influence path of the
couple c in ¶ r places. Thus, the influence tree definition
allows us to analyze the dynamic setting in which at each
point a different number of couples already applied by upper
bounding it with a “pessimistic” static setting.

Next we formally define influence trees (these will be
defined for a fixed realization of the preferences). First, let
â = 4H1S1C1�H 1�S1�C5 be a matching market and let �
be a matching. Denote by oh4�5 and by fh = kh − oh4�5 the
number of assigned doctors to hospital h and the number of
available positions in h under �, respectively. Let dj4�1h5
be the jth least preferred doctor according to �h that is
assigned to h under �.

Definition 3 (Influence Tree). Let â = 4H1S1C1�H 1
�S1�C5 be a matching market with couples and let � be the
matching produced by the DA algorithm for the submarket
without couples. Let d ∈D and let r be any integer. An
influence subtree of doctor d with root h and with up to r
rejections, denoted by IT4d1 r1h5 is defined recursively as
follows:

(a) If fh4�5= 0 and dkh4�1h5�h d then let h′ be the
next preferred hospital by d after h and let IT4d1 r1h5=

IT4d1 r1h′5. Otherwise
(b) change � such that d is assigned to h and

(b1) add 4h1d5 to IT4d1 r1h5;
(b2) if r > 0 or fh4�5 = −1 then for each j =

11 0 0 0 1min4oh4�51 r − fh4�55 let hj be the most preferred
hospital by dj4�1h5 after h, and add to IT4d1 r1h5 the
influence subtree IT4dj4�1h51 r − j − fh4�51hj5.

For a couple c = 8f 1m9, let 4h1
f 1h

1
m51 0 0 0 1 4h

r
f 1h

r
m5 be

the top r pairs of hospitals according to �c in which the
couple c can be accepted. That is, either

• hi
f = hi

m and c ⊆ Chhif
4�4hi

f 5∪ c5, or
• hi

f 6= hi
m and f ∈ Chhif

4�4hi
f 5 ∪ 8f 95 and m ∈

Chhim
4�4hi

m5∪ 8m95.
The influence tree for the couple c is defined to be

IT4c1 r5

2=
r+1
⋃

i=1

4IT4f 1 r + 1 − i1 hi
f 55∪ IT4m1 r + 1 − i1 hi

m550

Note that we allow fh4�5 to be −1 in the definition of an
influence tree (this is possible since under this definition we
first assign a doctor to a hospital and only then reject from
that hospital). Also observe that each time a hospital h is
inserted to the influence tree, a doctor d is associated with
it. In this case we say that h was inserted to IT4c1 r5 by d.20

With a slight abuse of notation we will write h ∈ IT4c1 r5 if
h was inserted to T 4c1 r5 by some doctor d.

The next example illustrates the definition of an influence
tree.

Example 1. Consider a market with six hospitals each
with capacity of two; five single doctors, d11d21 0 0 0 1d5;
and two couples c1 = 4d61d75 and c2 = 4d81d95; and let
the preferences be as in Table 1. The deferred acceptance
algorithm for the submarket without couples produces the
matching given in the boxes as in Table 1. The influence
tree for c1 = 4d61d75 with r = 0 is constructed as follows
(see Figure 1(a)). The most preferred pair of hospitals by
c1 that it can be accepted to is 4h31 h45. Therefore 4h31 d65

and 4h41d75 are added to IT4c1105. The assignment of c1

to 4h31h45 causes d4 to be evicted and assigned to h5,
hence 4h51d45 ∈ IT4c1105. The tree IT4c1115 consists of
IT4c1105 but also assignments that are caused because of
a rejection chain resulting from a single rejection by an
adversary anywhere down the chain in IT4c1105. If c1 is
rejected from 4h31h45 it can be accepted to 4h41h55, thus
4h41d451 4h51d55 ∈ IT4c1115. Furthermore, no other doctor
is evicted by assigning c1 to 4h41h55. Although a single
rejection can be used anywhere down the path in IT4c1105,
d4 cannot be evicted from h5 since the capacity of h5 is two
and it is the only doctor assigned to that hospital.

The influence trees IT4c2105 and IT4c2115 are given in
Figure 1(b). The construction is similar, but for r = 1 an
adversarial rejection can be used to evict also d5, which in
turn can be accepted to h5. Therefore 4h51 d55 ∈ IT4c2115.

Table 1. Preference lists.

Doctors Hospitals

d1 d2 d3 d4 d5 4d61 d75 4d81 d95 h1 h2 h3 h4 h5

h1 h1 h1 h3 h3 4h11 h25 4h11 h15 d1 d1 d1 d1 d1

h2 h2 h2 h5 h5 4h21 h15 4h21 h25 d8 d8 d8 d8 d8

h3 h3 h3 h1 h1 4h31 h45 4h31 h45 d9 d9 d9 d9 d9

h4 h5 h4 h4 h2 4h41 h55 4h41 h35 d2 d2 d3 d3 d6

h5 h6 h5 h2 h4 4h51 h55 4h41 h25 d5 d5 d6 d5 d4

d3 d3 d2 d4 d2

d6 d6 d5 d6 d5

d4 d4 d7 d2 d7

d7 d7 d4 d7 d3
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Figure 1. Influence trees with parameters r = 0 and r = 1.

(a) Influence tree of c1 = (d6, d7) (b) Influence tree of c2 = (d8, d9)

r = 1

(h5, d4)
(h3, d6) (h4, d7)

(h4, d6) (h5, d7)

r = 0
(h2, d8) (h2, d9)

(h3, d8) (h4, d9)
(h5, d5)

(h5, d4) (h3, d3)

r = 1

r = 0

4.3. The Couples Graph

Recall that the definition of an influence tree for a couple c
does not involve any other couple and therefore the tree
captures only what possibly could have happened had there
been other couples. The SoDA algorithm inserts couples
one by one after the DA algorithm has terminated, and
if some couple c1 evicts another couple c2 the order of
their insertions is altered so that c1 is moved ahead of c2.
Intuitively the intersection of two influence trees, of c1 and
of c2, together with the hospital preferences will provide a
good guess for which couple to insert first. This motivates
the definition of the couples graph; each couple in the graph
is a node and a directed edge will exist from couple ci to
couple cj if both couples influence some common hospital h
by causing doctors di and dj to apply to it, respectively, and
h prefers di over dj . Formally, we have the following:

Definition 4. Let â = 4H1S1C1�H 1�S1�H5 be a match-
ing market and let r ¾ 0. In the (directed) couples graph for
depth r ¾ 0, denoted by G4C1 r5 the set of vertices is C and
for every two couples c11 c2 ∈C there is a directed edge
from c1 to c2 if and only if there exist h ∈H and d11 d2 ∈D
(d1 6= d2) such that 4h1d15∈ IT4c11 r5, 4h1d25∈ IT4c21 r5
and d1 �h d2.

Before we continue we illustrate a couples graph.

Example 2. Consider the same market as in Example 1 (see
Table 1). Note that the influence trees with r = 1 intersect
at h3 twice since 4h31d85 ∈ IT4c2115, 4h31d35 ∈ IT4c2115
and 4h31d65 ∈ IT4c2115. Since d3 �h3

d6 and d8 �h3
d6 the

couples’ graph with r = 1 will have an edge from c2 to c1

as in Figure 2. One can verify that other intersections at h4

and h5 also result in the same directed edge. Indeed, letting
c1 apply before c2 (after the DA stage) results in a stable
matching.

Figure 2. Couples graph for r = 1.

c1 c2

As mentioned above, the idea of the proof of Theorem 1
is to show that the couples’ graph does not contain cycles
with high probability. Let k = n1−� be the number of couples.
In one of the first steps we will show that the probability
for an edge in the couples’ graph, i.e., that some couple
can possibly evict some other couple, is of order 1/n. Since
there are n2−2� possible edges, this means that for � > 1

2 the
graph will be empty with high probability (which provides
the result by Kojima et al. 2013). However for � < 1

2 the
graph will contain many edges, and we will show it contains
no cycles.

5. Incentive Compatibility
In this section we will show the following:

Theorem 2. Ex post truthfulness: the probability that any
doctor can gain by misreporting her preferences is at most
O4n−�/25, even if the doctor knows the entire preference list.

A similar result can be shown for hospitals using similar
techniques as in the proof of Theorem 2. We avoid the
exact details here.21 Together with Theorem 2 we obtain that
reporting truthfully is a �-Bayes-Nash equilibrium in the
Bayesian game induced by the SoDA algorithm (assuming
bounded utilities). We refer the reader for exact definitions
of the Bayesian game to Kojima et al. (2013). The proof of
Theorem 2 is deferred to Appendix A.5.

6. Empirical and Experimental Results
In this section we provide empirical and simulation results
for matching markets with couples, beginning with the
market for psychology internships, followed by more general
simulations for large(r) markets.

6.1. The Clinical Psychology Market

Since 1999 the Association of Psychology Postdoctoral and
Internship Centers (APPIC) used a centralized computerized
clearing house every year to match applicants to internships,
allowing also for couples to express their preferences. In
this section we will use the data from the period 1999–2007
to illustrate the underlying couples graphs, and provide
additional intuition for the SoDA algorithm. Size characteris-
tics of the market in each year are summarized in Table 2
(a similar table appears in Kojima et al. 2013). Note that
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Table 2. Size of the psychology interns market each year between 1999–2007.

Year 1999 2000 2001 2002 2003 2004 2005 2006 2007

Single doctors 21896 21916 21904 21809 21926 31006 31086 31169 31391
Couples 14 21 22 17 19 17 16 21 20
Positions 21631 21713 21763 21752 21718 21732 21757 21779 21884
% of unfilled positions 8 11 12 13 11 11 11 11 10

Note. The last describes the percentage of unfilled positions each year in the stable matching that was found.

although the number of positions each year is smaller than
the number of doctors, a substantial number of positions
are unfilled in the stable matching that was found. The fact
that there were positions that remained unfilled, as well as
observed success probabilities (which we will see below) is
consistent with the predictions of our large market model.

Recall that an edge in the couples graph from couple ci to
couple cj captures the idea that couple ci could potentially
evict couple cj if ci applied after cj . As we shall see, the
couple graphs that we find predict quite accurately the
probability that a stable outcome will be found in the direct
matching algorithm (i.e., by allowing one permutation order
of application by couples—with no subsequent reordering of
couples).

To construct the couples graph, we ran 500 iterations of
the direct algorithm, while recording all different evictions
in which some couple evicts itself or another couple (note
that these are also the cases in which the direct algorithm
fails). The couples graph of different years are given in
Figure 3. For example, in 2006 couple 20 was evicted by
couples 1 and 11, and couple 13 was evicted by couples 19
and 12. Interestingly, in 2007 the graph we found consisted
of one self edge of the graph, i.e., couple number 9 evicted
itself. In the years not shown on the diagram no couple was
evicted by another couple.

The proof for Theorem 1 suggests that if couple 20 applied
before couples 1 and 11, and couple 13 applied before
couples 19 and 12, then a stable matching would be found.
Note that by randomly choosing only one permutation over
the couples for the direct algorithm, this event happens with
probability 1

9 . In Table 3 we observe that the fraction of
failures out of the 500 iterations we observe is approximately
captured by the structure of the couples graphs:

In the year 2007, a stable matching was not found by direct
algorithm, and also not surprisingly by the SoDA algorithm.

Figure 3. Couples graphs constructed from realized evic-
tions.

8
1

19
3

2

12
19 3

11

1

12
13

19
20

2000 2004 2006 2007

9

This is indeed consistent with the couples’ graph realized
in the same year. By letting the couple that evicted itself
(couple 9), continue applying according to its preference list
after evicting itself, we were able to find a stable matching.
Thus one can augment the SoDA algorithm with a component
similar to the last part in the RP algorithm; if a “loop”
involving couples is detected (for example a couple evicts
itself, or a couple c1 evicts couple c2, and vice versa), choose
one of the couples involved in that loop at random, and
proceed by having it apply according to its preference list
(see, e.g., Roth and Peranson 1999).

The APPIC data is rather limited and the number of
couples in it is relatively small. To better understand the
existence of a stable matching with a larger fraction of
couples, we added artificial couples into the data. We created
these artificial couples by randomly merging singles who
expressed “geographically similar” preferences. Two singles
could potentially be merged in our simulation if most of
the programs they rank belong to the same two geographic
regions. The joint preference of a new artificial couple is
generated as to respect the preferences of the individuals, as
well as the geographic constraints, as follows.

Let 4d11 d25 be an artificial couple. First each di chooses
a function fi that assigns scores to all hospitals on her
list (including not being matched) such that higher ranked
hospitals are given higher scores. The joint preference list
includes only pairs h11h2 ∈H ∪ 8�9 that satisfy the two
conditions below:

(i) h1 (h2) is ranked by the first (second) member;
(ii) h1 and h2 either both belong to one of the two main

regions the members prefer, or one belongs to one of these
regions and the other is �.

Finally, each pair of hospitals h1, h2 that satisfies (i) and
(ii) is given the sum of scores f14h15+ f24h25 and the joint
preference list is created by sorting the pairs according to
their scores.

In each experiment we generated a different number of
extra couples, and for each such number we ran 100 iterations,

Table 3. Fraction of failures under the direct algorithm,
and the couples’ graph failure prediction.

Year 2000 2004 2006 2007

Fraction of failures 00858 00498 00884 1
Graph prediction 00875 005 00889 1
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Table 4. Average percentage of failures to find a stable matching for different number of extra pairs.

Extra couples ↓ Year → 1999 2000 2001 2002 2003 2004 2005 2006

0 Direct alg. fail. prob. 0 0.879 0 0 0 0.507 0 0.894
SoDA fail. prob. 0 0 0 0 0 0 0 0

20 Direct alg. fail. prob. 0.788 0.98 0.771 0.738 0.748 0.866 0.596 0.939
SoDA fail. prob. 0 0 0 0 0 0 0 0

40 Direct alg. fail. prob. 0.966 0.997 0.985 0.981 0.975 0.981 0.948 0.995
SoDA fail. prob. 0 0 0 0 0 0 0 0

60 Direct alg. fail. prob. 0.997 1 0.998 0.997 0.999 0.999 0.993 0.999
SoDA fail. prob. 0 0.002 0.001 0.001 0.001 0 0 0.001

80 Direct alg. fail. prob. 1 1 1 1 1 1 0.999 1
SoDA fail. prob. 0 0.003 0.002 0.001 0.001 0.001 0.001 0.001

160 Direct alg. fail. prob. 1 1 1 1 1 1 1 1
SoDA fail. prob. 0.006 0.008 0.008 0.008 0.008 0.005 0.004 0.008

Note. For each number of extra pairs the first row provides the results under the direct algorithm and the second row provides the result under the
SoDA algorithm.

i.e., in each iteration we drew a different set of couples.
Note that if the SoDA algorithm finds a stable matching,
one might expect that the direct algorithm would also find a
stable matching by just running the algorithm again and
again each time using a random permutation over the couples.
In Table 4 we present the probability of failure of the SoDA
matching algorithm as well as the probability of failure
under the direct algorithm as a function of the number of
extra couples. Whereas for SoDA, for each draw of extra
pairs we just run the algorithm once, when running the
direct algorithm we tried to find a stable matching with
100 random permutations over the generated couples. The
results show that as the number of couples grows, the chance
of randomly finding a permutation that will result in a
stable matching quickly tends to 0. At the same time, in the
majority of the cases, SoDA is successful in finding a stable
matching.

6.2. Large Market Simulations

In this section we provide further simulations results for
larger markets—markets of size similar to the NRMP
market—using the SoDA algorithm. In particular we per-
formed sensitivity analysis on various parameters of the
problem. For each configuration we ran 600 trials. We
assumed there are n/2 hospitals, where n is the number of
singles and each hospital has capacity of 3.22

In the first simulation we fixed the percentage of couples
in the market and found the success rate of finding a stable
matching. For comparison, in the NMRP match in 2010 the
number of (United States) doctors was about 16,000 where
as the number of couples was about 800.23 As Figure 4
shows that the ratio of doctors that are members of couples
plays a crucial role in the probability that a stable matching
will be found. Note that although the number of singles
grows (and the number of couples is linear) the probability
for finding a stable matching appears to remain unchanged.

Next we fixed �, i.e., the number of couples is n1−�.
Figure 5 shows that the probability for finding a stable

Figure 4. The success rate of SoDA in finding a stable out-
come given the number of singles (x-axis), for
different couples percentages (5% means that
10% of the doctors are members of couples).
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matching with SoDA increases and is roughly concave in
the number of singles. Observe that the rate of convergence
is different for various �’s.

Figure 5. The success rate in finding a stable outcome
given the number of singles (x-axis), where the
number of couples is n1−� for three different �’s.
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Figure 6. The histogram shows the percentage of singles
and couples that got their kth favorite choice
for each k = 11 0 0 0 18.
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Note. The left bar is for singles and the right bar is for couples.

Figure 7. The histogram shows the percentage of singles
and couples that got their kth most preferred
choice for each k= 11 0 0 0 18 when hospitals
have a ranking score.
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In the next simulation (see Figure 6) we fixed the number
of singles and the number of couples to be 16,000 and 800,
respectively, as in the NMRP, and found the percentage
of singles and couples that get their kth most preferred
choice. We assumed that there is no common ranking, i.e.,
preference distributions of both doctors and hospitals are
uniform.

In Figure 7 we provide the same histogram but adding
ranking to hospitals; each hospital has been assigned a score
uniformly at random from the interval 6002117. To decide
the next preference of a doctor, she randomizes uniformly a
hospital h and a number from 6002117, and if h’s score is
below the number, the doctor resamples such a pair.

7. “Almost” Linear Is Necessary
In §4 we showed that the SoDA algorithm finds a stable
matching with probability approaching 1 as n tends to infinity
assuming the number of couples is growing at a rate of n1−�

(for any 0 < � < 1). In §6 we saw that when the number of
couples is a constant fraction of the total capacity, the SoDA
algorithm fails to produce a stable matching in a constant
fraction of the cases. A natural question is whether a stable
matching—one that SoDA fails to find—may still exist with
probability approaching 1. In this section we will show that
the answer to this question is negative, i.e., as the number
of couples grows linearly, no stable matching exists with
constant probability.

For simplicity we will consider only uniformly distributed
preferences and a capacity of one for each hospital.

Theorem 3. There exists �̄ ¾ 1 such for all � > �̄ in a
matching market with n couples, n singles, �n hospitals
each of capacity one, and uniformly distributed preferences,
with probability �= �4�5 > 0 not depending on n, no stable
matching exists.

If the preference list of each single and each couple is
bounded by a constant length k > 0, then the above statement
holds for �̄= 1.24

The proof of Theorem 3 is deferred to the appendix.
Although the proof is not immediate, the idea (for both
parts) is relatively simple and we present it here. Consider
a submarket with one couple c4fc1mc5 and one single s
and suppose the preferences of the couple c is such that its
first and second preferred pairs of hospitals are 4h11 h25 and
4h31 h45, respectively (where h1, h2, h3, and h4 are pairwise
distinct), and suppose that the following hold:

(i) h2 �s h1 �s h for any hy 8h11 h29;
(ii) s �h1

mc;
(iii) fc �h2

s.
Observe that if the entire market only consisted of the

couple c and the single s, the market would have no stable
matching. In the first step of the proof of Theorem 3 we
show that such a submarket exists with a constant probability.
To complete the proof we show that there is a constant
probability that no other doctor other than s, mc and fc will
ever apply to one of the hospitals h1 −h4. In other words, we
embed a “small bad example” that does not admit a stable
outcome and show that all doctors that do not participate
in this example will never have to use the hospitals in that
submarket.

The first step of the proof is similar for both parts of
the theorem. However the second step of the proof—i.e.,
showing that there is a constant probability that no doctors
except s, mc, and fc will ever be interested in the “bad”
submarket—is much simpler for the second part. If the lists
have constant lengths, the second step just follows since
with constant probability the hospitals h1, h2, h3, and h4 do
not even appear in the preference lists of all other singles
and couples.
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The submarket that “possess” the instability is small. An
interesting question is whether such instability exists in
“substantial size of the market.”25

An open issue that follows from Theorem 3 is the follow-
ing. We have used a large excess number of hospitals to
obtain our negative result when preference lists are long. We
do not expect however that a small excess of hospitals will
improve the chances of obtaining a stable matching.

8. Beyond Couples—Many-to-One
Matching Markets with
Complementarities

Complementarities in the preferences of couples are the
cause of possible nonexistence of a stable matching. By
adopting a large market approach, Theorem 1 provides the
existence of a stable matching given that the number of
couples is not “too big.”

In this section we extend this result to a more general
matching model studied by Roth and Sotomayor (1990).
Consider the many-to-one matching market in which one side
consists of a set of workers W and the other side consists of
a set of n firms, F , and each firm is interested in hiring up to
k > 0 workers and each worker is interested in getting a single
job. Roth and Sotomayor (1990) showed that if all firms’
preferences are substitutable a stable matching exists, and it
need not exists even if one firm does not have substitutable
preferences.26 (Other works have produced similar results
for other matching markets; see, e.g., Ostrovsky 2008 and
Hatfield and Kojima 2010.) We will show that a similar
result as Theorem 1 holds for this model.

Formally, a preference relation for firm f ∈ F , denoted
by �f , is substitutable if for all w1y ∈W and W ′ ⊆W , if
y ∈ Chf 4W

′ ∪ 8w1 y95, then y ∈ Chf 4W
′ ∪ 8y95.

Note that in the matching market with couples, we in
fact draw an ordered list, i.e., a responsive preference, for
each single doctor. However, not all substitutable preferences
are responsive. Therefore in order to analyze large random
markets, first we need to define a probability measure P
over the substitutable preferences. In fact, for our main
result to hold, we do not require P to be a particular
distribution. Rather, we only specify a property that P needs
to satisfy. Informally, we require that P is a distribution over
substitutable preferences such that if a firm currently has a
set S of workers, which is its most preferred subset of a set T
of workers, and worker i ∈ S resigns, then the next most
desirable set by the firm is S\8i9∪ 8j9, where the worker j is
drawn uniformly from the set T \S of the remaining workers.
Observe that responsive preferences satisfy this property, but
also every distribution over substitutable preference that is
symmetric with respect to permutations on the workers.

As for firms with nonsubstitutable preferences, we draw
preferences in a similar fashion as for couples: there exists a
probability distribution Q, and a firm who is interested in k
workers draws its preference list from the distribution Qk

(a similar aggregation of the k lists can be done as described
in §4 for couples).

We will consider a sequence of random markets ë 11ë 21 0 0 0
of growing size, where each market is a tuple ë n =

4W n1 F n
S 1 F

n
C 1�

n
W 1 P

n1Qn5, where W n is the set of workers,
F n
S is set of firms with substitutable preferences, and F n

C

is the set of firms with nonsubstitutable preferences, and
preferences of firms are drawn from P n and Qn as described
above.

Definition 5. A sequence of random markets ë 11ë 21 0 0 0
is called regular if there exist 0 < � < 1, �> 1, k > 0 such
that for all n

1. �F n
S � = n and �F n

C � =O4n1−�5 (the number of firms with
nonsubstitutable preferences grows almost linearly);

2. each firm has capacity at most k > 0;
3. �W n�¾ �kn (excess number of workers).

We can now state our main theorem, which says that in a
large random market with an excess number of workers, even
if the number of firms that have nonsubstitutable preferences
grows at a nearly linear rate, the probability that a stable
matching exists approaches 1.

Theorem 4. Let ë 11ë 21 0 0 0 be a regular sequence of ran-
dom markets. Then the probability that there exists a stable
matching tends to 1 as n goes to infinity.

The proof is similar to the proof of Theorem 1 and thus we
omit it.27 In particular the SoDA algorithm can be adapted to
this setting, by letting firms propose workers (the first step
of the algorithm finds the stable matching for the submarket
containing only firms with substitutable preferences).

9. Conclusion
This paper characterizes the (non)existence of a stable
matching with high probability in large random markets with
bounded complementarities. The main difficulty couples
introduce by their complementarities is that rejection chains
may cycle. We present a new matching algorithm, SoDA,
and show that if the number of couples grows at a sublinear
rate, rejection cycles will not evolve with high probability
and thus a stable matching will be found. However, if the
number of couples grows in a linear rate, with constant
probability no stable matching exists. This negative result is
in contrast to many positive results about desired economic
properties (such as efficiency and strategy-proofness) that
do not hold in general but do hold in large markets. In
particular, complementarities are a first-order difficulty.

For the existence result, we develop a novel concept,
namely, influence trees, which allows us to analyze when
couples interfere with each other in a way that rejection
cycles may evolve. We believe this concept can be used in
other markets with complementarities.

We show that when the growth rate of the number of
couples is of a near-linear rate, the ex ante probability
that each doctor and each couple will get their best stable
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matching tends to one, and further that truth telling is an
approximated Bayes-Nash equilibrium in such large enough
markets.

We strongly believe that one can also use the Roth-
Peranson (RP) algorithm to show the positive results using
the same tools. However, it may still be the case that on some
instances SoDA succeeds and RP does not, and vice versa.
As the number of couples grows each year it is important to
better understand the differences between the two algorithms.
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Appendix A

A.1. Formal Definition of the Sorted Deferred Acceptance
Matching Algorithm

Sorted Deferred Acceptance Matching Algorithm:
Input: A matching market 4H1S1C1�S1�H 1�C5 and a default
permutation � over the set 81121 0 0 0 1 �C�9. Let ç=�.
Step 1. Find the stable matching � produced by the DA algorithm
in the matching market 4H1S1�S1�H 5 without couples.
Step 2 [Iterate through the couples]. Let i = 1 and let B =�.

(a) Let c = c�4i5 be the �4i5th couple.
Let c apply to the most preferred pair of hospitals 4h1h′5 ∈H×H

that has not rejected it yet. If such a pair of hospitals does not exist,
modify � such that c = 4f 1m5 is unassigned and go to Step 2(a)
with i+ 1. If such a pair 4h1h′5 exists then

(a1) If h= h′ and 8f 1m9⊆ Chh4�4h5∪ c5 then
let R=�4h5\Chh4�4h5∪ c5 be the rejected doctors from h.

(a11) If there exist a couple c′ 6= c for which 8fc′ 1mc′9∩

R 6= � then let j < i be such that c�4j5 = c′. Let � ′ be the
permutation obtained by � as follows:

� ′4j5=�4i5, � ′4l5=�4l5 for all l such that l < j or l > i and
� ′4l5 > �4l− 15 for other j + 1 ¶ l¶ i.

If � ′ ∈ç terminate the algorithm. Otherwise add � ′ to ç and
go to Step 1 setting � =� ′.

(a12) Modify � by assigning c to h, remove R from �4h5.
Add R to B and do Step 3 (Stablize) with the couple c.

(a2) If h 6= h′, f ∈ Chh4�4h5∪ f 5, and m ∈ Chh′ 4�4h5∪m5

then
let Rh =�4h5\Chh4�4h5∪ 8f 95 and Rh′ =�4h′5\Chh′ 4�4h′5∪

8m95.
(a21) If there exist a couple c′ 6= c for which 8fc′ 1mc′9∩

4Rh ∪Rh′ 5 6=� then let j < i be such that c�4j5 = c′, change � as
in Step 2(a11). If � ∈ç terminate the algorithm. Otherwise add �

to ç and go to Step 1.

(a22) Modify � by assigning f to h and m to h′, remove
Rh from �4h5 and remove Rh′ from �4h′5. Add Rh ∪Rh′ to B and
go to Step 3 (Stabilize) with the couple c.

(a3) Otherwise, let h and h′ reject the couple c and go to
Step 2(a).
Step 3 [Stabilize]. Let j = �B�. As long as j ¾ 0,

(a) if j = 0 increment i by one and got to Step 2;
(b) otherwise pick some s ∈ B and

(b1) let h be the most preferred hospital s has yet to apply
to. If such a hospital does not exist then modify the matching �
such that s is unassigned and go to Step 2(a). Otherwise

let R= 4�4h5∪ 8s95\Chh4�4h5∪ 8s95.
(b21) If 8fc1mc9∩R 6=� then the algorithm fails.
(b22) If there exist a couple c′ 6= c for which 8fc′ 1mc′9∩

R 6=� then let i and j be such that c�4i5 = c (c is the last couple
that applied) and c�4j5 = c′. Change � as in Step 2(a11). If � ∈ç
terminate the algorithm. Otherwise add � to ç and go Step 1.

(b23) If s ∈R then go to Step 3(b1).
(b24) Modify � by assigning s to h, remove R from �4h5.

Add R to B and go to Step 3.

A.2. Proof of Theorem 1

Throughout the proof we will fix r to be r = 4/� for some fixed
0 < � < 1. One should interpret this r as a “small” number of
possible rejections (relative to n). In a random market the influence
trees are random variables. In the following Lemma we show that
the influence trees are small:

Lemma 1. (a) For every hospital h and couple c, Pr4h ∈ IT4c1 r55=

O44logn5r+1/n5.
(b) The probability that the size of every influence tree IT4c1 r5

is O44logn5r+15 is at least 1 − n−3.
(c) The probability that for all couples c, each hospital h

appears in IT4c1 r5 at most once is at least 1 − n−�/2.

Proof. We begin with the second part. Let c be a couple. For each
of the two d ∈ c and for each h′ 6= h we will give an upper bound
of O44logn5r/n5 on Pr4h∈ IT4d1 r1h′55. The claim will follow
from the definition of IT4c1 r5 and union bound.

An alternative way of viewing the recursive definition of
IT4d1 r1 h′5, is as follows: doctor d proceeds down his list beginning
with h′ until he finds the first hospital willing to accept him.
If d is accepted into a hospital h1 and h1 was full to capacity,
then some doctor d′ is evicted and goes to a hospital h2, and
we add IT4d′1 r1h25 to IT4d1 r1h′5. In this case, continuing the
“rejection chain” did not require any arbitrary rejections. We call
the hospitals added into IT4d1 r1h′5 with parameter r the main
path of IT4d1 r1 h′5. We then also allow the adversary to introduce
up to r arbitrary rejections (for example, precluding d from being
accepted into h1). Thus the influence tree is composed of the main
path, with lower-order influence trees (i.e., influence trees with a
strictly smaller value of r) attached along it.

We first show by induction that with probability at least 1 − n−6

the length of the main path in IT4d1 r1 h′5 is at most b logn, where
b = 6 · 4cmax ·�max5/4�− 15. At any step along the main path, for
the main path to continue, the currently evicted doctor d needs to
choose a full hospital h. Because of the way the doctors’ preferences
are sampled, the probability of this happening is bounded by
1 − 4�− 15/4cmax ·�max5. Since each subsequent step along the path
is independent from the previous ones, the bound follows.

By union bound, we see that with probability at least 1 −n−4 all
potential main paths contain at most b logn hospitals. Each main
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path of length ` recursively gives rise to at most r · ` lower-order
influence trees (i.e., influence trees with smaller r) that are added
to IT4d1 r1h′5. Thus we can prove by induction that for each r ,
the size S4r5 of the largest order-r influence tree is bounded by
41 + br logn5r+1 =O44logn5r+15. For the base case, an influence
tree with r = 0 only contains the main path, and thus S405¶ b logn.
For the step, we get

S4r5¶ b logn+ 4b logn5 · r · S4r − 15

¶ b logn+ 4b logn5 · r · 41 + br logn5r

< 41 + br logn5r + 4b logn5 · r · 41 + br logn5r

= 41 + br logn5r+10

Next, the first part of the lemma follows from the proof of
the second part and the fact that the hospitals that are added to
IT4c1 r5 are hospitals on the doctors’ preference lists and are chosen
independently. Thus the probability of h to be added to IT4c1 r5 at
some point is bounded by S4r5 · 4cmax ·�max/n5=O44logn5r+1/n5.

Finally, we show that IT4c1 r5 does not “intersect itself” except
with probability <n�/2. Note that this means that the members
of the couple may not apply into the same hospital or evict each
other.28 We have seen that the probability of a hospital h belonging
to IT4c1 r5 is bounded by O4S4r5/n5. Similarly, the probability of h
to be added twice or more to IT4c1 r5 is bounded by O4S4r52/n25.
Taking a union bound over all possible hospitals h and all possible
couples c, we see that the probability that any hospital appears in
any IT4c1 r5 twice or more is bounded by

O4S4r52/n25 · n · n1−� <n−�/20 �

Throughout the remainder of the proof, we will assume that
each hospital appears in each IT4c1 r5 at most once, neglecting an
event of probability <n−�/2.

In fact, in Lemma 1, one can prove a stronger bound of
O4logn/n5 for the probability that a hospital belongs to an influence
tree. Although we do not prove or use the stronger bound in the
rest of the paper, it provides intuition for why the SoDA algorithm
works well even in a rather small market (e.g., when n = 256
we have 4log 25653 = 83 = 512, which does not explain why the
algorithm works).

Next we analyze how much influence trees intersect with each
other. Let c1 and c2 be two different couples. We say that two
influence trees IT4c11 r5 and IT4c21 r5 intersect at hospital h if
there exist d′ and d′′ such that d′ 6= d′′, 4h1d′5 ∈ IT4c11 r5 and
4h1d′′5 ∈ IT4c21 r5.

29

Lemma 2. No two influence trees intersect more than once, except
with probability <n−�/2.

Proof. By Lemma 1, we can assume that for every couple c the
size of IT4c1 r5 is at most O44logn5r+15. For the remainder of the
proof, we will denote this upper bound on the size of IT4c1 r5 by
S4r5=O44logn5r+15. Recall also that we have assumed that no
IT4c1 r5 intersects itself.

We prove that with high probability no two influence trees
intersect exactly two times. A similar proof shows that for every
3 ¶ k¶ S4r5 no two influence trees intersect exactly k times. The
proof will then follow by a union bound on k (since the size of
each tree is ¶ S4r5 with high probability they cannot intersect more
than S4r5 times).

Let c11 c2 be two couples, and h11 h2 be two hospitals. We want
to bound the probability of the event

Pr4h11 h2 ∈ IT4c11 r5∩ IT4c21 r55

= Pr4h11 h2 ∈ IT4c11 r55

· Pr4h11 h2 ∈ IT4c21 r5 � h11 h2 ∈ IT4c11 r550 (A1)

We first note that if h1 is an ancestor of h2 in, e.g., IT4c11 r5, and
IT4c11 r5 intersects IT4c21 r5 in both h1 and h2, then the influence
tree IT4c212r + cmax5 will self-intersect at h2. The hospital h2 will
be added to IT4c212r + cmax5 twice: once following the path in
IT4c21 r5, and a second time through h1 and then following the
path from h1 to h2 in IT4c11 r5. Since 2r + cmax is a constant, by
Lemma 1 the probability that any IT4c12r +cmax5 will self-intersect
is smaller than n−�/2, and can be disregarded. Thus we can assume
that h1 and h2 are not each other’s ancestors in either IT4c11 r5 or
IT4c21 r5.

We begin by calculating the probability of the first event in
(A1). A similar proof to that of Lemma 1 gives that the probability
for this event is

Pr4h11 h2 ∈ IT4c11 r55=O

(

S4r52

n2

)

0

Rather than compute Pr4h11h2 ∈ IT4c21 r5 � h11h2 ∈ IT4c11 r55
directly, to avoid the conditioning, we consider inserting c2 into
a modified world, in which all hospitals in IT4c11 r5 except for
8h11h29 and all the doctors in these hospitals do not exist. We
argue that in this case,

Pr4h11 h2 ∈ IT4c21 r55=O

(

S4r52

n2

)

using similar reasoning.
The influence tree generated in the modified algorithm (where

we took out some of the hospitals) may differ from the one in the
“real” algorithm. Note however that if removing IT4c11 r5 affects
the generation of the tree IT4c21 r5 before it reaches h11 h2, then it
is the case that IT4c21 r5 intersects IT4c11 r5 at another hospital
(which comes before h11 h2). But this is a contradiction, since we
assumed IT4c11 r5, IT4c21 r5 intersect exactly twice.

Multiplying the probabilities, we get that

Pr4h11 h2 ∈ IT4c11 r5∩ IT4c21 r55=O

(

S4r54

n4

)

0

Taking a union bound over O4n5 hospitals and n1−� couples, bounds
the probability that two couples exist that intersect exactly twice is
at most

O

(

S4r54

n2�

)

0

We do not present the proof for exactly k intersections, and only
state that the probability for that event drops at a rate of

S4r52k

nk·�
<

S4r54

n2�
0

Taking a union bound over all possible values of k, we get that the
probability that any two couples intersect strictly more than once is
at most

O

(

S4r5 · S4r54

n2�

)

=
polylog4n5

n2�
0

as required.30 �
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Our goal will be to show that with high probability the graph
G4c1 r5 can be topologically sorted; such a sorting corresponds to
a good insertion order of the couples in the SoDA algorithm. In
Example 2 the order c1, c2 is a topological sort.

At this point we show that with high probability weakly con-
nected components in the couples graph are small. Formally, in
a couples graph G=G4C1 r5 a weakly connected component is
defined to be a connected component in the graph obtained from G
by removing the direction of the edges.31

Lemma 3. With probability > 1−1/n the largest weakly connected
component of the couples’ graph has size at most 3/�.

Proof. We will first consider an arbitrary set of 3/� couples
and show that the probability that they form a weakly connected
component is very small. The statement of the lemma will follow
through union bound. Let I = 4c11 c21 0 0 0 1 c�3/��5 be a sequence of
couples with no repetitions: ci 6= cj . Let AI be the event that for
every 1 < i¶ �3/�� the influence tree of ci intersects with one of
the previous influence trees, that is

IT4ci1 r5∩

(

⋃

j<i

IT4ci1 r5
)

6= �0

We first show that

Pr4AI 5¶
4S4r52 · cmax ·�max · 3/�5�3/��

n�3/��−1

¶ 4S4r52 · cmax ·�max · 3/�53/�

n3/�−2
1 (A2)

where S4r5 is the bound on the size of the influence trees IT4ci1 r5
as in Lemma 1.

Let

ITi =
⋃

j¶i

IT4cj 1 r5

be the union of the influence trees of the first i couples. The
probability of AI can be written as

Pr4AI5=Pr4IT421r5∩IT1 6=�5

·Pr4IT431r5∩IT2 6=�� IT421r5∩IT1 6=�5

000 ·Pr4IT4�3/��1r5∩IT�3/��−1 6=��∀ j¶�3/�−1�1

IT4j1r5∩ITj−1 6=�50 (A3)

All the interactions that cause the influence trees within ITj−1 to
intersect happen within ITj−1, and conditioned on the set ITj−1

of hospitals do not affect the probability of IT4cj 1 r5 intersecting
ITj−1. Hence for every j = 21 0 0 0 1 �3/��,

Pr4IT4cj 1r5∩ITj−1 6=��∀2¶ l¶ j−11IT4l1r5∩ITl−1 6=�5

=Pr4IT4cj 1r5∩ITj−1 6=�� ITj−150

Furthermore, from Lemma 1 it follows that the probability that
�IT4cl1 r5�< S4r5 is at least 1 − 1/n3 and therefore �ITj �< j ·S4r5.
Hence,

Pr4IT4cj 1 r5∩ ITj−1 6= � � ITj−15

¶ 4j − 15 · S4r52 ·�max

�n/cmax
+

1
n3

<
j · S4r52 ·�max

�n/cmax
0

Since there are �3/�� − 1 terms in (A3), we derive inequality (A2).
To finish the proof, observe that if there is a connected component

of size at least 3/� then there exists a sequence I such that AI

holds. Since there are n1−� couples there exists fewer than

4n1−�53/�
= n3/�−3

such possible sequences I . Therefore using a union bound over all
of them proves the lemma. �

Recall that we ignore all realizations of preferences at which
two influence trees intersect more than once (in particular there is
at most a single edge between every two couples in the couples
graph). From now on we also ignore realizations where the largest
weakly connected component of the couples graph contains more
than 3/� couples.

Lemma 4. With probability 1 −O41/n�5 the couples graph has no
directed cycles.

Proof. We first prove the following claim, that is basically a
simple general statement about directed graphs:

Claim 1. If the shortest directed cycle has length k, it involves k
different hospitals.

Proof. Suppose the shortest directed cycle is of length k and
consider such a cycle c1 → c2 → ·· · → ck → c1. Suppose cou-
ples c1 and c2 intersect at h because of d1 and d2, respectively,
i.e., 4h1d15 ∈ IT4c11 r5, 4h1d25 ∈ IT4c21 r5 and 4h1d25 ∈ IT4c21 r5.
Assume for contradiction that for some 2 ¶ i ¶ k, ci and ci+1

(i is taken modulo k) intersect at hospital h because of some
doctors di and di+1, i.e., 4h1di5 ∈ IT4ci1 r5, 4h1di+15 ∈ IT4ci+11 r5
and di �h di+1. Consider the case in which di �h d2. In this case
a cycle of length less than k exists that consists of c2 → c3 →

·· · → ci → c2. If d2 �h di, i.e., either d2 �h di or d2 = di, then
d1 �h d2 �h di �h di+1 implying that c1 → ci+1 → ·· · → ck → c1

is a shorter cycle. �
To prove the lemma it is sufficient to show that the probability

that the shortest directed cycle has length k is O4S4r52k/n�k5 since
by taking the sum of these probabilities over all values of k gives
the result (note that the dominant term in this sum is when k = 2).

We proceed in a manner similar to that of the proof of Lemma 3.
Let I = 4c11 c21 0 0 0 1 ck5 be a sequence of couples without repetitions
ci 6= cj . Let J = 4h11h21 0 0 0 1 hk5 be a sequence of k hospitals
without repetitions hi 6= hj . Let AI1 J be the event that for every i =
11 0 0 0 1 k, IT4ci1 r5 and IT4ci+11 r5 intersect at hospital hi. Applying
Lemma 1, and using reasoning similar to the proof of Lemma 3
the probability of the event AI1 J can be bounded by

Pr4AI1 J 5 <
42S4r5 ·�max5

2k

4�n/cmax5
2k

0

Since there are ¶ �n positions and n1−� couples, there are
�knkn41−�5k such different events AI1 J . A union bound over all
these events implies the lemma. �

For the analysis we will consider the event that the couples’
graph contains a cycle as a failure.32 If the couples graph does
not have cycles, then it has a topological sort. Let � denote any
topological sort of G. We claim that inserting the couples according
to � will result in a stable matching with couples. Moreover, we
will show that a failure of the SoDA algorithm corresponds to a
backward edge in the couples graph.33

The next lemma shows that the influence trees indeed capture
“real influences.”
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Lemma 5. Suppose we insert the couples as in the SoDA algorithm
according to some order � until a couple evicts another couple or
until all couples have been inserted. If a couple c is inserted and
influences hospital h, then h ∈ IT4c1 r5.

Proof. Recall that we consider only small weakly connected
components (Lemma 3 upper bounded the probability that such a
component is large). Let c be the couple currently being inserted,
and assume that the statement of the lemma was true for couples
inserted before c. Let 8c11 0 0 0 ck9 be c’s weakly connected compo-
nent in the couples graph, where k¶ 3/�, ordered according to
their insertion order in � . We prove by induction a stronger claim,
namely, that if c = ci influenced a hospital h, then h ∈ IT4c1 i− 15.

Suppose that c = ci is currently being inserted and that its
insertion affects a hospital h. Consider the path of evictions that
was started by c and led to hospital h being affected. There are
two types of evictions along this path: the first type would have
occurred even without any other couples present. The second
type occurs because a hospital h′ on the path has already been
affected by a previously inserted couple cj . If this happens, then
the influence tree of c intersects the influence tree of cj and thus cj
belongs to the weakly connected component of c in the couples
graph. Moreover, since influence trees intersect only once, evictions
due to influences from previously inserted couples happen at most
i− 1 times: at most once for each previously inserted couple in the
weakly connected component of c. By the definition of IT4c1 i− 15
this implies h ∈ IT4c1 i− 15. �

As an immediate corollary of Lemma 5 we obtain that a couple
causing another couple to be evicted corresponds to an edge in the
couples graph.

Corollary 2. If in an insertion order � inserting the couple c�4i5

causes the couple c�4j5 to be evicted (j < i) then in the couples’
graph there is an edge from c�4i5 to c�4j5.

Since there exists a topological sort, with a high probability
Theorem 1 follows from the following corollary:

Corollary 3. Inserting the couples according to any topological
sort � of the couples graph gives a stable outcome.

A.3. Proof Sketch of Corollary 1

We assume the couples’ graph has no cycles and that every
connected component of the couples’ graph is of size less than 3/�
(we showed that these events occur with probability tending to 1 as
n tends to infinity). We will prove the result assuming capacity is 1
in each hospital.

First we show that as n tends to infinity, every couple that is not
pointed by another couple in the couples graph, and every single
that is not evicted after couples begin to apply in SoDA, obtain
their best match with probability converging to 1.

Note that for any topological order of the couples’ graph, the
same set of singles will be evicted after the couples start applying.
Denote this set of singles by E. Let M be the stable matching with
couples that SoDA outputs. Suppose that there is another stable
matching M ′, such that there is at least one single not belonging to
E who is better off in M ′.

Let H ′ be the set of hospitals in M ′ in which couples are
assigned to. Let ẫ denote the market that has only singles and
the set of hospitals H\H ′.34 Let M̃ ′ denote the matching in the
market ẫ in which every single s is matched to the same hospital
it is matched to under M ′. Observe that M̃ ′ is a stable matching

for ẫ since any blocking pair would also be a blocking pair in
M ′. Let M̃ be the matching in the market ẫ obtained by running
doctor-proposing deferred acceptance on the market ẫ . Then by
the doctor optimality of the doctor-proposing deferred acceptance
algorithm, all singles are at least as well off in M̃ as in M̃ ′. Let
âs be the market with all hospitals, but with couples removed.
Then it is not hard to see that running doctor-proposing deferred
acceptance on âs will result in a matching Ms where each doctor is
at least as happy as in M̃ , and therefore is at least as happy as in
M ′. We conclude the proof for the singles by observing that if
a doctor s yE, then the hospital she is matched to under Ms is
identical to the matching she receives under M and is thus at least
as good as the matching she receives under M ′.

A similar proof works for couples. Let c be a couple who has
no incoming edges in the couples’ graph, and is better off under a
matching M ′. Denote by h′

1, h′
2 the pair of hospitals c is matched

to in M ′.
Note that under all topological orderings of the couples’ graph c

is assigned to the same hospitals. Consider a topological order in
which c is the first couple to enter the system.

Let H ′ be the set of hospitals who are matched to members of
couples in M ′. Let â̂ be the market with all the singles, c, and
the hospitals 4H\H ′5∪ 8h′

11 h
′
29. Let M̂ ′ be the matching in â̂ that

matches every doctor d with the hospital d is assigned to under
M ′. As in the previous case, M̂ ′ is stable.

If c is matched to h′
1, h′

2 in M ′, then it must be the case that
c applied to them in SoDA, and was rejected. Let d1, d2 be the
doctors who are matched to h′

1 and h′
2, respectively, in SoDA

when c applies (recall that the singles finished applying before the
couples). We assume without loss of generality that h′

1 prefers d1

to c1.
Since M̂ ′ is stable and h′

1 prefers d1 to c1, it must be the case
that d1 prefers the hospital he is matched to under M̂ ′ to h′

1. A
contradiction is reached from the following claim.

Claim. Consider the submarket without couples but with all
hospitals. Suppose that in the best stable matching for doctors (the
one that SoDA outputs for this submarket), a doctor d is matched
to hospital h. In any stable matching in the market with couples, d
will not be assigned to a hospital that he strictly prefers to h.

Proof. Consider a stable matching M with couples. Let M ′ be the
matching obtained from M by restricted only to singles. Let â ′ be
the submarket that contains only singles and all hospitals that do
not accommodate members of couples under M (for capacities
more than one, one needs only to reduce capacities in hospitals that
have couples’ members). Note that M ′ is stable under â ′. But in â ′

the number of hospitals is smaller, and thus even in the best stable
matching â ′, d cannot get a hospital that he prefers to h. �

Finally, for every single the ex ante probability that he will be
evicted when couples enter the system tends to zero, and the ex
ante probability that a couple will have an incoming edge also
tends to zero as n grows, thus completing the proof.

A.4. SoDA Runs in Near-Linear Time

From the proof of Theorem 1 we can analyze the running time
of (a slight modification of) the SoDA algorithm. Note that
with high probability we have that the couples graph has small
connected components (of size < 3/�) and can be topologically
sorted. According to Corollary 3 each failed iteration of the SoDA
algorithm is due to a backward edge in the insertion order �. By
recording the backward edge, and ensuring that all future attempts
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are consistent with it, we can guarantee that at most 43/�52 · n1−�

permutations will be tried before either a topologically sorted order
is arrived at, or a cycle in the couples’ graph is found.35 �

A.5. Proof of Theorem 2

We will use the same assumptions on influence trees as in the proof
of Theorem 1, i.e., the assumptions hold except with probability
O4n−�/25. Informally, we will show that if a doctor or a couple
does not interact with any other couple’s influence tree, then she
does not have an incentive to deviate. To this end we show the
following:

Lemma 6. Let d ∈ S be any doctor. Suppose that the SoDA algo-
rithm terminates and assigns d to a hospital h in the first (deferred
acceptance) stage of the algorithm. Suppose that h does not belong
to any of the couples’ influence trees. Then d may not improve her
allocation under SoDA by misrepresenting her preferences.

Similarly, if c ∈ C is a couple whose influence tree is disjoint from
all other influence trees, then c may not improve their allocation
under SoDA by misrepresenting their preferences.

Proof. We start with the first statement. At the end of the execution
of the first stage of the SoDA algorithm d ends up in h. By
Lemma 5, if d was moved from h, in the second stage, then h must
belong to the influence tree of one of the couples, contradicting the
assumption. Hence at the end of the SoDA algorithm d is still
assigned the hospital h.

Suppose that d misrepresents her preferences and obtains a
hospital h′ such that h′ �d h in a valid execution of the SoDA
algorithm. It is well known that the outcome of the (regular)
deferred acceptance algorithm on singles does not depend on the
insertion order. Hence we can execute the SoDA algorithm so that
d is the last single doctor to be inserted. Just before d is inserted,
for all doctors d′ that are assigned to h′, d′ �h′ d, otherwise d
would have been assigned h′ when stating her true preferences.
From that point on, a valid execution of the SoDA algorithm does
not lead to any couples being evicted, and hence the quality of the
least preferred doctor in h′ according to �h′ may only improve.
Hence d may not be assigned to h′ in the second phase of the
SoDA algorithm. Contradiction.

Next, let c = 4f 1m5 be a couple such that IT4c1 r5 is disjoint
from all other influence trees. Suppose that c is assigned the
hospitals 4h11 h25 is a valid execution of the SoDA algorithm with
an ordering � on couples. Since IT4c1 r5 is disjoint from other
influence trees, by Lemma 5 we see that inserting the couples in
the order � ′ obtained from � by putting c first, leads to another
valid execution that results in the same allocation.

Suppose that c misrepresents their preferences and obtains the
hospitals 4h′

11h
′
25�c 4h11h25 in a valid execution of the SoDA

algorithm. Note that the couple c was the first to be inserted
under � ′ and did not get accepted into 4h′

11h
′
25 because one of

the hospitals preferred all the doctors that were assigned to it
in the DA stage of the algorithm to the corresponding couple
member. Without loss of generality, assume that h′

1 preferred all of
its assigned doctors to f . As in the single doctor case above, in the
second phase of the SoDA algorithm the least preferred doctor
according to �h′

1
that is assigned to h′

1 may only improve. Thus f
may never be assigned to h′

1. Contradiction. �

Using Lemma 6 we can now prove Theorem 2.

Proof (of Theorem 2). Fix any doctor d ∈ S and the hospital h it
is assigned in the DA stage of the SoDA algorithm. By an argument

very similar to Lemma 1 we can show that the probability that any
influence tree contains h (or any other hospital in the influence tree
of d) is bounded by O4S4r52/n�5 < n−�/2. By Lemma 6, if this is
the case, d does not have an incentive to deviate.

Similarly, the probability of the influence trees of two couples
intersecting is bounded by O4S4r52/n5, and thus for each couple c,
the probability that IT4c1 r5 is disjoint from all other influence trees—
and thus c has no incentive to deviate—is at least 1−O4S4r52/n�5 >

1 −O4n−�/25. �

Appendix B

B.1. Proof of Theorem 3

Consider the following event E: there exist a couple c = 4fc1mc5 ∈C ,
a single doctor s ∈ S, and four hospitals h1 6= h2 6= h3 6= h4 so that
the most preferred pair of hospitals by c is 4h11h25, the second
most preferred by c is 4h31 h45, and the following properties hold:

(i) h2 �s h1 �s h for any hy 8h11 h29;
(ii) s �h1

mc;
(iii) fc �h2

s.
Observe that if only the couple c and the single doctor s existed no
stable matching would exists.

The proof will follow by first bounding (from below) the
probability of the event E and then bounding (from above) the
event that some other doctor except those in the event E ever
obtains either h1 or h2 in any stable matching.

Fix a couple c ∈C and a single s and let 4h11h25 be the pair
of hospitals most preferred by and 4h31h45 be the second most
preferred hospitals by c. The probability that h1 6= h2 6= h3 6= h4, and
properties (ii) and (iii) hold is � > 1/32 · 1/22. The probability that
h1 6= h2 6= h3 6= h4 and Properties (i)–(iii) hold is ì4�41/4�n5255=

ì41/n25 (see footnote 16 regarding ì). Therefore, since there are
n couples the probability that for a given single s there exists a
couple c such that h1 6= h2 and properties (i)–(iii) hold is ì41/n5.
Therefore since there are n singles, the probability that there exists
a single s such that the event E holds is some constant � > 0.

Suppose the event E occurs with the couple c′ and doctor s′

and let D′ = D\8fc′ 1mc′ 1 s′9. Consider the following applica-
tion/rejection algorithm in which doctors are assigned to l > 0
positions (rather than 1):

l-Pessimistic DA2 At each step t = 112 0 0 0 1 either a single doctor
s ∈ S or a couple c ∈C that has less than l temporary assignments
are chosen at random and applies to the most preferred hospital
or pair of hospitals on their list, respectively, that they have not
applied so far. Each hospital h assigns a doctor d if and only if no
other doctor is currently assigned to h and no other doctor applied
at this step to h. If some doctor d applies to h and some doctor d′

(could be that d′ = d) is temporarily assigned to h, h rejects both
d and d′ and no doctor is ever allowed to apply to h.36

We will first show that the probability that any doctor but fc′ , mc′

and s′ ever applies to h1 or h2 in the 3-Pessimistic DA process is
bounded from above by a small constant. We will show a stronger
lemma:

Lemma 7. With constant probability no more than �n hospitals are
visited in the process 3-Pessimistic DA for some �< �. In particular
the 3-Pessimistic process terminates with constant probability.

Proof. Let L= 801112139. For every q ∈ L we say that a doctor is
q-settled if it is temporarily assigned to exactly q positions and we
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say that a hospital h is visited if some doctor applied to it during
the 3-Pessimistic DA process.

For every t = 011121 0 0 0 1 and every q ∈ L denote by A
q
t the

number of q-settled doctors at step t, by Vt the number of visited
hospitals up to step t, where A0

0 = 3n, and A1
0 = A2

0 = A3
0 =

V0 = 0. Let Yt = Vt + 15A0
t + 10A1

t + 5A2
t and consider the process

Xt = Yt + t for every t = 01 0 0 0 1min4J 1K5, where K is the first
step in which VK = 4�n5/10 and J is the first step in which
A0

J =A1
J =A2

J = 0 (i.e., A3
J = 3n).

Claim. X11X2 0 0 0 1 is a super martingale, that is for every t > 0,
E6Xt+1 �X11 0 0 0 1Xt7¶Xt .

Proof. Suppose a couple c is chosen at step t and has q ∈ L\839
temporary assignments. If it applies to two unvisited hospitals
then A

q+1
t+1 = A

q+1
t + 2 and A

q
t+1 = A

q
t − 2 and A

q′

t+1 = A
q′

t for
q′ ∈ L\8q1 q + 19. Thus the contribution of the couple to Yt drops
by 10. If c applies to an unvisited hospital and one visited hospital
then for every q ∈ L, Aq

t+1 ¶A
q
t + 2 since at most one other couple

lost a temporary assignment. If it applies to two visited hospitals
then for every q ∈ L, Aq

t+1 ¶A
q
t + 4 since at most two additional

couples lose a temporary assignment. For singles similar bounds
can be used. For each q = 01112 let Q

q
t be the event that at

the beginning of step t a couple with q temporary assignments
is chosen, and by W

q
t the event that a single with q temporary

assignments is chosen. Therefore for every q ∈ L\839

E6Xt+1 �X11 0 0 0 1Xt1Q
q
t+17

=E6Xt+1 �Xt1Q
q
t+17

¶ 4�n−Vt5
2

4�n52
4Vt + 2 + 15A0

t + 10A1
t + 5A2

t − 105

+ 2 ·
4�n−Vt5Vt

4�n52
4Vt + 1 + 15A0

t + 10A1
t + 5A2

t + 105

+
V 2
t

4�n52
4Vt + 15A0

t + 10A1
t + 5A2

t + 205+ t + 1

¶ Vt + 15A0
t + 10A1

t + 5A2
t + t1

where the last inequality holds for any Vt ¶ 4�n5/10. Similarly,

E6Xt+1 �X11 0 0 0 1Xt1W
q
t+17

=E6Xt+1 �Xt1Wt+17

¶ 4�n−Vt5

�n
4Vt + 1 + 15A0

t + 10A1
t + 5A2

t − 55

+
Vt

�n
4Vt + 15A0

t + 10A1
t + 5A2

t + 105+ t + 1

¶ Vt + 15A0
t + 10A1

t + 5A2
t + t0

Therefore, since either a couple or a single is chosen at each step, we
obtain that E6Xt+1 �X11 0 0 0 1Xt7¶ Vt + 15A0

t + 10A1
t + 5A2

t + t. �

As argued in the claim �Xt+1 − Xt� < 22 for every t > 1.
Therefore, by Azuma-Hoeffding’s inequality, we obtain that for any
T ¾ 1

Pr
(

VT −V0 ¾
�n

10

)

¶ Pr
(

XT −X0 ¾
�n

10
− 45n+ T

)

¶ e−4�n/10−45n+T 52/4968T 5 < 1 −�1

for some constant � > 0 and a sufficiently large �, i.e., with
constant probability the process will never reach 4�n5/10 visited
hospitals. �

Lemma 7 provides that in the 3-Pessimistic DA process described
above, the number of hospitals visited is with constant probability
only a fraction of the total number of hospitals, which implies that
the doctors in the process (all but c′ and s′) will never visit h1

and h2.
By Lemma 7 and the definition of 3-Pessimistic DA, each

player i, single or couple, obtains three different temporary assign-
ments, p1

i , p2
i , and p3

i (thus if i is a couple, pj
i is a pair of hospitals)

and observe that p1
i �i p

2
i �i p

3
i .

To finish the proof we argue that in every stable matching, no
agent i will be assigned to a pair of hospitals less preferred to
p3
i . Call a player i (a single or a couple) that gets a hospital less

preferred to p3
i poor, and let U be the set of poor players. Suppose

that �U � = k > 0. For a player i to be poor, at least one hospital
in each p1

i , p2
i and p3

i should be taken (if i is a single then all
p
j
i are single hospitals and all should be taken). Since for each

two players j1 l, 8p1
j 1p

2
j 1p

3
j 9∩ 8p1

l 1p
2
l 1p

3
l 9= � there are at least

3k hospitals that need to be assigned. These hospitals cannot be
assigned to players that are not poor (since they get better choices
for themselves) since p1

i , p2
i , p3

i are assigned exclusively to player i,
i.e., no other doctor in the process ever applied to either of these
three hospitals; indeed for each j 6= i these hospitals are lower on
player j’s list than p1

j , p2
j , p3

j , and the only way player j could
occupy any of these hospitals is if he is poor.

Since there are only k poor players, with a total of up to 2k
doctors, they cannot be assigned to all 3k hospitals—a contradiction.

The second part of the theorem follows since no doctor other
than s, mc and fc will ever apply to h1, h2, h3 and h4 with constant
probability since the preferences lists are bounded by a constant
k > 0 (observe that the probability that a given hospital h will not
be ranked by any doctor or couple is at least 41 − 1/n5nk, which
approaches e−k as n tends to infinity). �

Endnotes
1. In fact there were approximately 40,000 doctors, but only 16,000
of them were from American institutions and most couples were
from American institutions. As we later discuss, since doctors who
graduated in the United States are usually considered superior by
the hospitals to doctors who graduated outside of the United States,
the correct comparison is to the number of U.S. graduates and not
to the number of participants.
2. Preferences that can be represented as a ranking list over the
other side of the market.
3. Ronn (1990) showed that even determining whether a stable
matching exists may be computationally intractable (NP-complete).
4. Formally, the number of doctors grows at a rate n1−�. In fact �
may be even a slow decreasing function converging to zero.
5. In a recent study, Biró et al. (2011) investigate the matching
problem with couples and compare various matching algorithms on
simulated data.
6. Similar results have been obtained by Kelso and Crawford
(1982) for such markets when firms can pay salaries to workers, by
Gul and Stacchetti (1999) in auction settings when one considers
the existence of a competitive equilibrium, and by Hatfield and
Milgrom (2005) in a setting in which firms and workers sign
contracts as well as many others. Interestingly, Echenique (2011)
showed an equivalence result between contracts and salaries when
preferences are substitutable.
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7. We believe our techniques can be adapted to prove directly
that the RP algorithm also succeeds with high probability in large
random markets. See the last section for further discussion.
8. There are �n positions for some �> 1.
9. All our positive results also hold (with similar proofs similar to
the ones presented here) in the exact same model used by Kojima
et al. (2013). The differences between our models are further
discussed in §3.
10. This assumption is necessary to prevent too many hospitals
to artificially be closed. Furthermore, in practice doctors can list
hospitals they interviewed with, and therefore it is natural that only
doctors can have unacceptable hospitals in a random model.
11. Our results can also extend to allow a blocking pair to involve
a couple c and a hospital h such that one of the members of the
couple is matched to h while the other is unassigned.
12. Step 3(b21) in the formal definition of SoDA.
13. Steps 2(a11), 2(a21), and 3(b22) in the formal definition.
14. In the formal definition of SoDA, all doctors in the set R in
steps 2(a1), 2(a2), and 3(b2) are evicted by the applying couple c.
15. If preference lists for doctors are of constant length, our results
hold also if for each couple c = 4f 1m5 after f and m draw their lists
independently, their lists can be arbitrarily aggregated in a similar
way as described in Kojima et al. (2013) (any joint preference list
for c can be generated from m’s and f ’s lists as long as no h ∈H
that does not appear in f ’s (h’s) list appears in the joint list for
f (m).)
16. For any two functions f and g we write f =ì4g5 if g =O4f 5.
17. This follows from the fact that in markets without couples, the
set of stable matching forms a lattice. However, in a matching
market with couples even if a stable matching exists, the set of
stable matchings do not necessarily form a lattice.
18. A weakly connected component in a directed graph is a
connected component in the graph obtained by removing the
directions of the edges.
19. A topological sort � is an order over the couples such that no
couple has an edge to a couple ahead of him in the order.
20. We do not rule out here that h was inserted to the influence
tree by two different doctors. However, we will later show that the
probability of this event is negligible.
21. In particular one will need to define influence trees for hospitals,
show that with high probability a hospital does not encounter any
couple, and with a bit of effort apply Lemma 10 in Kojima and
Pathak (2009), which asserts the desired result for hospitals in
markets without couples.
22. The results can be slightly improved by randomizing a new
insert order each time the algorithm fails (doing this a small
arbitrary number of times).
23. In fact in the NRMP more than 20,000 doctors participate, but
16,000 are from the United States and are ranked higher in the
match.
24. The result is true also for �n couples for any constant �> 0.
25. This question was raised by Federico Echenique.
26. In fact the existence result holds even without limiting the
number of workers that can be hired in each firm.
27. The condition on P only assures that an eviction chain ends in
a worker who is yet to be assigned with positive probability. To
limit the size of influence trees a similar union bound method (as
in the proof of Theorem 1) can be used.
28. Kojima et al. (2013) allowed to aggregate the preference lists
almost arbitrarily (see footnote 15). However, since their preference
lists are bounded by a constant, the probability that the members of

a given couple will draw the same hospital is very small implying
that in their joint list they will never apply to the same hospital (in
our model, they may apply to the same hospital in different steps
of the algorithm, but that will happen with low probability).
29. It is possible that if two influence trees intersect they will have
other nodes 4h̃1 d̃5 in common, since there might be common paths
that continue from the point they intersect.
30. We write polylogn for a polynomial in logn. In particular
polylogn/n2� tends to zero as n tends to infinity.
31. A set of nodes in an undirected graph is called a connected
component if there exists a path between each to nodes in the set.
32. The presence of a cycle does not necessarily imply that there
is no stable matching. In fact the SoDA will often find stable
matchings even when there are cycles in the couples graph.
33. A backward edge is an edge from a newly inserted couple to a
previously inserted one.
34. If capacities can be more than one, reduce capacity of h by the
number of doctors that are members of a couples that assigned h.
35. It can be shown that the SoDA algorithm without this modifi-
cation will run with at most 43/�53/� · n1−� iterations.
36. As usual if a member of a couple is rejected from some
hospital, its other member is also rejected.
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