STABILITY IN $S O(n+3) / S O(3) \times S O(n)$ BRANCHING

By
Chiaki Tsukamoto

Abstract

The branching rule for $S O(n+3) / S O(3) \times S O(n)$ is discussed. An effective bound for the stability in the branching is given.

1. Introduction

Let G be a compact connected Lie group, K its closed subgroup, and V_{K} an irreducible K-module. The space of smooth sections $C^{\infty}\left(G \times_{K} V_{K}\right)$ of the associated vector bundle $G \times_{K} V_{K}$ is a G-module, which has the decomposition into irreducible finite dimensional G-modules; we have a sum of irreducible finite dimensional G-submodules as its dense subspace. Frobenius' reciprocity law shows us that a G-submodule isomorphic to an irreducible G-module V_{G} appears in the decomposition if and only if there exists a non-vanishing K-homomorphism from V_{G} to V_{K}, and the multiplicity of the appearance is equal to the dimension of the space of K-homomorphisms $\operatorname{Hom}_{K}\left(V_{G}, V_{K}\right)$. If we assume that all modules are over the complex number field \mathbf{C}, by Schur's lemma, the dimension $\operatorname{dim} \operatorname{Hom}_{K}\left(V_{G}, V_{K}\right)$ is equal to the multiplicity of K-submodules isomorphic to V_{K} in the decomposition of V_{G} as a sum of K-irreducible K-modules. Therefore the decomposition of $C^{\infty}\left(G \times_{K} V_{K}\right)$ into G-irreducible G-modules is computed by the knowledge how a G-irreducible G-module V_{G} decomposes into a sum of K irreducible K-modules, or, more precisely, by the knowledge which G-irreducible G-module V_{G} includes a K-submodule isomorphic to V_{K} in its decomposition into K-irreducible K-submodules and how many times V_{G} includes V_{K}. In our setting, the irreducible G-modules and K-modules are determined by their highest weight. When V_{G} is the irreducible G-module $V_{G}\left(\Lambda_{G}\right)$ with the highest weight Λ_{G} and V_{K} is the irreducible K-module $V_{K}\left(\Lambda_{K}\right)$ with the highest weight Λ_{K}, we define the multiplicity $m\left(\Lambda_{G}, \Lambda_{K}\right)$ by

[^0]\[

$$
\begin{aligned}
m\left(\Lambda_{G}, \Lambda_{K}\right) & =\operatorname{dim} \operatorname{Hom}_{G}\left(V_{G}\left(\Lambda_{G}\right), C^{\infty}\left(G \times_{K} V_{K}\left(\Lambda_{K}\right)\right)\right) \\
& =\operatorname{dim} \operatorname{Hom}_{K}\left(V_{G}\left(\Lambda_{G}\right), V_{K}\left(\Lambda_{K}\right)\right)
\end{aligned}
$$
\]

The knowledge of $m\left(\Lambda_{G}, \Lambda_{K}\right)$ for every pair of highest weights Λ_{G} and Λ_{K} is called the branching rule for G / K. When we use it for the computation of the decomposition of $C^{\infty}\left(G \times_{K} V_{K}\right)$, it is not enough to compute $m\left(\Lambda_{G}, \Lambda_{K}\right)$ for some randomly taken Λ_{G}. For a fixed Λ_{K}, we should determine all the Λ_{G} for which $m\left(\Lambda_{G}, \Lambda_{K}\right)$ is positive and the precise value of $m\left(\Lambda_{G}, \Lambda_{K}\right)$ for them.

In [4], the author gave the branching rule for $S O(n+3) / S O(3) \times S O(n)$ $(n \geq 3)$, but then it was not clear how it can effectively be used for the computation of the decomposition of the space of smooth sections of the associated vector bundle.

In this paper, we shall show the effectiveness by establishing the bound for stability in the branching rule. First, we clarify what is the stability in the branching rule.

Assume that (G, K) is a symmetric pair. We denote by r the rank of (G, K). The G-module decomposition of the space of C^{∞}-functions $C^{\infty}(G / K)$ is wellknown and clearly described by the theory of spherical functions. There are r fundamental weights $\Lambda_{1}, \Lambda_{2}, \ldots, \Lambda_{r}$, and each G-module whose highest weight is their linear combination over non-negative integers appears in the decomposition just once. Since $C^{\infty}(G / K)$ is $C^{\infty}\left(G \times_{K} V_{K}(0)\right)$, the above means that, if we take the highest weight $\Lambda_{0}=\sum_{i=1}^{r} p_{i} \Lambda_{i}$ with non-negative integral coefficients $p_{i}(1 \leq i \leq r)$, we always have

$$
m\left(\Lambda_{0}, 0\right)=1
$$

We fix a non-zero element Φ of $\operatorname{Hom}_{G}\left(V_{G}\left(\Lambda_{0}\right), C^{\infty}(G / K)\right)$.
The space $C^{\infty}\left(G \times_{K} V_{K}\right)$ is a $C^{\infty}(G / K)$-module, and the module structure is compatible with the G-module structure. For $\Psi \in \operatorname{Hom}_{G}\left(V_{G}\left(\Lambda_{G}\right), C^{\infty}\left(G \times_{K} V_{K}\right)\right)$, we have $\Psi \otimes \Phi \in \operatorname{Hom}_{G}\left(V_{G}\left(\Lambda_{G}\right) \otimes V_{G}\left(\Lambda_{0}\right), C^{\infty}\left(G \times_{K} V_{K}\right)\right)$, where we used $V_{K} \otimes V_{K}(0)=V_{K}$. Since $V_{G}\left(\Lambda_{G}+\Lambda_{0}\right)$ is the G-submodule of $V_{G}\left(\Lambda_{G}\right) \otimes V_{G}\left(\Lambda_{0}\right)$ containing the tensor product of the highest weight vectors of $V_{G}\left(\Lambda_{G}\right)$ and $V_{G}\left(\Lambda_{0}\right)$, we have the restriction of $\Psi \otimes \Phi$ to $\operatorname{Hom}_{G}\left(V_{G}\left(\Lambda_{G}+\Lambda_{0}\right), C^{\infty}\left(G \times_{K}\right.\right.$ $\left.V_{K}\right)$), and we denote it also by $\Psi \otimes \Phi$. Let $v_{G}\left(\Lambda_{G}\right)$ be the vector corresponding to the highest weight in $V_{G}\left(\Lambda_{G}\right)$ and $v_{G}\left(\Lambda_{0}\right)$ that in $V_{G}\left(\Lambda_{0}\right)$. If the image $\Psi\left(v_{G}\left(\Lambda_{G}\right)\right)$ is a non-zero section in $C^{\infty}\left(G \times_{K} V_{K}\right)$, the image $(\Psi \otimes \Phi)\left(v_{G}\left(\Lambda_{G}\right) \otimes\right.$ $\left.v_{G}\left(\Lambda_{0}\right)\right)$ is also a non-zero section, since it is a multiplication of $\Psi\left(v_{G}\left(\Lambda_{G}\right)\right)$ by a non-zero function $\Phi\left(v_{G}\left(\Lambda_{0}\right)\right)$ that does not vanish on an open dense set of G / K.

Therefore, if $\operatorname{Hom}_{G}\left(V_{G}\left(\Lambda_{G}\right), C^{\infty}\left(G \times_{K} V_{K}\right)\right)$ has the dimension q, we can make q independent realizations of $V_{G}\left(\Lambda_{G}+\Lambda_{0}\right)$ in $C^{\infty}\left(G \times_{K} V_{K}\right)$. We conclude the following proposition.

Proposition 1. Let Λ_{K} be the highest weight of an irreducible K-module, and Λ_{G} the highest weight of an irreducible G-module. For any highest weight $\Lambda_{0}=$ $\sum_{i=1}^{r} p_{i} \Lambda_{i}$ with non-negative integers $p_{i}(1 \leq i \leq r)$, we have

$$
m\left(\Lambda_{G}+\Lambda_{0}, \Lambda_{K}\right) \geq m\left(\Lambda_{G}, \Lambda_{K}\right)
$$

Therefore, the value $m\left(\Lambda_{G}, \Lambda_{K}\right)$ is non-decreasing with respect to the addition of the highest weight Λ_{0}.

It is generally known to stabilize for the large Λ_{G}; the value $m\left(\Lambda_{G}, \Lambda_{K}\right)$ stops increasing. See, for example, Sato [3]. But, for our application, the effective bound for Λ_{G} so that the equality $m\left(\Lambda_{G}+\Lambda_{0}, \Lambda_{K}\right)=m\left(\Lambda_{G}, \Lambda_{K}\right)$ should hold is needed. With such bound, we can select Λ_{G} for which we should compute $m\left(\Lambda_{G}, \Lambda_{K}\right)$, and can finally compute the decomposition of the space $C^{\infty}\left(G \times_{K}\right.$ $\left.V_{K}\left(\Lambda_{K}\right)\right)$. Thus, the effectiveness of a branching rule is evaluated by how it gives the stability bound. We shall show the effecitve bound is obtained from the branching rule in [4].

The author is led to consider the stability bound for the branching rule of $S O(n+3) / S O(3) \times S O(n)$ after Professor Mashimo's works [1], [2] and thanks him for the valuable discussions on this theme.

2. The Case n is Even

We first recall the branching rule given in [4] for $G=S O(2 m+3)$ and $K=$ $S O(3) \times S O(2 m)$ with the integer $m \geq 2$. We use the same notation for weights given there.

The hightest weight Λ_{G} of an irreducible G-module is of the form $\Lambda_{G}=$ $h_{0} \lambda_{0}+h_{1} \lambda_{1}+\cdots+h_{m} \lambda_{m}$, where $h_{0}, h_{1}, \ldots, h_{m}$ are integers satisfying $h_{0} \geq$ $h_{1} \geq \cdots \geq h_{m} \geq 0$. The highest weight Λ_{K} of an irreducible K-module is of the form $\Lambda_{K}=p_{0} \lambda_{0}+p_{1} \lambda_{1}+\cdots+p_{m-1} \lambda_{m-1}+\varepsilon p_{m} \lambda_{m}$, where $p_{0}, p_{1}, \ldots, p_{m-1}, p_{m}$ are integers satisfying $p_{0} \geq 0$ and $p_{1} \geq \cdots \geq p_{m-1} \geq p_{m} \geq 0$, and ε is +1 or -1 .

An irreducible G-module $V_{G}\left(\Lambda_{G}\right)$ is always the complexification of a real vector space with G-action. On the other hand, an irreducible K-module $V_{K}\left(\Lambda_{K}\right)$ is the complexification of a real vector space with K-action, when $p_{m}=0$. (In this case, ε is irrelevant.) The complexification of a real vector space with irreducible
K-action is $V_{K}\left(\Lambda_{K}\right)$ with $p_{m}=0$ or a direct sum $V_{K}\left(\Lambda_{K}\right)+V_{K}\left(\overline{\Lambda_{K}}\right)$ with $p_{m}>0$, where $\overline{\Lambda_{K}}$ is the Λ_{K} the sign ε of which is reversed. In the decomposition of $V_{G}\left(\Lambda_{G}\right)$, there appear only $V_{K}\left(\Lambda_{K}\right)$'s with $p_{m}=0$ or direct sums $V_{K}\left(\Lambda_{K}\right)+$ $V_{K}\left(\overline{\Lambda_{K}}\right)$ with $p_{m}>0$, since they must be the complexifications of real vector spaces with irreducible K-action. In this respect, we may restrict our attention to Λ_{K} with $\varepsilon=1$ (or $p_{m}=0$), for, if $V_{K}\left(\Lambda_{K}\right)$ appears in the decomposition of $V_{G}\left(\Lambda_{G}\right), V_{K}\left(\overline{\Lambda_{K}}\right)$ also appears with the same multiplicity.

In the following, we set $s(\lambda)=\exp (\lambda)-\exp (-\lambda)$ and $c(\lambda)=\exp (\lambda)+$ $\exp (-\lambda)$.

Theorem 2. The irreducible K-module $V_{K}\left(\Lambda_{K}\right)$ with the highest weight $\Lambda_{K}=$ $p_{0} \lambda_{0}+p_{1} \lambda_{1}+\cdots+p_{m} \lambda_{m}$ appears in the decomposition of the irreducible G-module $V_{G}\left(\Lambda_{G}\right)$ with the highest weight $\Lambda_{G}=h_{0} \lambda_{0}+h_{1} \lambda_{1}+\cdots+h_{m} \lambda_{m}$ if and only if the following conditions are satisfied.

1. $p_{m} \leq h_{m-1}, p_{m-1} \leq h_{m-2}, h_{i+2} \leq p_{i} \leq h_{i-1}(1 \leq i \leq m-2)$.
2. In the following expression, in which we calculate the left hand side and arrange them as in the right hand side, $m_{p_{0}}$ does not vanish:

$$
\sum_{\left(k_{1}, \ldots, k_{m}\right)} \frac{\prod_{i=0}^{m} s\left(l_{i} \lambda_{0}\right)}{\left(s\left(\lambda_{0}\right)\right)^{m}}=\sum_{p \geq 0} m_{p} s\left(\left(p+\frac{1}{2}\right) \lambda_{0}\right),
$$

where the sum in the left hand side is taken over all the sequences of integers k_{1}, \ldots, k_{m} satisfying

$$
\begin{aligned}
& k_{1} \geq \cdots \geq k_{m} \geq 0, \\
& p_{m} \leq k_{m} \leq \min \left\{p_{m-1}, h_{m-1}\right\}, \\
& \max \left\{p_{i}, h_{i+1}\right\} \leq k_{i} \leq \min \left\{p_{i-1}, h_{i-1}\right\} \quad(2 \leq i \leq m-1), \\
& \max \left\{p_{1}, h_{2}\right\} \leq k_{1} \leq h_{0},
\end{aligned}
$$

and $l_{0}, l_{1}, \ldots, l_{m}$ are given by

$$
\begin{aligned}
l_{0} & =h_{0}-\max \left\{h_{1}, k_{1}\right\}+1, \\
l_{i} & =\min \left\{h_{i}, k_{i}\right\}-\max \left\{h_{i+1}, k_{i+1}\right\}+1 \quad(1 \leq i \leq m-1), \\
l_{m} & =\min \left\{h_{m}, k_{m}\right\}+\frac{1}{2} .
\end{aligned}
$$

We have $m\left(\Lambda_{G}, \Lambda_{K}\right)=m_{p_{0}}$.

The fundamental weights for the pair (G, K) are given by

$$
\begin{aligned}
& \Lambda_{1}=2 \lambda_{0}, \\
& \Lambda_{2}=2 \lambda_{0}+2 \lambda_{1}, \\
& \Lambda_{3}=\lambda_{0}+\lambda_{1}+\lambda_{2}
\end{aligned}
$$

Let Λ_{0} be any linear combination of Λ_{1}, Λ_{2}, and Λ_{3} with non-negative integral coefficients. Our main theorem on the stability bound is given as follows:

Theorem 3. Assume that $h_{0}-h_{1} \geq p_{0}+p_{1}, h_{1}-h_{2} \geq p_{0}+p_{1}$, and $h_{2} \geq p_{1}$. Then we have $m\left(\Lambda_{G}+\Lambda_{0}, \Lambda_{K}\right)=m\left(\Lambda_{G}, \Lambda_{K}\right)$.

For the proof, we first assume $h_{2} \geq p_{1}$. Then the summation over $\left(k_{1}, \ldots, k_{m}\right)$ in Theorem 2 splits into the product of two parts.

$$
\begin{aligned}
\sum_{\left(k_{1}, \ldots, k_{m}\right)} \frac{\prod_{i=0}^{m} s\left(l_{i} \lambda_{0}\right)}{\left.i\left(\lambda_{0}\right)\right)^{m}}= & \sum_{h_{2} \leq k_{1} \leq h_{0}} \frac{s\left(l_{0} \lambda_{0}\right) s\left(l_{1} \lambda_{0}\right)}{\left(s\left(\lambda_{0}\right)\right)^{2}} s\left(\frac{1}{2} \lambda_{0}\right) \\
& \times \sum_{\substack{\max \left\{p_{2}, h_{3}\right\} \leq k_{2} \leq p_{1} \\
\max \left\{p_{i}, h_{i+1}\right\} \leq k_{i} \leq \max \left\{p_{1}-h_{i-1}\right\} \\
p_{m} \leq k_{m} \leq \max \left\{p_{m-1}, h_{m-1}\right\}}} \prod_{i \leq i \leq m-1)}^{m-1} \frac{s\left(l_{i} \lambda_{0}\right)}{s\left(\lambda_{0}\right)} \cdot \frac{s\left(l_{m} \lambda_{0}\right)}{s\left(\frac{1}{2} \lambda_{0}\right)},
\end{aligned}
$$

where we have

$$
\begin{aligned}
& l_{0}=h_{0}-\max \left\{h_{1}, k_{1}\right\}+1, \\
& l_{1}=\min \left\{h_{1}, k_{1}\right\}-h_{2}+1, \\
& l_{2}=k_{2}-\max \left\{h_{3}, k_{3}\right\}+1, \\
& l_{i}=\min \left\{h_{i}, k_{i}\right\}-\max \left\{h_{i+1}, k_{i+1}\right\}+1, \quad(3 \leq i \leq m-1), \\
& l_{m}=\min \left\{h_{m}, k_{m}\right\}+\frac{1}{2} .
\end{aligned}
$$

Since $\quad s\left((l+1) \lambda_{0}\right) / s\left(\lambda_{0}\right)=\exp \left(l \lambda_{0}\right)+\exp \left((l-2) \lambda_{0}\right)+\cdots+\exp \left(-l \lambda_{0}\right)$, and $s\left((l+1 / 2) \lambda_{0}\right) / s\left((1 / 2) \lambda_{0}\right)=\exp \left(l \lambda_{0}\right)+\exp \left((l-1) \lambda_{0}\right)+\cdots+\exp \left(-l \lambda_{0}\right)$, we can conclude

$$
\begin{equation*}
\sum_{\substack{\max \left\{p_{2}, h_{3}\right\} \leq k_{2} \leq p_{1} \\ \max \left\{p_{i}, h_{i+1}\right\} \leq k_{i} \leq \max \left\{p_{i-1}, h_{i-1}\right\} \\ p_{m} \leq k_{m} \leq \max \left\{p_{m-1}, h_{m-1}\right\}}} \prod_{(3 \leq i \leq m-1)}^{m-1} \frac{s\left(l_{i} \lambda_{0}\right)}{s\left(\lambda_{0}\right)} \cdot \frac{s\left(l_{m} \lambda_{0}\right)}{s\left(\frac{1}{2} \lambda_{0}\right)}=\sum_{0 \leq k \leq p_{1}} C_{k} c\left(k \lambda_{0}\right) \tag{1}
\end{equation*}
$$

Notice that the coefficient C_{k} does not depend on h_{0}, h_{1}, nor h_{2}.

We shall compute the former part.

$$
\begin{align*}
\sum_{h_{2} \leq k_{1} \leq h_{0}} & \frac{s\left(l_{0} \lambda_{0}\right) s\left(l_{1} \lambda_{0}\right)}{\left(s\left(\lambda_{0}\right)\right)^{2}} s\left(\frac{1}{2} \lambda_{0}\right) \\
= & \frac{s\left(\left(h_{0}-h_{1}+1\right) \lambda_{0}\right)}{s\left(\lambda_{0}\right)} \sum_{h_{2} \leq k_{1} \leq h_{1}} \frac{s\left(\left(k_{1}-h_{2}+1\right) \lambda_{0}\right)}{s\left(\lambda_{0}\right)} s\left(\frac{1}{2} \lambda_{0}\right) \\
& +\frac{s\left(\left(h_{1}-h_{2}+1\right) \lambda_{0}\right)}{s\left(\lambda_{0}\right)} \sum_{h_{1}<k_{1} \leq h_{0}} \frac{s\left(\left(h_{0}-k_{1}+1\right) \lambda_{0}\right)}{s\left(\lambda_{0}\right)} s\left(\frac{1}{2} \lambda_{0}\right) \\
= & \frac{s\left(\left(h_{0}-h_{1}+1\right) \lambda_{0}\right)}{s\left(\lambda_{0}\right)} \sum_{h_{2} \leq k_{1} \leq h_{1}} \sum_{q=0}^{k_{1}-h_{2}}(-1)^{q} s\left(\left(k_{1}-h_{2}-q+\frac{1}{2}\right) \lambda_{0}\right) \\
& +\frac{s\left(\left(h_{1}-h_{2}+1\right) \lambda_{0}\right)}{s\left(\lambda_{0}\right)} \sum_{h_{1}<k_{1} \leq h_{0}} \sum_{q=0}^{h_{0}-k_{1}}(-1)^{q} s\left(\left(h_{0}-k_{1}-q+\frac{1}{2}\right) \lambda_{0}\right) \\
= & \frac{s\left(\left(h_{0}-h_{1}+1\right) \lambda_{0}\right)}{s\left(\lambda_{0}\right)} \sum_{q=0}^{\left[\left(h_{1}-h_{2}\right) / 2\right]} s\left(\left(h_{1}-h_{2}-2 q+\frac{1}{2}\right) \lambda_{0}\right) \\
& +\frac{s\left(\left(h_{1}-h_{2}+1\right) \lambda_{0}\right)}{s\left(\lambda_{0}\right)} \sum_{q=0}^{\left[\left(h_{0}-h_{1}-1\right) / 2\right]} s\left(\left(h_{0}-h_{1}-1-2 q+\frac{1}{2}\right) \lambda_{0}\right) . \tag{2}
\end{align*}
$$

We can calculate this from the following:

Lemma 4. For $k \leq h$, we have

$$
\begin{aligned}
\frac{s\left((h+1) \lambda_{0}\right)}{s\left(\lambda_{0}\right)} s\left(\left(k+\frac{1}{2}\right) \lambda_{0}\right)= & \sum_{p=0}^{h-k}(-1)^{h-k+p} s\left(\left(p+\frac{1}{2}\right) \lambda_{0}\right) \\
& +\sum_{q=1}^{k} s\left(\left(h-k+2 q+\frac{1}{2}\right) \lambda_{0}\right) .
\end{aligned}
$$

For $h \leq k$, we have

$$
\frac{s\left((h+1) \lambda_{0}\right)}{s\left(\lambda_{0}\right)} s\left(\left(k+\frac{1}{2}\right) \lambda_{0}\right)=\sum_{q=0}^{h} s\left(\left(k-h+2 q+\frac{1}{2}\right) \lambda_{0}\right) .
$$

Proof. We use the following equality.

$$
\begin{aligned}
\frac{s\left((h+1) \lambda_{0}\right)}{s\left(\lambda_{0}\right)} s\left(\left(k+\frac{1}{2}\right) \lambda_{0}\right)= & \frac{s\left((h+1) \lambda_{0}\right)}{s\left(\lambda_{0}\right)} s\left(\frac{1}{2} \lambda_{0}\right) \frac{s\left(\left(k+\frac{1}{2}\right) \lambda_{0}\right)}{s\left(\frac{1}{2} \lambda_{0}\right)} \\
= & \sum_{p=0}^{h}(-1)^{p} s\left(\left(h-p+\frac{1}{2}\right) \lambda_{0}\right) \\
& \times \sum_{q=0}^{2 k} \exp \left((k-q) \lambda_{0}\right) .
\end{aligned}
$$

Notice that we have

$$
s\left(\left(h+\frac{1}{2}\right) \lambda_{0}\right) \times \sum_{q=0}^{2 k} \exp \left((k-q) \lambda_{0}\right)=\sum_{p=|h-k|}^{h+k} s\left(\left(p+\frac{1}{2}\right) \lambda_{0}\right) .
$$

The lemma follows from a straightforward computation.

Using this lemma, we have:

Proposition 5. For an integer p satisfying $0 \leq p \leq \min \left\{h_{0}-h_{1}, h_{1}-h_{2}\right\}$, the coefficient D_{p} in the equation

$$
\sum_{h_{2} \leq k_{1} \leq h_{0}} \frac{s\left(l_{0} \lambda_{0}\right) s\left(l_{1} \lambda_{0}\right)}{\left(s\left(\lambda_{0}\right)\right)^{2}} s\left(\frac{1}{2} \lambda_{0}\right)=\sum_{p=0}^{h_{0}-h_{2}} D_{p} s\left(\left(p+\frac{1}{2}\right) \lambda_{0}\right),
$$

depends only on $h_{0}-h_{1}$ and $h_{1}-h_{2}$, and does not change when $h_{0}-h_{1}$ or $h_{1}-h_{2}$ are increased by even integers.

Proof. By carefully counting the appearance of $s\left((p+1 / 2) \lambda_{0}\right)$ in the formula (2), we can show that, if $p \equiv h_{0}-h_{2}(\bmod 2)$, we have

$$
D_{p}=\frac{p+\left(h_{0}-h_{1}\right)-\left(h_{1}-h_{2}\right)}{2}-\left[\frac{h_{0}-h_{1}-1}{2}\right]+\left[\frac{h_{1}-h_{2}}{2}\right]
$$

and that, if $p \equiv h_{0}-h_{2}+1(\bmod 2)$, we have

$$
D_{p}=\frac{p+1-\left(h_{0}-h_{1}\right)+\left(h_{1}-h_{2}\right)}{2}+\left[\frac{h_{0}-h_{1}-1}{2}\right]-\left[\frac{h_{1}-h_{2}}{2}\right] .
$$

The coefficient m_{p} in Theorem 2 for $0 \leq p \leq \min \left\{h_{0}-h_{1}, h_{1}-h_{2}\right\}-p_{1}$ depends only on the coefficients $C_{k}\left(0 \leq k \leq p_{1}\right)$ in the formula (1) and the coefficients $D_{p}\left(0 \leq p \leq \min \left\{h_{0}-h_{1}, h_{1}-h_{2}\right\}\right)$ in Proposition 5. By adding Λ_{0} to Λ_{G}, the condition $h_{2} \geq p_{1}$ does not alter and the values of $h_{0}-h_{1}$ and $h_{1}-h_{2}$ increase by even integers. Therefore m_{p} does not change. Thus the proof of Theorem 3 is completed.

3. The Case n is Odd

We next treat the case $n=2 m+1(m \geq 2)$. We again recall the branching rule given in [4] for $G=S O(2 m+4)$ and $K=S O(3) \times S O(2 m+1)$, following the same notation for weights there.

The hightest weight Λ_{G} of an irreducible G-module is of the form $\Lambda_{G}=$ $h_{-1} \lambda_{-1}+h_{0} \lambda_{0}+h_{1} \lambda_{1}+\cdots+h_{m-1} \lambda_{m-1}+\varepsilon h_{m} \lambda_{m}$, where $h_{-1}, h_{0}, h_{1}, \ldots, h_{m-1}, h_{m}$ are integers satisfying $h_{-1} \geq h_{0} \geq h_{1} \geq \cdots \geq h_{m-1} \geq h_{m} \geq 0$ and ε is +1 or -1 . The highest weight Λ_{K} of an irreducible K-module is of the form $\Lambda_{K}=p_{-1} \lambda_{-1}+$ $p_{1} \lambda_{1}+\cdots+p_{m} \lambda_{m}$, where $p_{-1}, p_{1}, \ldots, p_{m}$ are integers satisfying $p_{-1} \geq 0$ and $p_{1} \geq \cdots \geq p_{m} \geq 0$.

Theorem 6 . The irreducible K-module $V_{K}\left(\Lambda_{K}\right)$ with the highest weight $\Lambda_{K}=$ $p_{-1} \lambda_{-1}+p_{1} \Lambda_{1}+\cdots+p_{m} \lambda_{m}$ appears in the decomposition of the irreducible G module $V_{G}\left(\Lambda_{G}\right)$ with the highest weight $\Lambda_{G}=h_{-1} \lambda_{-1}+h_{0} \lambda_{0}+h_{1} \lambda_{1}+\cdots+$ $h_{m-1} \lambda_{m-1}+\varepsilon h_{m} \lambda_{m}$ if and only if the following conditions are satisfied.

1. $p_{m} \leq h_{m-2}, h_{i+1} \leq p_{i} \leq h_{i-2}(1 \leq i \leq m-1)$.
2. In the following expression, in which we calculate the left hand side and arrange them as in the right hand side, m_{p-1} does not vanish:

$$
\sum_{\left(q_{0}, q_{1}, \ldots, q_{m}\right)} \frac{\prod_{i=0}^{m} s\left(r_{i} \lambda_{-1}\right)}{\left(s\left(\lambda_{-1}\right)\right)^{m}}=\sum_{p \geq 0} m_{p} s\left(\left(p+\frac{1}{2}\right) \lambda_{-1}\right),
$$

where the sum in the left hand side is taken over all the sequences of integers $q_{0}, q_{1}, \ldots, q_{m}$ satisfying

$$
\begin{aligned}
& q_{0} \geq q_{1} \geq \cdots \geq q_{m} \geq 0 \\
& h_{m} \leq q_{m} \leq \min \left\{p_{m-1}, h_{m-1}\right\}, \\
& \max \left\{p_{i+1}, h_{i}\right\} \leq q_{i} \leq \min \left\{p_{i-1}, h_{i-1}\right\} \quad(2 \leq i \leq m-1), \\
& \max \left\{p_{2}, h_{1}\right\} \leq q_{1} \leq h_{0}, \quad \max \left\{p_{1}, h_{0}\right\} \leq q_{0} \leq h_{-1},
\end{aligned}
$$

and $r_{0}, r_{1}, \ldots, r_{m}$ are given by

$$
\begin{aligned}
r_{0} & =q_{0}-\max \left\{q_{1}, p_{1}\right\}+1 \\
r_{i} & =\min \left\{q_{i}, p_{i}\right\}-\max \left\{q_{i+1}, p_{i+1}\right\}+1 \quad(1 \leq i \leq m-1) \\
r_{m} & =\min \left\{q_{m}, p_{m}\right\}+\frac{1}{2}
\end{aligned}
$$

We have $m\left(\Lambda_{G}, \Lambda_{K}\right)=m_{p-1}$.
The fundamental weights for the pair (G, K) are given by

$$
\begin{aligned}
& \Lambda_{1}=2 \lambda_{-1} \\
& \Lambda_{2}=2 \lambda_{-1}+2 \lambda_{0}, \\
& \Lambda_{3}=\lambda_{-1}+\lambda_{0}+\lambda_{1}
\end{aligned}
$$

Let Λ_{0} be any linear combination of Λ_{1}, Λ_{2}, and Λ_{3} with non-negative integral coefficients. Our main theorem on the stability bound is given as follows:

Theorem 7. Assume that $h_{-1}-h_{0} \geq p_{-1}+p_{1}, \quad h_{0}-h_{1} \geq p_{-1}+p_{1}$, and $h_{1} \geq p_{1}$. Then we have $m\left(\Lambda_{G}+\Lambda_{0}, \Lambda_{K}\right)=m\left(\Lambda_{G}, \Lambda_{K}\right)$.

For the proof, we assume $h_{1} \geq p_{1}$. Then the summation over $\left(q_{0}, q_{1}, \ldots, q_{m}\right)$ in Theorem 6 splits into the product of two parts.

$$
\begin{aligned}
& \sum_{\left(q_{0}, q_{1}, \ldots, q_{m}\right)} \frac{\prod_{i=0}^{m} s\left(r_{i} \lambda_{-1}\right)}{\left(s\left(\lambda_{-1}\right)\right)^{m}} \\
& =\sum_{\substack{h_{0} \leq q_{0} \leq h_{1} \\
h_{1} \leq q_{1} \leq h_{0}}} \frac{s\left(r_{0} \lambda_{-1}\right)}{s\left(\lambda_{-1}\right)} s\left(\frac{1}{2} \lambda_{-1}\right) \\
& \times \sum_{\substack{\max \left\{p_{3}, h_{2}\right\} \leq q_{2} \leq p_{1}}} \prod_{\substack{ \\
\max \left\{p_{i+1}, h_{i}\right\} \leq q_{i} \leq \max \left\{p_{i-1}, h_{i-1}\right\} \\
h_{m} \leq q_{m} \leq \max \left\{p_{m-1}, h_{m-1}\right\}}}^{m-1} \frac{s\left(r_{i} \lambda_{-1}\right)}{s\left(\lambda_{-1}\right)} \cdot \frac{s\left(r_{m} \lambda_{-1}\right)}{s\left(\frac{1}{2} \lambda_{-1}\right)},
\end{aligned}
$$

where we have

$$
\begin{aligned}
& r_{0}=q_{0}-q_{1}+1, \\
& r_{1}=p_{1}-\max \left\{q_{2}, p_{2}\right\},
\end{aligned}
$$

$$
\begin{aligned}
r_{i} & =\min \left\{q_{i}, p_{i}\right\}-\max \left\{q_{i+1}, p_{i+1}\right\}+1, \quad(2 \leq i \leq m-1) \\
r_{m} & =\min \left\{q_{m}, p_{m}\right\}+\frac{1}{2}
\end{aligned}
$$

The latter part is represented as

$$
\begin{equation*}
\sum_{\substack{\max \left\{p_{3}, h_{2}\right\} \leq q_{2} \leq p_{1} \\ \max \left\{p_{i+1}, h_{i}\right\} \leq q_{i} \leq \max \left\{p_{i-1}, h_{i-1}\right\} \\ h_{m} \leq q_{m} \leq \max \left\{p_{m-1}, h_{m-1}\right\}}} \prod_{(3 \leq i \leq m-1)}^{m-1} \frac{s\left(r_{i} \lambda_{-1}\right)}{s\left(\lambda_{-1}\right)} \cdot \frac{s\left(r_{m} \lambda_{-1}\right)}{s\left(\frac{1}{2} \lambda_{-1}\right)}=\sum_{0 \leq k \leq p_{1}} C_{k} c\left(k \lambda_{-1}\right) . \tag{3}
\end{equation*}
$$

Notice that the coefficient C_{k} does not depend on h_{-1}, h_{0}, nor h_{1}.
We shall compute the former part.

$$
\begin{aligned}
\sum_{\substack{h_{0} \leq q_{0} \leq h_{-1} \\
h_{1} \leq q_{1} \leq h_{0}}} \frac{s\left(r_{0} \lambda_{-1}\right)}{s\left(\lambda_{-1}\right)} s\left(\frac{1}{2} \lambda_{-1}\right) & =\sum_{\substack{h_{0} \leq q_{0} \leq h_{-1} \\
h_{1} \leq q_{1} \leq h_{0}}} \frac{s\left(\left(q_{0}-q_{1}+1\right) \lambda_{-1}\right)}{s\left(\lambda_{-1}\right)} s\left(\frac{1}{2} \lambda_{-1}\right) \\
& =\sum_{\substack{h_{0} \leq q_{0} \leq h_{-1} \\
h_{1} \leq q_{1} \leq h_{0}}} \sum_{q=0}^{q_{0}-q_{1}}(-1)^{q} s\left(\left(q_{0}-q_{1}-q+\frac{1}{2}\right) \lambda_{-1}\right) \\
& =\sum_{0 \leq p \leq h_{-1}-h_{1}} D_{p} s\left(\left(p+\frac{1}{2}\right) \lambda_{-1}\right)
\end{aligned}
$$

where D_{p} is given by

$$
\begin{equation*}
D_{p}=\sum_{\substack{h_{0} \leq q_{0} \leq h_{1} \\ h_{1} \leq q_{1} \leq h_{0} \\ p \leq q_{0}-q_{1}}}(-1)^{q_{0}-q_{1}-p} . \tag{4}
\end{equation*}
$$

Proposition 8. For an integer p satisfying $0 \leq p \leq \min \left\{h_{-1}-h_{0}, h_{0}-h_{1}\right\}$, the coefficient D_{p} in (4) depends only on $h_{-1}-h_{0}$ and $h_{0}-h_{1}$, and does not change when $h_{-1}-h_{0}$ or $h_{0}-h_{1}$ are increased by even integers.

Proof. We notice that

$$
D_{0}=\sum_{\substack{h_{0} \leq q_{0} \leq h_{-1} \\ h_{1} \leq q_{1} \leq h_{0}}}(-1)^{q_{0}-q_{1}}= \begin{cases}1, & \text { when both } h_{-1}-h_{0} \text { and } h_{0}-h_{1} \text { are even, } \\ 0, & \text { otherwise } .\end{cases}
$$

For p satisfying $0<p \leq \min \left\{h_{-1}-h_{0}, h_{0}-h_{1}\right\}$, we have

$$
(-1)^{p} D_{p}=D_{0}-\sum_{\substack{0 \leq p_{0}, p_{1} \\ p_{0}+p_{1}<p}}(-1)^{p_{0}+p_{1}}
$$

from which Proposition 8 is obvious.
The coefficient m_{p} in Theorem 6 for $0 \leq p \leq \min \left\{h_{-1}-h_{0}, h_{0}-h_{1}\right\}-p_{1}$ depends only on the coefficients $C_{k}\left(0 \leq k \leq p_{1}\right)$ in the formula (3) and the coefficients $D_{p}\left(0 \leq p \leq \min \left\{h_{-1}-h_{0}, h_{0}-h_{1}\right\}\right)$ in the formula (4). By adding Λ_{0} to Λ_{G}, the condition $h_{1} \geq p_{1}$ does not alter and the values of $h_{-1}-h_{0}$ and $h_{0}-h_{1}$ increase by even integers. Therefore m_{p} does not change. Thus the proof of Theorem 7 is completed.
4. The Case $G=S O(6)$ and $K=S O(3) \times S O(3)$

For the sake of completeness, we state the result for $n=3$, which is omitted in the section 3. We follow the notation in [4].

The hightest weight Λ_{G} of an irreducible G-module is of the form $\Lambda_{G}=$ $h_{-1} \lambda_{-1}+h_{0} \lambda_{0}+\varepsilon h_{1} \lambda_{1}$, where h_{-1}, h_{0}, h_{1} are integers satisfying $h_{-1} \geq h_{0} \geq h_{1}$ ≥ 0 and ε is +1 or -1 . The highest weight Λ_{K} of an irreducible K-module is of the form $\Lambda_{K}=p_{-1} \lambda_{-1}+p_{1} \lambda_{1}$, where p_{-1}, p_{1} are integers satisfying $p_{-1} \geq 0$ and $p_{1} \geq 0$. We give the branching rule in the different but equivalent manner.

Theorem 9. The irreducible K-module $V_{K}\left(\Lambda_{K}\right)$ with the highest weight $\Lambda_{K}=$ $p_{-1} \lambda_{-1}+p_{1} \Lambda_{1}$ appears in the decomposition of the irreducible G-module $V_{G}\left(\Lambda_{G}\right)$ with the highest weight $\Lambda_{G}=h_{-1} \lambda_{-1}+h_{0} \lambda_{0}+\varepsilon h_{1} \lambda_{1}$ if and only if, when we calculate

$$
\begin{aligned}
& \sum_{\substack{h_{0} \leq q_{0} \leq h_{-1} \\
h_{1} \leq q_{1} \leq h_{0}}}\left(\sum_{p=0}^{q_{0}-q_{1}} \sum_{q=0}^{q_{1}} s\left(\left(q_{0}-q_{1}-p+q+\frac{1}{2}\right) \lambda_{-1}\right) s\left(\left(p+q+\frac{1}{2}\right) \lambda_{1}\right)\right. \\
& \left.\quad+\sum_{q=0}^{q_{0}-q_{1}-1} \sum_{p=0}^{q}(-1)^{q_{0}-q_{1}-q} s\left(\left(q-p+\frac{1}{2}\right) \lambda_{-1}\right) s\left(\left(p+\frac{1}{2}\right) \lambda_{1}\right)\right),
\end{aligned}
$$

the coefficient of $s\left(\left(p_{-1}+1 / 2\right) \lambda_{-1}\right) s\left(\left(p_{1}+1 / 2\right) \lambda_{1}\right)$ does not vanish. Then the coefficient is equal to $m\left(\Lambda_{G}, \Lambda_{K}\right)$.

The fundamental weights for the pair (G, K) are given by

$$
\begin{aligned}
& \Lambda_{1}=2 \lambda_{-1} \\
& \Lambda_{2}=\lambda_{-1}+\lambda_{0}+\lambda_{1} \\
& \Lambda_{3}=\lambda_{-1}+\lambda_{0}-\lambda_{1}
\end{aligned}
$$

Let Λ_{0} be any linear combination of Λ_{1}, Λ_{2}, and Λ_{3} with non-negative integral coefficients. Our main theorem on the stability bound is given as follows:

Theorem 10. Assume that $h_{-1}-h_{0} \geq p_{-1}+p_{1}, h_{0}-h_{1} \geq p_{-1}+p_{1}$, and $h_{0} \geq(3 / 2)\left(p_{-1}+p_{1}\right)$. Then we have $m\left(\Lambda_{G}+\Lambda_{0}, \Lambda_{K}\right)=m\left(\Lambda_{G}, \Lambda_{K}\right)$.

Proof. We consider the set S of the sequence $\left(\ell_{0}, \ell_{1}, p, q\right)$ of non-negative integers.

$$
S=\left\{\begin{array}{l|l}
\left(\ell_{0}, \ell_{1}, p, q\right) & \begin{array}{l}
0 \leq \ell_{0} \leq h_{-1}-h_{0}, \quad 0 \leq \ell_{1} \leq h_{0}-h_{1} \\
0 \leq p \leq \ell_{0}+\ell_{1}, \quad 0 \leq q \leq h_{0}-\ell_{1} \\
p_{-1}=\ell_{0}+\ell_{1}-p+q, \quad p_{1}=p+q
\end{array}
\end{array}\right\}
$$

Then we have

$$
m\left(\Lambda_{G}, \Lambda_{K}\right)=\# S+\sum_{\substack{0 \leq \delta_{0} \leq h_{-1}-h_{0} \\ 0 \leq h_{1} \leq h_{0}-h_{1} \\ p_{1}+p_{1}<\ell_{0}+\ell_{1}}}(-1)^{\left(\ell_{0}+\ell_{1}\right)-\left(p-1+p_{1}\right)}
$$

If $\left(\ell_{0}, \ell_{1}, p, q\right)$ satisfies $p_{-1}=\ell_{0}+\ell_{1}-p+q$ and $p_{1}=p+q$, we have $\ell_{0}+$ $\ell_{1}+2 q=p_{-1}+p_{1}$. Under the assumption of Theorem 10, we can conclude

$$
S=\left\{\begin{array}{l|l}
\left(\ell_{0}, \ell_{1}, p, q\right) & \begin{array}{l}
0 \leq \ell_{0}, \quad 0 \leq \ell_{1}, \\
0 \leq p \leq \ell_{0}+\ell_{1}, \quad 0 \leq q \\
p_{-1}=\ell_{0}+\ell_{1}-p+q, \quad p_{1}=p+q
\end{array}
\end{array}\right\}
$$

and $\# S$ does not depend on h_{-1}, h_{0}, nor h_{1}. We also have

$$
\sum_{\substack{0 \leq \ell_{0} \leq h_{-1}-h_{0} \\ 0 \leq h_{1} \leq h_{0}-h_{1} \\ p-1+p_{1}<\ell_{0}+\ell_{1}}}(-1)^{\left(\ell_{0}+\ell_{1}\right)-\left(p_{-1}+p_{1}\right)}=(-1)^{p_{-1}+p_{1}}\left(D_{0}-\sum_{\substack{0 \leq \ell_{0}, \ell_{1} \\ \ell_{0}+h_{1} \leq p_{-1}+p_{1}}}(-1)^{\ell_{0}+\ell_{1}}\right),
$$

where D_{0} is the same number in the section 3 . When we add Λ_{0} to Λ_{G}, the value of h_{0} increases and the values of $h_{-1}-h_{0}$ and $h_{0}-h_{1}$ increase by even integers.

Therefore the assumption of Theorem 10 remains to hold, and, since the value D_{0} does not change, the equality $m\left(\Lambda_{G}+\Lambda_{0}, \Lambda_{K}\right)=m\left(\Lambda_{G}, \Lambda_{K}\right)$ holds.

References

[1] Katsuya Mashimo, On branching theorem of the pair $\left(G_{2}, S U(3)\right)$, Nihonkai Math. J. 8 (1997), 101-107.
[2] Katsuya Mashimo, On the branching theorem of the pair $\left(F_{4}, \operatorname{Spin}(9)\right)$, Tsukuba J. Math. 30 (2006), 31-47.
[3] Fumihiro Sato, On the stability of branching coefficients of rational representations of reductive groups, Comment. Math. Univ. St. Pauli 42 (1993), 189-207.
[4] Chiaki Tsukamoto, Branching rules for $S O(n+3) / S O(3) \times S O(n)$, Bulletin of the Faculty of Textile Science, Kyoto Institute of Technology 30 (2005), 11-20, 〈http://hdl.handle.net/ 10212/1686>.

Matsugasaki Goshokaido-cho
Sakyo-ku
Kyoto, 606-8585, Japan
E-mail address: chiaki@kit.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 53C35; Secondary 22E46, 14M15.
 Key words and phrases. Branching rule, symmetric space, Grassmannian.
 Received December 8, 2008.

