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STABILITY IN THE ISOPERIMETRIC PROBLEM
FOR CONVEX OR NEARLY SPHERICAL DOMAINS IN R"

BENT FUGLEDE
Dedicated to the memory of Werner Fenchel

Abstract. For convex bodies D in R" the deviation d from spherical shape
is estimated from above in terms of the (dimensionless) isoperimetric deficiency
A of D as follows: d < /(A) (for A sufficiently small). Here / is an
explicit elementary function vanishing continuously at 0. The estimate is sharp
as regards the order of magnitude of /. The dimensions n = 2 and 3 present
anomalies as to the form of /. In the planar case n = 2 the result is contained
in an inequality due to T. Bonnesen. A qualitative consequence of the present
result is that there is stability in the classical isoperimetric problem for convex
bodies D in R" in the sense that, as D varies, ¿-»0 for A —► 0 . The proof
of the estimate d < /(A) is based on a related estimate in the case of domains
(not necessarily convex) that are supposed a priori to be nearly spherical in a
certain sense.

Introduction

For a planar domain D of area A , bounded by a simple closed curve dD
of length L, Bonnesen [2] showed in 1924 that D has concentric inscribed and
circumscribed circles of radii rx, r2 satisfying the inequality

He also showed that the equality sign only occurs for a circle, and furthermore
that the inequality ceases to hold in general if the right-hand member is mul-
tiplied by a constant c < 1 . Earlier, Bernstein [1] had obtained an equivalent
inequality, though with a certain constant factor c ( « 1700) on the right, as a
limit case of a corresponding inequality for domains on a sphere in R .
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1 Still another proof—quite short—can be read off from Hurwitz' Fourier series proof of the
isoperimetric inequality in the plane [8], and that leads in a certain sense to a stronger inequality,
involving a Sobolev 1-norm of the deviation of dD from a circle, again estimated in terms of
L2 - 4nA , see [6]. It also leads to Bonnesen's inequality with a constant factor c (= 5n) on the
right.
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620 BENT FUGLEDE

The Bernstein-Bonnesen inequality implies of course the isoperimetric in-
equality L - 4tt,4 > 0 with equality only for a circle, but it shows moreover
that there is stability in the isoperimetric problem, in the sense that any domain
D with a small isoperimetric deficiency deviates only slightly from a circular
disc.

The question naturally arises to which extent there is stability in the iso-
perimetric problem in higher dimensions. While in dimension 2 the question
of stability reduces immediately to the case of convex domains (by passing to
the convex hull, whereby the area increases while the length decreases), the
situation in higher dimensions is quite different for convex domains and for
general domains.

Let ton denote the volume, and hence nton the surface area, of the unit ball
Í2 in R" . For a compact domain D in R" with Lipschitz class boundary dD
we denote by

= tonv ,    S = ncons

the volume of D and the area of dD, respectively.     The isoperimetric defi-
ciency A of D will be defined as the dimensionless quantity

n-1
A = J-(JLY •_,.(£)"_,.

n(0n \œnJ W

The isoperimetric inequality asserts that A > 0, with equality only for a ball.3
It will be understood moreover that D is "starshaped" with respect to its bary-

centre, which we may take to be 0. After a change of scale we may assume that
V = ton . With these two normalizations the boundary dD can be represented
in polar coordinates R e R+ , Ç e £ (the unit sphere in R" ) by an equation

R=l+u(<t),      Çeï.
In § 1 we further suppose that D is "nearly spherical" in the sense that

M INI« ̂ 2oV   Halloo <Xr
where || • || , 1 < p < oo, denotes the Lp-norm with respect to the normalized
surface measure on Z. With this ad hoc restriction we show that there is
stability in the isoperimetric problem in R" , both in Sobolev 1-norm and in
uniform norm. More precisely, we obtain the following estimates, valid under
the hypothesis (*) :

_!_,„ ..„2   .   „„. „2,   „  A   _ 3„„ .„2
(La) T7ï(IMr2 + llV"ll2)<A<7llVMll2>

2 We shall include the case n = 2 , mainly because the planar case of (I.a) above is not covered
by Bonnesen's work.

3 The particular choice n - 1  of a (positive) exponent of s/v  in the definition of A is of
course immaterial, but it is convenient for the proof of (La) above.
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CONVEX OR NEARLY SPHERICAL DOMAINS IN R" 621

(Lb) II"!!""1 <

AA^ for n = 2,

^Alog^Ç^   for« = 3,A>0,
,4A||Vw||^3 for m > 4,

where A and A1 are constants depending only on n and explicity calculable
(Theorem 1.2). In the cases n > 3 one may of course insert HVwH^ < 1/2,
cf. (*) above.

The stated equivalence between the square root of the isoperimetric defi-
ciency A of a domain D satisfying (*) and the Sobolev 1-norm of u, as
expressed in (La), was established in [6] for the case n = 3 by almost the same
method as in the present paper, and it was shown that some restriction like
(*) above is necessary for stability—whether in uniform norm or in Sobolev
1-norm as in (La). (An example is obtained e.g. by adding a thin "spike" to a
ball.)

In §2 we specialize to the class of convex bodies D in R", and we show
that within this class there is stability without any additional assumption like
(*) above. More precisely it is shown (Theorem 2.3) that there exist explicitly
calculable positive constants n and C, depending only on n, such that any
convex body D in R" with isoperimetric deficiency A < n is nearly spherical
in the sense of (*) and satisfies

CA* for n = 2,

(n) IML < { ClAlog^J      forzi = 3,

CA^ for n > 4.
The case n = 2, settled by Bonnesen, has been included here for comparison.

The estimate (II) is sharp also in dimension az > 3, except for the value of
C. To see this we construct (in §3) an explicit one-parameter family of convex
bodies D = Da, a e R+ , such that, for each Da , (II) holds with < replaced by
> , but with C replaced by a suitable smaller constant independent of a ; and
further such that the isoperimetric deficiency of Da approaches 0 as a-»0.

In order to derive these precise estimates (II) from (Lb) we first note the
following elementary geometric inequality, valid for any convex body D,

(**) Halloo < 2i!Shi»¿
II    lloo

(Lemma 2.2). It shows that the former condition in (*) implies the latter (when
n > 3 ), hence further implies (I), which in turn easily leads to (II) when A is
sufficiently small, again in view of (**). To complete the proof we consider,
for any convex body D, the family of parallel bodies D(X) = D+X£l ( £2 = the
closed unit ball, X > 0 ). Using a classical inequality of Minkowski it is easily
shown that the isoperimetric deficiency A(X) of D(X) decreases to 0 as X —> oo
(Lemma 2.5).  On the other hand, the barycentre of D(X) remains bounded,
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622 BENT FUGLEDE

and hence the "spherical deviation" H«^ , now calculated for D(X), tends to
0 as X —► co, showing that (II) holds when applied to D(X) for all sufficiently
large X. A simple continuity argument finishes the proof.

In a preliminary version of the present paper the stability result (II) for convex
bodies satisfying A < n was established for n = 3 (with a much smaller value of
n ) by use of two inequalities due to Bonnesen [3, p. 135], and for general n > 3
by application of a recent result of Osserman [10] (cf. §2.7 below) combined
with the following estimate

S       n  2(   n   \n~ n
- < 2 n- 1 +A)p V«-i/

of the ratio between the diameter ô and the inradius p of a convex body in
R" in terms of the isoperimetric deficiency A.

1. Stability in the case of nearly spherical domains

The isoperimetric deficiency of a (compact) domain D in R" of «-dimen-
sional volume V and (n - 1)-dimensional surface area S is defined in this
paper by

(!) A = irri —n0)n \<»J
where a>n denotes the volume of the unit ball Q in R" .  The isoperimetric
theorem asserts that A > 0, with equality only for a ball.

The barycentre of D is denoted by

Hxdx,

where dx refers to Lebesgue measure on R" . We say that D is normalized
if V = ton and b = 0. Any domain can be normalized, i.e., translated and
transformed homothetically into the normalized domain v~x(D - b), where
the volume radius v > 0 is defined by V = ojnv" .

We shall always assume that D is compact and furthermore starshaped with
respect to its barycentre b, in the strong sense that b is an inner point of D
and that each ray issuing from b meets the boundary dD in exactly one point.
After normalization the boundary is therefore representable in polar coordinates
(R,Ç) by an equation
(2) R = R(Ç) = l+u(c:),       {61,
where I denotes the unit sphere in R" and R = \x\ the Euclidean norm of
xeR".

Let o denote the normalized surface measure on X. For any p, 1 < p < co,
denotes the usual norm on Lp(a). In particular, for a Lipschitz functionii   up

u:Z^R
|w||0O = max|w(i)|,    HVKll^esssup |V«({)|,
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CONVEX OR NEARLY SPHERICAL DOMAINS IN R" 623

where Vu denotes the gradient of u (defined a -almost everywhere on Z). Of
course, ||Vm||   means |||Vw|||  .

1.1. Definition. A domain D in R" will be called nearly spherical if D, after
normalization, has its boundary represented as in (2) with u() of Lipschitz
class and satisfying

(3) M~^:=2oV    HV"li~4-
Note that a < 1 /20 for n > 3. For a convex domain, the latter inequality

in (3) is therefore a consequence of the former (when n > 3 ), see Lemma 2.2
below. (The above constants a and 1/2 have been chosen primarily so as to
ensure this implication and make the proof of the following theorem work.)

1.2. Theorem. For any nearly spherical domain D in R" we have

(4) ¿(ll"ll2 + l|V"|l2)<A<|||VM|g,

(5) IMC1 < <

AA^ for n = 2,

AMog—^rLo    for n = 3, A>0,

l^AUVwC3 forn>4,
where A and A' only depend on n and are explicitly calculable.

Note that, in (5), one may replace HVwH^ by 1/2 in view of (3). Explicit
values of A, A1 are given in Remark 1.5.

Proof. We may suppose that D is normalized from the outset; hence, by (1),

A-JL-1.
ncon

The surface area S, the volume V (= wn), and the barycentre b (= 0) of D
are then given by

S   =JRn-2y/R2 + \VR\2do,
ncon

(6)

(7)

nco
-= f(l + u)n  xJl + (l + u)-2\Vu\2do,
n        Jl

(8) b = j^(l + u(í))n+xído(^)   (=0).

In order to exploit (7) we introduce the following function v close to u :

(9) „ = !((!+ „)»_!),    u = (l+nvY-l,
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624 BENT FUGLEDE

whereby (7) reads

(10) f v do = 0.

In the sequel we occasionally assume that n > 3, but the planar case can be
handled in the same way, cf. Remark 1.5 below.

We estimate |iz - u\ and \Vv - Vw| , using (3):
fc-2

V -U   =
1±m<-x>gm3(n- \)a

6-2(n-2)a \u\,

(11)

(12)

\v-u\<^\u\,

35l 1^1 l^4ll I3gl«l<M<38l«|.
n-\

|Vv - Vtt| = 1(1 + ii)—1 - 1| |V«| < ¿ (W kl)ä
k=\ ^       '

|V«|

<(«-i)fl|v«if;(^fl)
k~\ 2(n-l)a

2-(n- 2)a |Vh|,

(13)

|V«-Vu|<^|V«|,

^|Vw| < |Vw| < jy|Vi/|.

1°. Estimate of A from below. The proof of the former inequality in (4) is
rather delicate. When expanding the integral on the right of (6) it is important
to eliminate the integral of the first order term in (1 + u)n~ , and this will be
done by use of (7):

¡(I + u)"~x do = i(l + u)n~x do - ?-^-f((l + u)"-l)do

='+¿[(v)-4%/-
Ms

do-I

k=2

<(»-!) \ + t(^°)kl]S/ä<>
Writing, for simplicity, || • || in place of |¡ • ||2 in the rest of the proof, we infer
that

(14) l>j(l + u)n-xdo>l-(n-l)ß\\u\?,    ß = £.
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CONVEX OR NEARLY SPHERICAL DOMAINS IN R" 625

Because y/T+t > 1 + ¿(1 - |) for í > 0, and |Vw|2 < 4, cf. (3), we have

(15) (l + u)n  '\/l + (l+w)-2|V"|2

> (i+u)n-x+1(1+Mr3iv«i2 (1 - ¿(i+u)-2").

For « > 3 we insert

(1 + u)"~3 >l-(n- 3)\u\ > 1 - na = ^

and (1 + w)~ < (1 - ¿j)~ in (15), and we obtain after integration over Z,
invoking (6) and the latter inequality in (14),

(16) A = — - 1 > -(« - l)plw||2 + y||Vw||2nto n

^hß = %,y = %(l-(±7)2) = ^.

Denoting by V   the Laplace-Beltrami operator on Z, we have

(17) \\Vuf = - Í uV2udo.

The projection of u on the eigenspace of -V corresponding to the eigenvalue
k(k + n - 2), k = 0,1,2, ... , may be written as akYk , where ak > 0 is a
constant and Yk is a normalized eigenfunction, hence the restriction to Z of
a (real) homogeneous polynomium of degree k on R" (cf. e.g. [9]). We thus
have the following expansion in spherical harmonics

oo

« = 5>*y*»        -V2Yk = k(k + n-2)Yk,
k=0

oo

(18) H|2 = £>2>        \\Vu\\2 = J2k(k + n-2)a2k,
k=0 it=l

in view of (17).
From (7), (8) we shall now deduce that ak = f-LuYk do is small for k = 0,1,

viz.

(19) a0<a\\u\\,    ax<a\\u\\,        « = ¿-

As to a0, note that Y0 = 1 (or -1 ), and so from (10), (11)

ao = \    udo =   / (u - v)da < / \u-v\do <a / \u\do < a\\u\\
\Jz \Ji Ji Jn

As to ax, Yx is the restriction to Z of a linear form on R" , and hence, by (8)
and by symmetry,

f (l + u)n+xYxdo = 0,      ÍYxdo = 0.
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626 BENT FUGLEDE

We therefore obtain, using || Yx || = 1,
-1     (...

a = ÏT+T ̂ K1 + m)"+1 - 1 - (» + l)«]y, da

=7hi(nV)!/^
i       "+1   /      ,   i \ oo    / i     \ Zc—2^     1     v^/« +1\„  zcM ̂ /ta^/«-1   \       „  „   .    ..  ..* ̂ TT S ( * J H" H ̂ T S (—flJ     ""II * "II"" ■

k=2   x ' Zc=2

again with a = ¿ , because (« - l)a < ^ by (3).
From (19), (18) we find

oo
2   ,      2    . -   2 v^    2a0 + a, <2a ^^.

Zc=0

oo oo

(20) Ni2 = Efli^Efl*>
Zc=0 Zc=2

where

(21) A = (l-2a2)-',    a = l.

We infer from (18), pulling out the terms corresponding to zc = 0,1, that
oo

||M||2 + ||VM||2 = a¡ + na\ + £[/c(/c + n - 2) + l]a¡ ,
fe=2

whence, in view of (19), (20),
oo

(22) ||M||2 + ||Vm||2 < J2lk(k + n-2) + l + (n+ l)a2X]a2k .
k=2

Similarly, from (16),
oo

A > -(« - l)ßa] -(n-l)(ß- y)a] + X>/c(zc + n-2)-(n- l)ß]a\ ,
k=2

and here (19) and (20) are applicable because ß - y > 0. This leads to
oo

(23) A > Y,[yk(k + n-2)-(n-l)(ß- ay)X]a¡ ,
k=2

noting that 1 + 2a2A = X by (21).
Now multiply (22) by a positive constant zcn < y to be specified presently,

and subtract from (23):

A-Kn(||W||2 + ||VM||2)
oo

> E^ - *»)*(* + n-2)-(n- l)(ß - a2y)X -Kn(l + (n+ l)a2X)]a¡ .
k=2
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CONVEX OR NEARLY SPHERICAL DOMAINS IN R" 627

The coefficient to ak increases with k . To ensure that all coefficients are > 0
it suffices therefore to choose zcn so that the coefficient to a2 equals 0 :

k   _(2y-(ß-a2y)X)n + (ß-a2y)X
(2 + a2X)n + (l+a2X)

Inserting a = -^,ß = ^,y = -¡^ , and X (see (16), (21)), we obtain, writing
lim„^™K„ = k ,n—»oo    n

K = 0.102... > X,    #c, = 0.171... .10 '      ^3

The monotone sequence (tcn) is thus decreasing and *„ > jo • Note also that
Kn < Ki < y. We have therefore now established the former inequality in (4)
in the stronger form

A>/c„(N|2 + ||VM||2).

2°. Estimate of A from above. For the easy proof of the latter inequality
in (4) we only need the assumption \u\ < a = 3/(20«) in (3). Noting that
vT+7 < 1 + \t for t > 0, we get from (6)

(24) — < i[(l + u)"~X + 1(1 + «)"~3|Vw|2]¿<7
ntan     Jz 1

with
,,   ,     v/i-3   . /,   ,      3   \" 0.15(1+w)  *{l+m) *« •

Invoking the former inequality in ( 14), we obtain from (24) the desired estimate

a          ^ i^l    °-15nr7   ii2 ^ 3..       „2A=-1 < xf V«      < -   V»     .
ncon        ~2       "     "       5"     "

3°. Proof of'(5). These estimates are immediate consequences of Lemma 1.4
below in view of (10), (12), (13), and (4).   D

1.3. Remark. The above theorem implies of course an estimate of ||u||2 in
terms of ||Vm||2 . A better estimate results from (20) and (18):

oo .       OO a

iiMii2<^Efl^¿E^ + "-2)a2^¿iiv«ii22-
Zc = 2 it=2

1.4. Lemma. For any Lipschitz function v on the unit sphere Z in R" such
that the mean value /z v do equals 0, we have

n\\Vv\\x < 7r||Vt;||2 forn = 2,

ML    ̂  < 4||V^||2log8e||V^l|00    forn = 3,v¿0,
12 ||Vt;||2

I B\\Vv\\l \\Vv\\"-3 forn>4,12  II        lloo

where B only depends on n and is explicitly calculable.
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628 BENT FUGLEDE

Proof. Fix a point £* e Z and use it as "north pole" for spherical coordinates
tp e [0, n], 6 € Z*, where Z* denotes the unit sphere in the hyperplane <** •£, =
0. When dd refers to the normalized surface measure on Z* we thus have

(25) do = K~ sin"- tpdtpd6,
where

K = I   sin"- tpdtp.
Jo

For any £ e Z \ {£,*, - £*} we have

v(í)-v(c¡*)= f Vv(n)-dn,

integrated along the meridian through £* and t\. Integration with respect to
do (Q leads to

t/(0- fvdo <K~X f dd [ sin ~2tp dtp ['' \Vv(<p,6)\dip,
Jl Jl'       Jo Jo

where of course Vv(ip ,9) means the value of Vt> at the point of Z with
spherical coordinates (tp ,6). In the integral with respect to y/ we replace tp
by n and thus obtain, invoking (25) and the definition of K, and inserting
/j. v do = 0,

\v(C)\ < [ dd f |V«(^,9)\dtp = K¡ sin2-" tp |Vt/(i)|daß).
Jz'      Jo Jz

For n = 2 this leads immediately to the stated inequalities because K = n
here.

For n > 3 we estimate |Vv(<!;)| by HVuH^ on the two caps of Z given by
sin tp < sin a , for some a € ]0, n/2[ to be chosen presently. On the rest of Z
we use the Cauchy-Schwarz inequality, and we thus obtain

w(Ol< IIVt/IL* / sin2-" tp do(0
Jsinç»<sina

+ k([ sin4-2" tp do(i)\   || V« |
\^sinii>>sina /'sinfi>>sina

Inserting (25), and maximizing over C e Z, leads to

H*/2       2-n
(26) ||tz||0O<2a||VW||0O+l2/s:^     sin   "tpdtpl   ||V«||2.

1°.   r/zeco5e n = 3. Here K = 2, and we get from (26)

||U||oo<2a||VW||oo + 2(logcot|)i||Vt;||2.

Because cot f < \ and (a + è)2 < 2a2 + 2b2, this leads to the more manageable
inequality

(27) ^¿^Sa'llVtzllL + Slog^llV^II2.
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CONVEX OR NEARLY SPHERICAL DOMAINS IN R" 629

From v / 0 and j v do = 0 follows ||Vtz||2 > 0, and the right-hand member
in (27) is least for 2a2 = ||Vu||2/||Vf H^ . Inserting this in (27) we obtain the
estimates stated in the lemma for zi = 3 .
2°.   The case « > 4. Because sin tp > 2tp/n, we now get from (26)

n-2 3-n

INI«, < 2a||Vi;||00 + (2KY (|)     -|_||Vt;||2.

The right-hand member is least for a"~x = K^ffi^WVvWl/WVvf^ (assum-
ing v ^0, i.e., ||Vv||2 > 0 ). This leads, in the first place, to

Hoo^a^llVizIL,
and finally to the desired estimate with

n-2B = Kn~ m4
1.5. Remark. For any specified dimension n the estimates (4) and hence (5)
in Theorem 1.2 can be readily improved, mainly by diminishing a,ß,y in the
proof of (4). In this way the constants jq and | in (4) can be replaced by 0.24
and 0.54, respectively, for « = 2 and by \ and ¿ , respectively, for n = 3. If
one cancels the term ||w||2 in (4), the constant ^ in (4) may even be replaced
by 0.30 for n = 2 and by 0.29 for n = 3. This leads to the following constants
in (5) (when log denotes natural logarithm):

A = 6.4 for n = 2,
,4 = 18.5,    / = 16.5        for« = 3.

With B from the end of the proof of Lemma 1.4 we may clearly take

A=l0B(f5 -$)"-1        for«>4.

2. Stability in the case of convex bodies
Henceforth, D denotes a convex body (= a compact convex set with non-

empty interior) in R" , « > 3.    We denote by v , resp. 5, the radius of a ball
with the same volume V, resp. surface area S, as D :
(28) v = œnvn,    S = ntonsn~x.

The isoperimetric deficiency as defined in (1), §1, takes the form

(29) A =(i)""-l.

As before we denote by b the barycentre of D ; it is an inner point of D. The
convex bod}
normalized.

4 In the case n = 2 the function / in Theorem 2.3 below would have the form f(t) = C\/i,
but the assertion of the theorem in this case is contained in Bonnesen's inequality quoted in the
introduction.

convex body v    (D - b) has volume ton and barycentre 0 and is said to be
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630 BENT FUGLEDE

2.1. Definition. The spherical deviation of D is defined by

d = min{a>0\ (1 - a)+£l c v~X(D - b) C (l+a)ß).

Here Q = {xeR"|  |jc| < l},and (1 -a)+ = max{0,l -a}.
The boundary of the normalized convex body v~x(D - b) is representable

in polar coordinates in the form c¡ h-> R(¿¡) = 1 + «(£), t\ e Z = 9Í2, as in §1.
Moreover, the function u is Lipschitzian. Clearly,

\\u\\=d.lOO

2.2. Lemma. With the above notation we have

VwL, < 2d-j .II Moo- \_¿

In particular, if d < 1/20 then

(30) IIV"IL < i^"2 < I
Proof. Arguing like in the proof of a similar elementary inequality in [10] we
find for almost every t\ e Z

|V«(f)| <tanö=    2tan(0/2)
l+"(f) l-tan2(0/2)'

where the angle 0 is defined by

cos 6 =-j ,       i.e.,     tan - = d,1 + d 2
whence the stated inequality because 1 + w(£) < I +d.   D

Suppose for a moment that
3d<a:--   .20« *è)-

Then (30) shows that D satisfies (3), §1; and hence (5) in Theorem 1.2 applies.
For n = 3 this means that (if A > 0 )

d<c(Alog(k/A)y-

with c = Ax/2, k = A'/4 (after inserting HVwH^ < 1/2). For n > 4 we insert
instead the former inequality (30) in (5) and obtain

d < cA^ ,

where c is determined by

c^=A.^)"-\       n>4.

Summing up, we have found that

(3i) d-a(=m)  implies  d^fW'
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where
logifc/O)*    for« = 3,j c(t 1.

\ ct^
(32) f(t)

for « > 4,

with c and zc as specified above. (We define f(0) = 0 if « = 3.)
For « > 4 the continuous function / is a strictly increasing self-mapping of

[0, oo[. For « = 3 we shall consider / as defined only on the interval [0, k/e] ;
1 IIthen / is strictly increasing and ranges from 0 to c(k/e)     (> 5).

Now define the constant n > 0, depending only on « , by

(33) f(n) = a.
For « = 3 this is possible because a = 1/20 < 5 < f(k/e), and we find
n = 1.04... • 10-5. It remains to use the estimate

log - < c log -   for 0 < t < n

with c = log(kIn)Ilog(lIn) = 1.123... , whence

/        1\1/2(34) /(0 < C í í log - J for0<i<z/, « = 3,

where we may take C = c(c')x/2 = (Ac')x/  = 4.55... , cf. Remark 1.5.
We may now formulate our main result with reference to (32), (33), and (34)

above.

2.3. Theorem. Every convex body D in R" of isoperimetric deficiency A < n
has spherical deviation d < /(A). Explicitly we have (when A < n )

■.iuíH^a-)' m"=3-
[ CA7^ for n >4,

where the constant C depends only on « and is explicitly calculable.

It is understood that Alog(l/A) = 0 for A = 0.
For « = 3 one may take C = 4.56, n = 10- . For n > 4 one may take

C = c = (%)2~^A^ , n = (^)"~\m)^A~l (with A from Theorem 1.2, cf.
Remark 1.5).

For the proof of Theorem 2.3 we prepare the following two lemmas.

2.4. Lemma. The barycentre b = b(D) and the spherical deviation d = d(D)
of a convex body D are locally Lipschitzian (in particular continuous) functions
of D in the Hausdorff metric.
Proof. For any bounded measurable set £cR" we write

V(E)= [ Idx,    M(E)= [ xdx,    \E\ = sup{|jc| I x e E).
Je Je
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For two convex bodies D, E (contained in the half-space xx > 0, for conve-
nience), we may estimate the difference between the first coordinates MX(D),
MX(E) of M(D), M(E) in terms of the Hausdorff distance ô = ô(D,E) (cf.
[4, p. 34]) as follows

MX(E)<MX(D) + MX(E\D),

Mx (E) - Mx (D) < \E\ V(E \ D)
<(\D\ + ô)[V(D + ÔÇl)-V(D)]
= 0(ô)   as¿^0,

uniformly for D contained in a fixed ball. Here we use the fact that
V(D + ÔQ) - V(D) is a polynomial in ô taking the value 0 at 0 and hav-
ing continuous coefficients (as functions of D), cf. e.g. [4, p. 40]. Similarly as
to Mx (D) - Mx (E), and consequently

\MX(E) - MX(D)\ = 0(0)   as<?^0,
uniformly for D contained in a fixed ball. In the same uniform sense we have
\V(E) - V(D)\ = O(S). Having thus established that M(D) and V(D) are
locally Lipschitzian as functions of D, we infer the same for the barycentre
b(D) = V(D)~XM(D) because V(D) > 0 for every convex body D. Finally,
the spherical deviation d(D) = d(Dx) is nothing but the Hausdorff distance
ô(Çl,Dx) between the unit ball Q and the normalized body

Dx=v(D)-X(D-b(D)).
It is therefore likewise a locally Lipschitzian function of D.   a

2.5. Lemma. For any convex body D in R" the isoperimetric deficiency A(X)
of the parallel body D(X) = D + AQ, X > 0, is a decreasing function of X and
converges to 0 as X —> co.
Proof. It is well known, see e.g. [4], that the volume V(X) and the surface area
S(X) of D(X) are polynomials in X with nonnegative coefficients and of degree
« and « - 1, respectively:

(38) V(X) = Hn\wvX\    S(X) = ±(n\vWi/X"-x = V'(X).
v=0 ^   ' v=\  ^   '

In particular,

WQ=V(0) = V,    nWx=S(0) = S,    Wn = V(Q.) = ton.

The logarithmic derivative of nncon(l+A(X))n = S(X)nV(X)x~n at X = 0 is

S'(0) V'(0) wnw,-w2n±77LL -(n- D—TTTl = n(n - 1)—9—2-L < o5(0)      l V(0)        K '      WQWX

because Wx > WQW2, one of Minkowski's inequalities, cf. [4, p. 92]. Having
thus found that A'(0) < 0 we infer that A'(X) < 0 for any X > 0, noting that,
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for p > 0, A(A + p) is the isoperimetric deficiency of D(X + p) = (D(X))(p).
A similar easy calculation shows that A(A) = 0( 1 ¡X ) as X —► co, and more
precisely

A(A) = i(« - l)(W2_x - WnWn_2)to-2X-2 + 0(A-3).   D
Proof of Theorem 2.3. We may assume that D is normalized: v = 1 and b = 0,
and so

(l-d)+SlcDc(l+d)£l,
by Definition 2.1. Theorem 2.3 will follow from Theorem 1.2 once it has been
proved that
(39) A < n   implies   d < a,
cf. (31), (32), and (34).

To establish (39), consider again the parallel bodies D(X) = D + XQ. Write
again A(X) for the isoperimetric deficiency of D(X) ; and let d(X), b(X), and
v(X) be understood similarly. For X > (d - I)    we then have 1 - d + X > 0
and5

(40) (l-d + X)ClcD(X)c(l+d + X)Çl,

('-m^m^O + TTih
It follows that the Hausdorff distance between Q and (1 +X)~XD(X) is <
(1 +X)~ d. Applying Lemma 2.4 to the barycentres 0 and (1 + X)~ b(X) of Q
and (1 + X)~ XD(X), respectively, we therefore obtain

W)\ _ J d \
i+x '   \i+x)'

showing that b(X) remains bounded as X —» co. From (40) we deduce

(41) (1 + X - d - \b(X)\)Q c D(X) - b(X) <z (1 +X + d + \b(X)\)Q
for X large enough so that 1+X > d + \b(X)\. From (38) together with Wn = can
we obtain v(X) = X + 0(l). Dividing by v(X) in (41) we therefore find that the
normalized body v(X)~ (D(X) - b(X)) is squeezed between two balls centered
at 0 and of radii which both have the form I + 0(l/X). By Definition 2.1 this
means that

d(X) = 0(l/X)   as X -* co.
Now suppose that A < n and, by contradiction, that d > a, cf. (39).

Because d(X) is continuous in X (Lemma 2.4) and tends to 0 as X —► co, there
exists X > 0 such that d(X) = a . By Lemma 2.5, A(X) <A<n. Applying (31)
to D(X) and recalling that / is strictly increasing, cf. (32) and subsequent
lines, we are led to the contradiction

_ a = d(X) < f(A(X)) < f(n) = a,
5 If d > 1 the former relation (40) follows from 0< \ -d + k<k, noting that 0 e D and

so XQ c D(X).
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cf. (33). Consequently we actually have d < a, and the proof is complete.   □

2.7. Relation to a result by Osserman. Let r and p denote the circumradius and
the inradius of a convex body D in R" , « > 3 . It follows easily from Lemma
2.4 that the spherical deviation d of D is equivalent to (r - p)/p for small
values of either quantity, in the sense that (r-p)/(pd) is bounded and bounded
away from 0 for such small values. Hence Theorem 2.3 implies a recent result
by Osserman [10] according to which there exist explicitly calculable positive
constants c, y depending only on « such that

(42) A. < y    implies- < cA. ,       k = —.-— .1 p    -     l n(n+l)

Here A, denotes the following version of the isoperimetric deficiency involving
the inradius p :

n n r /   \ n -\   /   \ n

and (42) is therefore not a stability result in our sense. We have

(43) A^A^^Atl+A^Q".
The former inequality follows from p < v < s, and the latter is obtained by
applying the mean value theorem to (s/v)n - 1 = (1 + A)"''"-1 - 1.

Actually, the stronger version of (42) in which A, is replaced by A (< A,) is
an immediate consequence of Theorem 2.3, because the function t with k as
stated in (42) is large (for small t ) compared to our (t log(l/i))'' and t /("+1)
for « = 3 and « > 4, respectively.

Theorem 2.3 further implies that A and A, are in fact equivalent for small
values of either quantity. Since A < A, , this follows from p > (1 — d)v >
( 1 - a)v for A < n , cf. (39), whence v/p in (43) remains bounded for A < r¡.

Osserman's proof of (42) is based on the inequality (for convex bodies D )

(H-.
due to Bonnesen [3, p. 63] for « = 2, to Hadwiger [7] for n = 3, and to
Dinghas [5] (in a sharpened form) for general « . To derive a stability result
(quantitatively much weaker than Theorem 2.3) directly from Osserman's result
(42) it suffices to note that v < à¡2 ( ô = the diameter of D ) and to apply the
nontrivial estimate of ô/p stated at the end of the introduction.

3. Examples showing that the results are sharp

The estimates in Theorems 1.2 and 2.3, and in Lemma 1.4, are sharp as far
as the orders of magnitude as A —► 0 are concerned. For n = 2 this follows
from Bonnesen's theorem [2]. For « > 3 we shall construct two examples (one
for n = 3 and the other for n > 4 ) of a one-parameter family of convex bodies
(D)0 in R" suchthat H«^ (in Theorem 1.2), H?;^ (in Lemma 1.4), and
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the spherical deviation d = H«!^ (in Theorem 2.3), all evaluated for Da , have
precisely the stated order of magnitude in their dependence on the isoperimetric
deficiency A(DJ of Da , and such that A(Da) —> 0 as a —► 0 .

3.1. Example. (« = 3). This example arose upon inspection of the proof of
Lemma 1.4. It can hardly be appreciably simplified. (In particular, the very
simple type of example which serves in the case n > 4, cf. §3.2 below, would
be far from giving the correct order of magnitude in the present, more subtle
case n = 3 7)

For any a, 0 < a < 7t/2, consider the following function w = w(c¡) on the
unit sphere Z in R , depending only on the spherical distance tp, 0 < tp < n,
from a prescribed "north pole" C e Z, whence we may also write w = w(tp):

{- sin a log sin a + sin a (sin a - sin tp)     for sin <p < sin a,

- sin a log sin <p for sin tp > sin a,

w =
sin a cos tp      for sin tp < sin a,

2sin a cot tp     for sin tp > sin a,

w

„      f  sin a sin tp for sin tp < sin a,
w   = <       2 2

[ sin a / sin tp    for sin tp > sin a.

It is easily verified that tw is of class C . Clearly, u;(7r-ç>) = K;(0>). Moreover,
w > 0, and for 0 < tp < n/2 we have w'(tp) < 0. The mean value of w as a
fuction on Z is

rn/2
= /      wsintpdtp

Jo
.  2    (. 1        , ala 1

= sin a    1 + log^-log cot ^ - ■=-.-(- ^cosa
\ sin a 2     2 sin a     2

(44) w = (1 -Iog2)a2 + O(a3)    asa —0.

Now write

(45) v = w -w,

(46) R = (l + 3v)'= l+u,

cf. (2), (9), §1. This C1 function R = R(tp), 0 < tp < n , determines in planar
polar coordinates (R,tp) a convex curve because

R2 + 2(R')2 - RR" > 0    for sin tp # sin a,

as we shall now see. From (45), (46) we get

R2R' = v' = w',    R2R" + 2R(R')2 = w",

and hence
R(R2 + 2(R')2 - RR") > R* - w",
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using that 2(R!) > -2(R!) . It remains to show that w" < R . For sintp >
2 sin a this follows from w" = sin2 a / sin2 tp < 1/4 < R3 for small a. In
fact, because w>0,R3 = l + 3v>l-3w= 1- 0(a) by (44). Next, for
sin tp < 2 sin a, one finds w" < 1 (both for sin tp < sin a and for sin tp > sin a ),
while R > 1 because v > 0 ; in fact, w and hence v are decreasing, and for
sintp = 2 sin a the value of i; is

2 1 2 /        1 \ 3sin a log ■=—.-w = a     log-II- 0(a ) > 0
2 sin a Va       /

by (44), assuming again that a is sufficiently small.
Now view v, u, and R from (45), (46) as C functions on the unit sphere

Z. The equation R = R(¿¡) describes in polar coordinates the boundary of a
convex body Da , obtained by rotating the above curve about the line R£*. Da
has barycentre at 0, by symmetry, and volume

V = œ3    R do = &>3 / (1 + 3v) do = co^,

because the mean value of v over Z is 0. Thus D   is normalized.a

The maximum and minimum of w(tp) are tzz(O) = sin a(l -log sin a) and
w(n/2) = 0, respectively. Because the mean value w is small compared to
w(0) (when a is small), we therefore have

2,      1       n,   2,
loo(47) IMI^ = î;(0) = w(0) - w = a log - + 0(a)

by (44). Moreover,
/,(48) IIVwII^ = IIVuzll^ = max |«z (p)| = |tu(0)| = sina.

In view of (46) it follows from (47) and (48) that also ||m||oo and HVwH^
approach 0 as a —► 0. Hence Da satisfies (3), §1, for small a, and we infer
from (47) together with (12), §1, that

iac\\ m  m    ~^ 38..  ..        38   2.     1   ,  -., 2.(49) ll»lloo ̂ 47INI00 = 4J-« loS - + °(a ) •
Finally we estimate the isoperimetric deficiency A of Da , using (4) in The-

orem 1.2. First,

2 2      f"/2    1     2
||Vt>||2 = ||Vizj||2 = /      w (tp) sintpdtp

Jo
= -sin a(l-cos a) + sin a (logcot -r - cosaj

4       1 4= a log - + 0(a ).
a

Combining this with (13) and (4), §1, we obtain

.        M_   ,.2       llr7    ,,2 4.        1A « ||Vw||2 « ||Vv||2 « a  log - ,
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the sign « between two functions of a meaning that their ratio in either order
remains bounded for small a. In particular, A->0 as a —► 0. The function
alog(l/a) being increasing for small a, we infer that

Alog T = O [ a4 log - log —.-] = O [ a2 log -
A ^ a     6a4log(l/a)/ V «>

Inserting this in (47) and (49), we conclude that, for all sufficiently small a > 0,
llMlloo an£l IMlL do indeed exceed a positive constant times Alog(l/A).

3.2. Example. Let Q denote the closed unit ball in R", « > 2 (although only
« > 4 is of interest). For a given a, 0 < a < n/2, let Da denote the convex
hull of fi U {p, - p} , where p is a given point of R" such that

in- 'cosa

Thus Da arises from Í2 by adding two truncated cones of height sin a / cos a
and of base radius sin a, from which cones are removed two caps of Q of
spherical radius a. The volume of Da is therefore

sin     a f    . n     ,v = <y„ + —o)„  ,-2to„  . /   sin tpdtpn     «   "_1   cosa "-' J0
2 1+1    ,    n/    rl+i.= <*>„ + —,-t^(°„   \a      +0(a      )."     n(n + l)   "~l

The surface of Da is S = nV because every tangent hyperplane to dDa (except
at the singular points ±p ) is at distance 1 from 0. The volume radius of Da is

(V\xln 2       con_x   n+x „+3
v =[—        =1 + ^5-2—-a      +0(a     ).

\03n) n2(n+l)   o)n

The isoperimetric deficiency of Da is

5  fvy^1    . .     „+iA=-   — - 1 = v - 1 « a
nc°n Vw„;

We have
l|Vw||0O = |p|tanaRia.

The barycentre of Da is 0, by symmetry. The spherical deviation d of Da is
between v~ (-¿^ - 1) and half of that, and hence

j 2        . -¿7 ji—1 2n—2       »in-,   ii" —3úf«a  «A"+1 ,    í/      w a        «AIIVmII^   .

These last two estimates should be compared with Theorem 2.3 and with (5) in
Theorem 1.2, respectively, in the case « > 4.
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