Stability Issues in OSPF Routing

Anindya Basu

Bell Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974

basu@research.bell-labs.com

Abstract

We study the stability of the OSPF protocol under steady state
and perturbed conditions. We look at three indicators of stability,
namely, (a) network convergence times, (b) routing load on proces-
sors, and (c) the number of route flaps. We study these statistics
under three different scenarios. (a) on networks that deploy OSPF
with TE extensions, (b) on networks that use subsecond HELLO
timers, and (c) on networks that use aternative strategies for re-
freshing link-state information. Our results are based on a very
detailed simulation of areal |SP network with 292 nodes and 765
links.

1. Introduction

A number of new uses for Interior Gateway Protocols (IGPs)
have led to protocol extensions and enhancements. For example,
new methods for fast switching and traffic engineering (TE) in IP
networks (such as Multi Protocol Label Switching (MPLS) [21])
need to know what resources are available in the network. This
enables them to compute traffic-engineered paths with QoS guar-
antees. In order to address these requirements, various extensions
have been proposed for IGP protocols such as OSPF [18] and IS
1S[19]. Each such IGP protocol is a link-state protocol that main-
tains consistency of the link-state database at every node by ex-
changing information about the state of the network in the form of
Link State Advertisements (LSAS). Thisinformation is exchanged
both periodicaly as well as when a network-state change is de-
tected. It iswell known that link-state protocoals, in their pure state
(i.e.,, without TE extensions) are stable. In other words, if there
is a change in the network state (e.g., a link goes down), al the
nodes in the network are guaranteed to converge to the new net-
work topology in finite time (in the absence of any other events).
Thisisan important property sinceit prevents route flaps and other
undesirable occurrences.

However, adding TE extensions to |GPs complicates the issue.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

S GCOMM'’ 01, August 27-31, 2001, San Diego, California, USA
Copyright 2001 ACM 1-58113-411-8/01/0008 ...$5.00.

225

Jon G. Riecke

Aleri Inc.
41 West 12th Street
New York, NY 10011

riecke@home.com

In the pure state, |GP protocols send out state-change update mes-
sages only when afailure occursin the network. In the case of |GPs
with TE extensions, state-change update messages are also sent out
when there isa change in the resources (e.g., link bandwidth) avail-
able in the network. Furthermore, when network failures occur,
traffic-engineered paths may need to be rerouted. As the amount
of control information exchanged and the frequency with which it
is exchanged increases, it becomes increasingly likely that the net-
work will be driven to unstable operating regimes. For example,
there could be scenarios where a combination of network failures
and resource changes lead to bursts of update messages that prevent
the network from converging to a stable state.

In this paper, we focus on the OSPF protocol and study some
of these stability-related issues. We use simulation as our primary
tool. Our simulations incorporate a detailed OSPF implementation
based on RFC 2328 [18] and arealistic processor model based on a
commercialy available router. The simulations were run on areal
ISP network topology with 292 nodes and 765 links?

In order to study network stability, we attempt to answer three
specific questions, namely:

e What effect do TE extensions have on the stability of a net-
work that is running OSPF? In particular, what are the pro-
cessor loads like when the network is perturbed, how many
route flaps occur, and how long does it take for the network
to converge to a steady state?

e How can the network convergence time be speeded up? More
specifically, we look at current proposals involving subsec-
ond HELL O timers and study their effect on routing proces-
sor |oads and convergence times.

e How does OSPF behave under normal conditions? In partic-
ular, we study issues that arise from synchronization of LSA
refresh times (i.e., the periodic exchange of LSAS) and sug-
gest dternatives to evenly distribute the LSA refresh traffic
over time.

Our findings include the following. First, the OSPF-TE protocol
does converge to steady state after (multiple) failure(s), despite the
added complexities (and overheads) of rerouting traffic-engineered
paths. On the other hand, multiple concurrent failures may result
in high processor loads and increased number of route flaps for

1 Some minor changes have been made to the topology for reasons
of confidentiality.

short time periods. In general, OSPF-TE appears to be quite robust.
Second, current proposals for subsecond HELLO timers do result
in significant improvements in convergence times — at the same
time, the processor loads stay within reasonable ranges. Finaly,
we suggest a way of avoiding LSA refresh synchronization using
randomization and show its effectiveness using simulations.

The contributions of this paper are as follows. To our knowl-
edge, this is the first work that attempts to study the stability of
an IGP protocol that incorporates TE extensions. In order to en-
sure the transferability of our results to real life networks, we use
an implementation that duplicates the specifications in RFC 2328
and run our simulations over areal network topology consisting of
292 nodes and 765 links. While there have been simulation stud-
ies of arelated nature in the past, they have typically used much
smaller network topologies consisting of 10s of nodes. Finaly, as
mentioned earlier, we incorporate a very detailed processor model
based on areal life commercial router. This provides very accurate
estimates of queueing and processor delays related to scheduling as
well as processor utilization times. Thus, we can assert with rea-
sonable confidence that our simulations are as true-to-life as pos-
sible. We believe that our results will provide adequate guidelines
for network operators deploying OSPF with TE extensions in their
networks.

The rest of this paper is organized as follows. We first provide
(Section 2) a brief overview of OSPF-TE2 In Section 3, we dis-
cuss in greater detail what we mean by network stability and the
scenarios that we want to study. In Section 4, we describe the ex-
perimental methodology, including the smulator that we use, the
processor model, and the network topology. This is followed by
Sections 5, 6, and 7, where we describe some of the experimental
results and their implications. In Section 8, we present a summary
of our findings. We discuss related work in Section 9, followed by
conclusions and future work in Section 10.

2. A Brief Overview of OSPF-TE

OSPF-TE [13] stands for the Open Shortest Path First proto-
col with Traffic Engineering extensions. Traffic Engineering (TE)
refers to techniques for optimizing the performance of operational
networks. In particular, traffic engineering attempts to ameliorate
congestion-control problems by allocating resources (e.g., band-
width) efficiently.

The TE extensions to OSPF are described in detail in [13]. We
summarize the aspectsthat are relevant for our purposes. In essence,
the OSPF-TE protocol uses opaque Link State Advertisements (LSAS)
to disseminate traffic-engineering information. Such a (traffic-en-
gineering) LSA carries a special type of TLV (type-length-value
structure) called alink TLV that encodes information about a spe-
cific link. This includes (among other things) the maximum band-
width on the link, the maximum reservable bandwidth on the link
(which could be different from the maximum bandwidth if links are
oversubscribed) and the unreserved bandwidth for 8 different pri-
ority levels. Flooding is used to distribute this information, which
is required by the nodes to compute traffic-engineered paths (e.g.,
end-to-end MPL S paths with QoS guarantees).

A key implementation component of OSPF-TE (though not part
of the specification in [13]) is the triggering module. The trigger-
ing module decides when to advertise changes in link states, espe-

“The informed reader can skip this section.

226

cialy when the unreserved bandwidth on a link changes. Adver-
tising changes helps to maintain the consistency of the link-state
database on each router. In our work, we use two types of trig-
gering: periodic and threshold-based. Periodic triggering is used
to refresh self-originated L SAs whose age has reached the LSRe-
freshTime [18] limit — this kind of refreshing is done to maintain
soft state in the routers.

Threshold-based triggering isused when the network state changes.
The network state changes when one of the following events occur:
the state of a node changes (node failure or repair), or the state of
alink changes (link failure, repair, or change in unreserved band-
width by more than a pre-determined amount). The function of
threshol d-based triggering isto generate L SAswhen the magnitude
of a state change crosses a pre-determined threshold. For example,
athreshold-based triggering policy could generate L SAs when the
unreserved bandwidth on alink changes by more than 10%.

Finally, we briefly describe the signaling mechanisms used in
conjunction with OSPF-TE to set up traffic-engineered paths. Thus
far, two protocols have been proposed for this purpose, RSVP with
Traffic Engineering extensions (RSVP-TE) [6] and Constrained-
based Routing Label Distribution Protocol (CR-LDP) [3]. RSVP-
TE isa soft-state signaling protocol that uses the RESV and PATH
messages in RSVP for a two stage path-setup process. CR-LDPis
ahard-state signaling protocol that runsover TCPand uses LDPre-
quest and response messages for setting up traffic-engineered paths.
In either case, the signaling protocols use the traffic-engineering in-
formation disseminated by OSPF-TE for making path-setup deci-
sions. For the simulations in this paper, we use a soft-state signal -
ing protocol that issimilar to RSVP-TE but uses adlightly different
message format.

In summary, the TE extensions to OSPF provide mechanisms
to ensure that al the nodes in the network have a consistent view
of the traffic-engineering parameters associated with the network.
Thisis accomplished by advertising special traffic-engineering pa-
rameters associated with each link periodically, as well as when
certain critical events occur. The traffic-engineering parameters are
used by the signaling protocols for making path-setup decisions.

3. Issuesin Network Stability

In this section, we describe our notion of network stability and
how we measureitin our experiments. We study three indicators of
network stability: the network convergence time, the routing load
on processors, and the number of route flaps caused by failures.

3.1 Network Convergence Time

The network convergence time is the time taken by all the OSPF
routers in the network to go back to steady state operations after
there isa change in the network state (in the absence of any further
failures). For example, when a link failure occurs, the network
convergence time isthetotal time taken for all the routersto update
their link-state databases to reflect the fact that the failed link is
down and to reroute all the traffic-engineered paths (if any) around
the failure. The network convergence time is determined by the
diameter of the network (maximum number of hops between any
two routers), congestion, routing load on processors, and several
other factors. A low convergence time indicates a stable network.
Thisis because the network can quickly come back to steady state
when perturbed.

There are two components to the network convergence timewhen
TE extensions are used. First, we have the propagation component,
which is the time for the new information to be flooded across the
network after a node/link failure/repair occurs or there is a change
in the unreserved bandwidth on alink. This determinesthe timefor
all the routers to update their link-state databases.

Second, we have the reroute component, which is the time taken
to reroute all the traffic-engineered paths when a node or a link
fails. Even if alternate routes have been precomputed, there are
overheads involved in tearing down the old route and setting up the
new one. Clearly, a smaller reroute time indicates a more stable
network since it can resume forwarding data traffic with less dis-
ruption.

In addition, we also evaluate proposed techniques that aim to
speed up network convergence. More specifically, we study the
effects of subsecond HELLO timers [1] on network convergence
times and routing processor loads. Using subsecond HELL O timers
would makeit possible to detect link/node failure/repairs faster than
iscurrently possible (at Layer 3) and therefore reduce network con-
vergence time. However, thisimposes an additional cost on the net-
work because more packets are now sent out per timeunit. Theaim
isto find the right balance in setting the HELL O timers.

3.2 Routing Load on Processors

The routing load on processors is a measure of how much time a
router spends in processing control packets from the routing pro-
tocol. A high routing load is a possible indication of incipient
network instability. This is because a high routing load is either
caused by frequent changes in the network state (that generates a
heavy volume of control traffic) or due to slow processing of con-
trol packets. In either case, ingress queues get filled and incoming
packets get dropped. In particular, incoming control packets get
dropped which causes timeouts, which in turn generates more con-
trol packets and higher routing loads. Clearly, such scenarios can
ultimately lead to a network meltdown. Note that even high-end
routers that have separate data and control paths are also subject
to thiskind of meltdown. Thisis because higher routing loads can
lead to packet drops from the internal queues that are used to store
incoming control packets before they are processed by the route
control processor.

We look at the routing load under two different conditions. First,
we study the routing load under steady state (i.e., when there are
no changes in the network state). Under these conditions, there are
two kinds of packets that are sent out: periodic HELLO packets
(to indicate to a neighbor that a router is alive), and periodic re-
fresh LSAs (to refresh the soft state on other routers). We look at
the routing load generated by periodic refresh LSAs. Each router
refreshes its self-originated LSAs whenever the age of the LSA
reaches L SRefreshTime [18]. Since the LSA age is incremented
by one every second, an LSA is refreshed every LSRefreshTime
seconds. A major concern in this scenario is the synchronization
of the refresh intervals of multiple LSAs on multiple routers. This
causes al the synchronized routers to refresh (and therefore flood)
their LSAs at the same time. Consequently, the routing load on the
network experiences periodic spikes. We attempt to formulate and
explore strategies to ensure that this kind of routing load is evenly
distributed over time.

Second, we study the routing load when the network is per-
turbed, i.e., when the network state has changed in some way. A

227

network state change causes fresh LSAs to be flooded from the
point of origin of the change so that the link-state databases at the
various routers can be brought up-to-date. Clearly, this kind of
flooding adds to the routing load and may cause a network to be-
come unstable, especialy if multiple state changes occur within a
short time interval.

3.3 RouteFlaps

Thethird parameter we study isthe number of route flaps caused
by a network failure. Route flaps refer to routing table changes in
arouter, usually in response to a network failure or arecovery. In
some sense, the number of route flaps characterizes the intensity of
the perturbation in the network. Thisisin contrast to the duration
of the perturbation, which is characterized by the convergence time.
For obvious reasons, a large number of route flaps in a short time
interval adversely affects network stability.

4. Experimental Methodology

In this section, we describe the methodology for our study of
OSPF stability. Ideally, wewould have liked to do an analysisusing
a control-theoretic model of a network running OSPF. Indeed, an
early work [14] does mention a control-theoretic approach. How-
ever, given the size of the network that we are proposing to study,
and the added complexities of TE extensions, the problem becomes
intractable very fast. Therefore, we decided to use simulation tools
to perform these studies. In therest of this section, wefirst describe
the simulation tool, and then describe the network topology that we
used.

41 TheVENUS Simulator

We used the VENUS simulator for our experiments with OSPF-
TE. The VENUS simulator is an event-driven, packet-level sm-
ulation tool based on the MaRS simulator from the University of
Maryland [2]. VENUS retains the basic event and packet-handling
mechanisms from the MaRS simulator. To this, an implementation
of OSPF based on RFC 2328 [18] has been added along with TE
extensions. VENUS also incorporates a detailed processor model
based on acommercially available OSPF router. Thisenabled usto
accurately model queueing and message processing delays as well
as processor utilizations. The entire effort resulted in about 8500
lines of C code (over and above the originad MaRS code).

The structure of the VENUS simulator is very modular and con-
sists of objects. The two main classes of objects relevant to our
simulation study are the routing objects and the processor model
objects. Each of these objects is associated with a router node in
the simulated network. We describe these objects in the next two
subsections.

4.1.1 Routing Objects

We use two main types of routing objects: OSPF objects and
TE objects. The OSPF objects implement the OSPF protocol for
single OSPF areasin great detail, including node startup, adjacency
establishment by exchange of database packets and maintenance of
adjacencies by periodic HELLO packet exchange. For a detailed
description of each of these processes, see RFC 2328 [18].

A TE object implements the TE extensions to OSPF (described
earlier in Section 2). In addition, a TE object also implements sig-
naling for path setup. The signaling in this case uses a soft-state

approach similar to RSVP-TE [6] (though the actual packets we
send have a slightly different format from that of RSVP-TE pack-
ets). Periodic keepalive messages are used to maintain path-specific
state on nodes. If the path-specific state has not been refreshed for
some (predetermined) time, the path is torn down. Furthermore,
when a network failure is detected on a path, the signaling com-
ponent on the source of the path recomputes and reroutes the path
around the failure.

4.1.2 Processor Model

Since we want to measure processor utilization, we have built in
a fairly accurate model of the routing processor and its operating
system. Each router in the simulated network has an associated
processor, and the simulator records the amount of time that each
processor is busy or idle.

The processor model incorporates the basic aspects of a non-
preemptive, real-time operating system. There are four basic task
types, each with itsown priority, namely, OSPF-TE packet process-
ing, Dijkstra calculation, expiration of timers, and path setup and
clear. The priority levels for the different tasks are as follows (in
increasing order): OSPF-TE packet processing (lowest), path setup
and clear, Dijkstra calculation, and timer expiration (highest).

Each processor has a task queue associated with each task type,
i.e., four queuesin all. Once atask beginsto run, it runs to comple-
tion with full utilization of the processor — running tasks cannot
be pre-empted even by higher priority tasks. When complete, the
system time is updated using the time it takes to complete the cur-
rent task, and the next task with the highest priority is scheduled; if
there is no task, the processor becomes quiescent.

We now describe each of the task types. Asits nameimplies, an
OSPF-TE packet processing task isinvoked when an OSPF packet
(possibly carrying TE information) arrives at arouting node. In par-
ticular, such atask is responsible for processing HELL O packets,
database exchange packets, link-state request packets, link-state
update packets and link-state acknowledgment packets. In addi-
tion, if any OSPF packets need to be sent in response to a received
packet, thistask doesthat aswell. For example, if anewly received
LSA isto be flooded, the OSPF-TE packet processing tasks builds
apacket containing the LSA and schedules it for sending.

The path setup and clear task deals with all the signaling func-
tions. This includes sending path-setup request messages in re-
sponse to client demands, receiving and processing reservation re-
quest and response messages as well as path teardown requests.
Furthermore, when anetwork element (node or link) fails, thistask
handles the rerouting of any paths around the failed network ele-
ment.

Note that timers are implemented by scheduling atimer expira-
tion. Timer expirations are handled by a specia timer expiration
task that runs with the highest priority. This task executes period-
icaly (the period is a configurable parameter in our simulations)
and looks at al the unexpired timers associated with the current
processor. Each timer whose expiration time is less than or equal
to the current time is then fired, and the timer expiration task itself
is rescheduled for execution after the fixed time period.

Finally, the Dijkstra calculation task is solely responsible for do-
ing Dijkstra calculations. This task is scheduled when a new or
updated LSA is inserted in the link-state database. In our imple-
mentation, a Dijkstra task is scheduled at most once every 5 sec-
onds.

228

We now briefly describe how we estimated the times taken by
some of the tasks mentioned above. In particular, we show how
the processing and sending times for OSPF-TE packets were cal-
culated. Thetime taken to process an OSPF-TE packet (¢.) isgiven

by

b=

where ¢, denotes that fixed overhead for any type of OSPF-TE
packet (HELLO, Database Exchange, Link-State Request, Link-
State Update and Link-State Ack). The t,, parameter denotes the
overhead per LSA in an update packet and n denotes the number
of LSAsin the update packet. The parameter ¢,, for arouter LSA

isgiven by
tup = if LSA present but not duplicate
if duplicate LSA

wheret. isthetimetaken toinsert an LSA in the Link-State Database,
tc isthe fixed processing time required per router LSA, ¢, isthe
cost per advertised link in a router LSA, k is the number of ad-
vertised links in the LSA, and ¢, is the time taken to process a
duplicate router LSA.

Similarly, if the LSA isan opaque L SA containing traffic-engineering

information, ¢, isgiven by
if LSA present but not duplicate
if duplicate LSA

wheret. istimetaken to insert the L SA in the Link-State Database,
t:. isthe fixed processing time per opaque LSA, and ¢, isthetime
taken to process a duplicate opagque LSA.

Thetimet, to send an OSPF-TE packet on an interfaceis given

by

if packet isan LSA update packet
otherwise

tph +n * tup
ton

tC + tT‘C + k * t’V"U
tT‘C + k * t’V"U
trd

if LSA not present in database

tc + ttc
ttc
2%

if LSA not presennt in database

tup

if update packet
if ack packet
otherwise

thy + e xtpp +ng * Ly

ts = taf
0

where n, isthe number of router LSAs in the update packet, n; is
the number of opague LSAs in the update packet, ¢.; is the time
taken to add a single router LSA to the update packet, ¢ is the
time taken to add a single opague LSA to the update packet, #,
isthe fixed overhead to send an update packet on an interface, and
tas isthe time taken to send an acknowledgment packet. Note that
we assume that the time to send other packet types (e.g. HELLO
packets) is negligible and approximate it by 0.

We have attempted to be realistic about the time that each task
requires. For this purpose, we used timing measurements on acom-
mercially available router to obtain values for the following param-
eters: te, tre, tro, tee, teds taf, thy, trp @d tey. The actual values
ranged from 10 microseconds to 1101 microseconds. Individua
parameter val ues have not been shown here due to privacy reasons.

Finally, our processor model assumes that data packets are for-
warded by line cards in hardware and control packets are handled
by the routing control processor. Thisis not an unrealistic assump-
tion since most high-end routers are configured in this manner.

The model is not complete. It does not include, for instance,
times for computing paths when servicing path-setup requests; we
expect that an implementation would calculate many paths at once,

Figure 1: Sample Hub and Spoke Network Topology

Hub Nodes 59

POPs 233

Total Nodes 292
Hub-to-Hub Links | 393
POP-to-Hub Links | 124
POP-to-POP Links | 248

Total Links 765

Max Node Degree | 11

Min Node Degree | 1

Max Link BW 622 Mbps
Min Link BW 512 Kbps
Max Latency 113ms
Min Latency 10us

Figure 2: Network Topology I nformation Summary

and cache these paths for servicing (multiple) future requests. Fur-
thermore, some of the processor parameters may be quite different
in products from other vendors. Nevertheless, we believe that the
processor model produces results that are applicable in other set-
tings, because the model reflects a common implementation strat-

egy.

4.2 Network Topology

We used a 292 node, 765 link network based on areal ISP net-
work that is spread worldwide. The network essentially consists of
a collection of hubs that correspond to major cities. Connected to
each hub are a set of nodes that represent local points of presence
(POPs), in the form of a hub and spoke configuration. (A sample
hub and spoke configuration with 5 hubsis shown in Figure 1.)

In the simulated network, there are a total of 59 hub nodes and
233 POPs. The POPs are at the edge of the network and aggre-
gate traffic from multiple customers. The hubs constitute the net-
work core — they act as aggregators of traffic originating from the
POPs that are connected to them. The entire network spans 77
citiesworldwide, with multiple hub nodesin mgjor cities (up to 3),
and none in the smaller ones. Figure 2 summarizes the network
topology information.

Thehubs aretypically connected by high-speed links with speeds

229

varying between 45Mbps (T3) to 622Mbps (OC-12). POPsare con-
nected to the local hub node and to each other (if they are in the
same geographic area) with low speed links. Bandwidths in this
case can vary from as low as 256K bps to 45Mbps (T3). The link
latencies were determined by dividing the geographic distance be-
tween the endpoints with the speed of light. The latencies varied
from 10 microseconds to as high as 113 milliseconds for some slow
speed links. For some of the links, the latencies were small enough
that we approximated them by 0. The entire network was structured
as asingle OSPF areawith point-to-point links only.

Note that the networks of today are of much higher speeds —
they mostly have OC-48 (2.5Gbps) and OC-192 (10Gbps) linksin
the core. However, the data we had access to is somewhat older
and represented the network state then. One way to get around this
problem would have been to scale up thelink speedsin the network.
This would have meant scaling up the bandwidth demands in the
path-setup requests as well. We chose to use the data asis since the
qualitative nature of the results would have remained unchanged
even with scaling.

Furthermore, for privacy reasons, some of the adjacenciesin the
actual network have been altered such that the simulated network is
somewhat different from the real ISP network. Once again, we felt
that the nature of the results would not be substantially different if
some minor modifications were made to the network topology.

5. Experimentswith OSPF-TE

We designed the first set of experiments to answer the first ques-
tion posed in the Introduction, i.e., what is the effect of TE ex-
tensions on processor |oads, network convergence times, and route
flaps? Looking at processor loads enables us to understand if net-
work state changes (e.g., failures) can cause meltdowns on func-
tioning routers. When looking at network convergence times, we
study two parameters. the propagation time and the reroute time
(see Section 3.1). Finaly, we look at the number of route flaps to
get an indication of how disruptive a network failure can be.

We ran the simulation on the topology described in Section 4.2
for a duration of 10,000 simulated seconds (about 2.8 hours). The
network nodes were brought up randomly (with a uniform distri-
bution) during the first 1000 seconds. The network was allowed
to stabilize for another 1000 seconds before starting the path-setup
requests.

For our experiments, we used a set of 10,000 path-setup requests
obtained from the same ISP whose network topology we simu-
lated. Each path-setup request consisted of a source, a destina-
tion, and bandwidth values for both the forward and the backward
directions (i.e., source-to-destination and destination-to-source di-
rections). All the requests were symmetric, i.e., the bandwidths re-
quested in the forward and the backward directions were the same.
The range of bandwidth values used in the path-setup requests var-
ied from 604 bps to 4.6Mbps. The table in Figure 3 shows the
distribution of path-setup requests.

Furthermore, the path-setup requests were uniformly distributed
in time starting from 2000 seconds after the beginning of the exper-
iments. All the path-setup requests had the same priority. At 6000
seconds, one or more node failure(s) were caused. In our simula-
tions, afailed node stopped sending or receiving packets, and all the
packets scheduled for processing at the failed node were dropped.
Once a node failed, al the traffic-engineered paths with one end-

Bandwidth Range % of requests
< 16K 25.49
> 16K and < 32K 25.62
> 32K and < 64K 22.82
> 64K and < 128K 11.94
> 128K and < 256K 6.43
> 256K and < 512K 395
> 512K and < 1M 221
> 1M 154

Figure 3: Path-Setup Request Statistics

point at the failed node were shut down. Furthermore, al those
paths that were using the failed node as an intermediate node were
rerouted along a different path.

Note that we could have chosen link failures or changesin avail-
able link-bandwidth as the source of the network-state change. We
chose node failures since they subsume link failures and are more
disruptive than changes in available link-bandwidth.

We studied the effects of three different parameters on network
stability, namely, the number of node failures, the message lossrate
on each link, and the triggering mechanism. We describe the results
for each of these parametersin the following subsections.

5.1 Number of Node Failures

To explore the effect of multiple node failures, we ran experi-
ments where the top 1, 5, and 10 nodes in terms of the number of
adjacencies failed concurrently at 6000 seconds. Figure 4(a) shows
the processor utilizations (for the most loaded node) for the three
cases. Note that for 1 failure, the processor utilization does not
show any spikes — however for 5 failures, the processor utilization
crosses 50% at the time of failures and for 10 failures, the proces-
sor utilization is close to 100% at the time of failures. We also see
that for the 5 and 10 node failure cases, the high processor loads re-
peat at 1800 second intervals due to the synchronization of refresh
L SAs. We discuss possible solutions to this problem in Section 7.

Figure 4(b) shows the number of route flaps over time for each
failure scenario. Again, for the 1-node failure case, the number of
route flaps is an order of magnitude lower than the multiple node
failure case(s). (It is dmost impossible to see the route flaps for
the 1-node failure case because of the scale.) In fact, even for the
2-node failure case (not shown here), we found that the number of
route flaps at the time of failure quadruples from the 1-node failure
case. Clearly, these figures indicate that even though OSPF-TE
is robust with respect to single failures, multiple concurrent node
failures interact in subtle ways to cause much more instability in
the network. We have been unable thus far to pin-point the nature
of thisinteraction, and have left it as the subject for further study.
We also note that despite the large number of route flaps and the
high processor loads, OSPF-TE does converge, in the sense that
the routes do not continue to oscillate indefinitely. As we seein
the next paragraph, there is a finite time after which the network
converges (and hence the route flaps die down).

Figure 4(c) shows the effect of multiple failures on convergence
times. Although both the propagation and the reroute components
show a slight increase with the number of failures (which isto be

230

expected), itisnot substantial. In this respect, OSPF-TE appears to
be robust as well.

The more interesting case is the comparison with pure OSPF
without TE extensions. The bar marked NTE is the propagation
component for pure OSPF in the 1-node failure case. We see that
adding TE extensions does not significantly add to the propagation
times — only about 6 seconds (i.e., about 18% in this case). The
three main components of the propagation component are (a) the
failure detection time, (b) the flooding time for the failure informa-
tion, and (c) the overhead due to TE extensions, if any. Clearly,
(a) is bounded above by the HELL O timeout period (40 seconds
in most implementations, including ours), and (b) is determined
by the diameter of the network. These two quantities are approxi-
mately the same whether we use TE extensions or not (if the same
network is used in both experiments). The quantity (c) is deter-
mined by the overheads involved in sending keepalive messages
for al the active paths, the rerouting messages for those paths that
contain failed node(s) and/or link(s), and the path-setup messages
for new paths. Thus, the extra overhead due to the components in
(c) isabout 18% from our experiments.

On the other hand, the reroute times are in the region of 80 to
84 seconds (depending on the number of failures). Thisis because
the timeout period for the path teardown and reroute process (if the
path specific state on a node has not been refreshed in that time) is
80 seconds in our implementations.

5.2 Message L 0ss

The second parameter whose effect we studied was the message-
loss rate on each link. We used a uniform distribution to generate
message drops on each link at the rates of 2, 5 and 10%. At 6000
seconds, the node with the highest adjacency was taken down. Fig-
ure 5(a) shows the processor utilization for the most loaded node in
each of the three loss scenarios. Interestingly enough, the proces-
sor utilization goes up as the loss increases from 2 to 5% and then
comes down for 10%. The reason is as follows. as the loss rate
goes up from 5 to 10%, more adjacencies are lost due to HELLO
timeouts. Consequently, each node sends out fewer messages since
it thinks that it has fewer OSPF neighbors. This reduction in mes-
sages compensates for the increase in the number of retransmis-
sions. However, when the loss rate goes up from 2 to 5%, the de-
crease in the number of adjacencies is not enough to balance the
increase in the number of retransmissions.

The number of route flaps are shown in Figure 5(b). We find
that as the loss rate goes up, the number of route flaps increases.
Furthermore, route flaps begin to occur more often — in the 10%
loss case, they occur almost all the time. Thisis because the higher
message-loss rates cause adjacencies to be taken down and re-esta-
blished more often. Thus, higher message-loss rates have a partic-
ularly debilitating effect on stability, although a 10% message-loss
rate is unrealistically high. For a more realistic 2% message-10ss
rate, the network appears to be fairly stable. Note here that we
do not show any results for convergence times. When messages
are lost, it is impossible to distinguish between those LSAs that
are sent out as a direct result of a node failure and those that are
sent out because of loss-induced timeouts. The same holds for path
reroutes.

5.3 Triggering Thresholds

The final parameter was the triggering threshold mechanism, of

100 10 fail
ailures i
50 2 10000 10 failureg
= 100
) b ° 1 5 10
= 5 failures 3 5000 7 80
N 50 o c
£ =] 8 60
R 0 sl 3 600 5failures| & 1 5 10
° 1 failure 'E 4000 | ; 40 4 NTE
50 2 2000 | 1 E 20 4
I W N i s 50 Tfailures
2000 3000 4000 5000 6000 7000 8000 2000 3000 4000 5000 6000 7000 8000 0 -
Time (secs) Time (secs) Propagate Reroute

(a) Processor Utilization

(b) Route Flaps

(c) Convergence Times

Figure 4: Effect of Multiple Node Failures

100 ‘
10% loss
50 1
c 0 A AW s bttt
}‘96 5% loss
N 50 ¢ 1
5 AN i
X 0
2% loss
50
h LAY
0
2000 3000 4000 5000 6000 7000 8000

Time (secs)

(a) Processor Utilization

Number of Route Flaps

10% loss

5% loss

500
o ik I il AL
2% loss
500 ’[]
0 . L. . . \. .
2000 3000 4000 5000 6000 7000 8000

Time (secs)

(b) Route Flaps

Figure 5: Effect of Message L oss

which we used two variants. The relative threshold mechanism
works asfollows. Let the bandwidth availableon alink [at thetime
of thelast update for [be b(u), and the current available bandwidth
onlbeb(c). Then an LSA is generated when =000 1 100 > ¢
where ¢ is the threshold percentage. In other words, the change in
bandwidth relative to the previously available bandwidth has to be
higher than the threshold. Thisimplies that as the available band-
width on alink grows smaller, the bandwidth changes required to
produce update L SAs also grow smaller in magnitude.

In contrast, the absolute threshold mechanism works as follows.
Let the total link bandwidth on alink [be B, the bandwidth avail-
able on at the time of the last update for I be b(u), and the current
available bandwidth on I be b(c). Then an LSA is generated when
[l bl 4 100 > + where t is the threshold percentage. In other
words, the relative change in bandwidth with respect to the total
bandwidth has to be higher than the threshold. In this method, the
number of L SASs sent out grows smaller as the available link band-
width decreases. In our experiments, we used thresholds of 10, 20
and 30%.

Figure 6(a) shows that changing the triggering threshold or the
nature of the threshold mechanism (relative vs absolute) does not
affect the reroute times. Thisis to be expected since a failure im-
mediately triggers an LSA send irrespective of what the triggering

231

mechanism is®> However, the triggering mechanism does have an
effect on path setups. Figure 6(b) shows that the relative thresh-
old mechanism has fewer rejects than the absolute threshold mech-
anism. This is because in comparison to the absolute threshold
mechanism, the relative threshold mechanism sends out more fre-
quent updates as the available link bandwidths grow smaller, and
therefore allows nodes to maintain a more accurate network snap-
shot. On the other hand, the actual value of the triggering threshold
(in the 10 to 30% range) does not appear to have any effect on the
number of rejects. Furthermore, the nature or the value of the trig-
gering threshold does not have any significant effect on the proces-
sor load. Thisisshown in Figures 6(c) and (d). (The graphs are for
the most loaded processor). Thus, using arelative triggering thresh-
old is preferable since it produces fewer rejects (and more accurate
network snapshots) without significantly increasing the processor
loads.

6. Experimentswith Convergence Times

The experiments in this section were used to answer the second
question posed in the Introduction, namely, can the network con-

3More precisdly, it is the detection of a failure that immediately
triggers the LSA send, and not the occurrence of the failure. There
is a time lag between the occurrence of afailure and its detection
that is determined by the HELL O timeout period.

100
— 10% 20% 30% o 509 300
T 80 | 10% 20% 30%
c
8 60 -
[0}
2 40 -
£
= 20 1
0 -
Relative Absolute
(a) Reroute Times
100 : ;
30% thresh
50 1
s 0 RSN It i
= 20% thresh
N 50 f]
\:c: 0 M M s
° 10% thresh
50]
0 AN i SN by b AAA
2000 3000 4000 5000 6000 7000 8000

Time (secs)

(c) Processor Load: Relative

500
2 400 -
Q0 10% 30%
& 300 -
© 10% 20% 30%
5 200 -
Ke)
§ 100 |
4
0
Relative Absolute
(b) Path Rejects
100 : .
30% thresh
50 1
= 20% thresh
N 50 |]
\:o 0 i, A st
° 10% thresh
50 1
M«MMWMMWWWWWNM
0
2000 3000 4000 5000 6000 7000 8000

Time (secs)

(d) Processor Load: Absolute

Figure 6: Effect of Triggering Thresholds

vergence time (when failures occur) be speeded up? The current
OSPF protocol depends on the HELLO timeout mechanism [18]
for detecting network failures, which in effect determines the con-
vergence time for the network. The rate at which HELLO mes-
sages are sent is configurable, as is the timeout period. In current
implementations of OSPF, it is recommended that the routers be
configured to send HELLO messages every 10 seconds, and that
an adjacency be dropped if no HELLO messages have been seen
within the last 40 seconds (i.e., 4 HELLO intervals). A recent pro-
posal [1] has advocated setting the HELLO intervals to subsecond
ranges to achieve faster convergence times. Experiments described
in [1] show that such modifications to the IS-IS protocol work rea-
sonably well without unduly loading the routers.

In this section, we explore whether OSPF can also benefit from
asimilar technique. We ran our experiments with two different val-
ues of the HELLO intervals — 250ms and 500ms, with a failure
(the node with the highest adjacency) occurring at 6000 seconds.
No TE extensions were used.* Figure 7(a) shows the convergence
time comparisons. We see that compared to the 33 second propa-
gation time for aHELLO interval of 10 seconds (i.e., a 40 second
timeout period), 2500 ms HELLO interval yields a 2 second prop-
agation time and a 250 ms HELL O interval yields a 1 second prop-
agation time. In other words, there are substantial improvements

“We did try running with TE extensions, but our simulator ran out
of memory.

232

in the convergence times if HELLO intervals are in the subsecond
range.

The added cost for sending the extra HEL L O messages, in terms
of processor utilization, is not very high. In Figure 7(b), which
shows the processor utilization graphs for the most loaded proces-
sor, we see that on an average, the extra HELLO messages add
about a 1% extra load for the 500ms case and about a 2% extra
load for the 250ms case. The processor load at the time of the node
failure (6000 seconds) for the 250ms case does show a spike of
about 15% utilization, but that is small enough (in our opinion) to
be tolerable for short time periods. These experiments also indi-
cate that the processing of HELL O messages does not account for
alarge part of the overheads — indeed, most of the overheads come
from processing update L SAs.

However, setting the HELL O timeout period to be too low may
cause other problems. We find that as we go from a500ms HELLO
interval to a250ms HELL O interval, the number of route flaps in-
creases about sixfold (see Figure 7(c)). A major reason for thisis
an increase in the number of HELL O timeouts, on account of set-
ting the HELLO interval timer to be too small. Thisindicates the
existence of an optimal operating point for setting the timers.

In order to narrow down the range for the optimal operating
point, we ran further simulations, setting the HELLO interval to
200, 225, 275, and 300ms. We found that the route flap behavior
remains the same in the 200 — 250ms range, but resembles the be-
havior in the 500ms case in the 275 — 300ms range. Thus, setting
the HELL O interval in the neighborhood of 275ms gives us a huge

2000

250 ms » 1500 | 250 m
10+ 1 S 1000 ¢
o 500 n
§ 0 e 0 !
40 = 500 ms 3 1500 | 500 ms|
.g 30 & 10 j o 1000
= 4 = S L
5 2 0 T L it el s 0L ,
5% ’ 10 secs £ 1500 | 10 secs
g 10 5 1000
8 10 r 1 3 ’
) L
[0 —] 0 AM.NM mM‘M M.MM sl 508 I |
10 sec 500 ms 250 ms 2000 3000 4000 5000 6000 7000 8000 2000 3000 4000 5000 6000 7000 8000
Hello Interval Time (secs) Time (secs)

(a) Propagation Times

(b) Processor Utilization

(c) Route Flaps

Figure7: Effect of Subsecond HELLO Timers

decrease in the propagation time (from 33 seconds to about 1.09
seconds), without acquiring much overhead in terms of processor
utilizations or route flaps.

These results complement the findings for the 1S-1S protocol
in [1]. However, the ISIS findings indicate that the number of
HELLO timeouts do not increase significantly even for very low
timeout values. In the absence of actual fi guress, it ishard to deter-
mine what these values are. In contrast, our findings indicate that
the number of timeouts (as indicated by the route flap numbers)
increases significantly even for modest values of the HELL O inter-
vals (in the 200 — 250ms range). The implications of our findings
is that although the convergence times can be reduced by an order
of magnitude (from 10s of seconds to seconds) using sub-second
HELL O timers, they cannot be reduced to millisecond ranges with-
out substantially increasing the number of route flaps. Without
more details about the experiments in [1], it is difficult to deter-
mine whether thisis an artifact of the protocols (OSPF vs. 1S-1S)
or of the processor model that we use.

7. Experimentswith Refresh Synchronization

In this section, we attempt to answer the last question posed in
the Introduction. Wefirst outline the LSA Refresh Synchronization
problem, discuss possible solutions, and then describe our experi-
mental results. During steady state operation, each OSPF router
refreshes al the LSAs that it originates after every LSRefresh-
Time [18] seconds of stability. The recommended value for L SRe-
freshTimeis 1800 seconds (or 30 minutes). Periodic refreshment of
LSAs guards against errors in the detection of node failures, since
LSAs that have not been refreshed within a certain period of time
are not included in routing table calculations.

L SA refreshments can cause periodic bursts of traffic dueto syn-
chronization [10]. This kind of synchronization occurs because
all the routers in the system attempt to refresh their self-originated
LSAsover ashort timeinterval. Thisis an artifact of the periodic
LSA refresh scheme — if al the routers in the system come up
during a short timeinterval and start sending out L SAS, the refresh
times for these LSAswill aso lie within ashort timeinterval. This
phenomenon is especially damaging in large networks since alarge
proportion of routers refreshing L SAs close together in time causes
the routing load on the network to spike sharply.

>The HELLO intervals in their study is measured in terms of what
percentage of the link bandwidth is used by the HELL O packets.

233

One way to solve this problem is to bring up the routers ran-
domly (instead of all at once) over some (reasonably large) startup
time interval. However, alittle analysis shows that this technique
is not very effective. Consider a network of routers where each
router has adjacency k. Furthermore, assume that these routers are
brought up randomly over a period of r seconds. The probability
that all the k routers that are neighbors of agiven router R areupin
n seconds (r > n) isgiven by (%)k For example, if n is 500 sec-
onds, r is 1000 seconds, and k is 3, then the probability that all the
k neighbors are up in 500 seconds is0.125. If we want a0.5 proba-
bility that al the k& neighbors are up, we must set n to 794 seconds.
In a network with higher adjacencies, the number for n (i.e., the
time taken for all neighbors to be up with high probability) is even
closer to 1000 seconds. Thisimpliesthat OSPF L SAs stabilize (i.e.
stop changing) at the end of the startup phase. Thisis becauseitis
at thistime that all the routers are up and have communicated their
presence to every other router.

The crucial observation here is that whenever an LSA changes,
itsageisreset to zero. In other words, therefresh period isrestarted.
Thus, it is only when the LSA stabilizes (i.e. stops changing) that
the refresh period progresses (in the absence of further changes in
the network state). Hence, if most of the LSAs in the system stabi-
lize at around the same time (towards the end of the startup period),
the starting points of the refresh periods for all of these LSAS get
synchronized. This leads to subsequent synchronization of LSA
refreshments.

Note that this observation implies that the synchronization phe-
nomenon is independent of the length of the startup period. Essen-
tially, it depends on when the L SAs originated by arouter stabilize,
which isdetermined inturn by how many adjacencies the router has
(aswe pointed out earlier). Thus, changing the length of the startup
period has no effect on LSA refresh synchronization, but reducing
the number of OSPF adjacencies that arouter has could ameliorate
the situation.

A recent proposal by Zinin [26] incorporates a variant of the ran-
domization technique. Zinin advocates a two-fold solution to the
problem. First, self-originated LSAs are organized into fixed size
groups. All the LSAsin agroup are sent out back-to-back, and the
groups themselves are spaced out in time. Thishelpsto avoid bursts
of traffic initiated by the same node. Second, the refresh time of the
initial version of each LSA (i.e, that with sequence number 0) is
randomized. For each subsequent version, a small, random “jitter”

120000 120000

100000 100000
80000 - 80000 -

60000 - 60000 -

Packets Sent
Packets Sent

40000 40000

20000 20000

120000
100000
80000
60000

Packets Sent

40000
20000

0 0 0
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Time (in secs) Time (in secs) Time (in secs)
(a) Standard OSPF (b) Zinin (c) Randomized

Figure 8: OSPF Refresh Packet Performance

component is added to the normal L SRefreshTime refresh period.
The idea here is to prevent the synchronization of LSA refreshes
from multiple routers.

In this section, we focus on studying the second part of the so-
lution. The performance of the standard OSPF refresh strategy and
that of Zinin's strategy (minus the temporal grouping of LSAS) are
shown in Figures 8(a) and (b), respectively. We used the same net-
work topology as before and ran our simulations without TE exten-
sions and without any failuresfor 10,000 seconds. Sincethe routers
were running OSPF without TE extensions, each router originated
asingle router-L SA (that corresponding to itself). The nodes were
brought up randomly over thefirst 1000 seconds. The figures show
that in terms of the number of packets sent over time, Zinin's algo-
rithm also tends to bunch packets every 1800 seconds.

The reason is the following: even though the refresh period for
the initial version of every LSA is randomized, it does not have
much effect sincetheinitial version of an LSA istypically unstable.
In generdl, theinitial version of every LSA isreoriginated multiple
times during the router startup phase mainly due to neighbor dis-
covery. Therefore, the router-LSA refresh times at the end of the
startup interval (1000 seconds in our experiments) are more or less
synchronized. The small random jitter that Zinin's algorithm adds
to the refresh periods for subsequent versions still keeps the refresh
periods of these LSAsin avery narrow range. Thisis because the
jitter value (as suggested in [26]) istypically small (between 0 and
10 seconds), and hence does not disperse the subsequent refresh
times enough.

Our proposal advocates randomizing the refresh time of any LSA
that has been modified and needsto bereoriginated. L SAsthat have
been stable (i.e., have been refreshed at |east once) are refreshed at
the end of the usual L SRefreshTime seconds. For LSAs that have
been modified (e.g., due to the loss of an adjacency), we choose a
random number between MinLSInterval and L SRefreshTime and
schedul e the refreshment after that period of time. Here, MinL SIn-
terval denotes the minimum time that must el apse between two suc-
cessive originations of an LSA, and is set to the suggested default
value of 5 seconds in our implementation. The performance of this
algorithm is shown in Figure 8(c). It is clear that this technique is
able to disperse the L SA refreshes uniformly over time and spread
the router loads (except in the initia startup phase). We believe
that using this technique in conjunction with Zinin's technique of
grouping LSAswill lead to even better performance.

Finally, we point out that random link failures (and restorations)

234

after the startup phase tend to reduce the synchronization effect that
we have observed. A random link failure (or restoration) causes a
LSA to be generated when the failure (or restoration) is detected
(say, at time t). Subsequently, the LSA is refreshed periodically
starting from this time ¢. Since these times ¢ are randomly dis-
tributed for different LSAS, the refreshment periods for the LSAs
are no longer synchronized as before. In other words, random
changes in link states after the startup period reduce the effect of
L SA refresh synchronization.

Once again, note that the random link-state changes must occur
after the startup period has occurred. Otherwise, the effect of these
changes will get nullified by the effect of the network state changes
caused by new routers that are coming up during the startup period.
Consequently, the LSAswill again stabilize at the end of the startup
period and the L SA refreshments will remain synchronized.

8. Result Summary

Based on the results of our simulations, we can make the fol-
lowing recommendations. First, the OSPF-TE protocol appears to
be reasonably stable. Our simulations show that adding TE exten-
sions does not change the convergence times significantly, even in
the presence of multiple failures. A major potential problem stems
from multiple concurrent failures — we saw that the interactions
between such failures could lead to very high processor loads and
large numbers of route flaps in the short term. In the presence of
message losses, the OSPF-TE protocol also proved quite robust —
the processor loads do not spike in the presence of a redlistic 2%
message |0ss.

Regarding triggering thresholds, our experiments show that rela-
tive threshold-based schemes have a clear advantage over absolute
threshold-based schemes (fewer rejects, no significant change in
processor utilization). Another interesting find was the fact that the
triggering threshold does not appear to have any significant effect
on the number of path rejects. This could, of course, be an arti-
fact of the network, or the kinds of demands that we used. How-
ever, given that we used areal network topology, along with areal
demand schedule from that network, we feel reasonably confident
that in the 10 to 30% threshold range, we would see similar perfor-
mancein other scenarios. Thus, it would be advantageous to set the
thresholds at the high end of the (10 to 30%) range to reduce the
number of messages.

Second, setting HELL O timers to the subsecond range appears
to be agood idea. If the HELLO timers are set properly, this tech-

nique does reduce the convergence times by an order of magnitude,
without adding significantly to the processor |oads. However, mak-
ing the HELLO interval too low causes too many route flaps due
to frequent timeouts, hence the HELL O interval should be chosen
carefully to be near the optimal operating point.

Finally, carefully designed randomization goes a long way in
evenly distributing the routing load due to refresh synchronization.
We advocate the use of our randomization technique in conjunc-
tion with Zinin's technique for grouping self-originated L SAs and
spacing out the LSA groups in time.

9. Related Work

One of the earliest works on routing stability was done by Khanna
and Zinky [14]. This work looked at routing oscillations in the
ARPANET and devised changes to the routing metrics that resulted
in better stability. The authors al so attempted some control-theoretic
modeling of the network as a feedback loop in order to understand
the stability behavior of the network. Other works have also looked
at the design of routing protocols as afeedback control problem. In
particular, work by Boel [8] showed that in order to improve both
short- and long-term routing performance, it isnecessary to dissem-
inate failure information quickly and repair information slowly.

Some later work has used statistics gathered from the Internet
to provide quantitative information about the stability of Internet
routes. One of the first attempts in this area was [9] which stud-
ied the dynamics of Internet routing information. In particular, it
looked at the nature of routing updates (what percentage actually
provided new information), the size and distribution of routing fluc-
tuations, unreachability cycles, update propagation times, and con-
nectivity transitions. More recently, [16] studied the effect of Inter-
net backbone failures on stability. In particular, thiswork used data
collected at the time of several Internet failures and analyzed their
probable origins. This study also looked at the frequency of route
flaps and the mean time between the network failures that cause
these route flaps. Finally, work in [15] has looked at the latencies
in Internet path failovers and repairs and how they are affected by
the convergence properties of inter-domain routing.

Separately, QoS-based routing has also been the subject of vari-
ous studies. In [5], the authors examined the cost of QoS routing.
They proposed three parameters that affect the overheads of QoS
routing, namely, the triggering update policy, sensitivity of the pol-
icy, and the clamp-down timers that limit the update rates. The
main focus in thiswork was to study how the number of successful
path setups vary as these parameters are changed. The effect of dif-
ferent triggering thresholds on path setup was also studied by [22].
Thiswork pointed out that the rate of connection blocking (or path-
setup failure) isinsensitive to the value of the triggering threshold
over awide range of values. Our work extends all of these results
to amore redistic setting using areal OSPF implementation, areal
ISP network and an accurate processor model based on a commer-
cia router. Furthermore, we aso explore the tradeoffs between
routing loads on the processor and the accuracy of the triggering
mechanisms.

In [4], the authors studied the overheads of QoS routing using a
combination of simulations and an OSPF implementation with QoS
extensions based on gated [17] daemon. They concluded that the
cost of QoS routing is well within the limits of the capabilities of
modern router technology.

235

Another work [12] has focused on scalability issuesin QoS rout-
ing, especially with respect to topology aggregation. Here, the au-
thors used network simulations to show that topology aggregation
can reduce routing fluctuation and increase stability.

Link-state protocols (which includes OSPF) have also been stud-
ied extensively. In particular, simulations were used in [24] to study
the performance of the OSPF Election Protocol and how it affects
routing stability. The work in [7] looked at a new way of com-
bining link-state protocols and distance-vector protocols to form a
new class of protocols called Link Vector protocols. The authors
showed that such protocols have lower overheads and are more
amenable to aggregation. Another work [25] modeled and com-
pared the performance of the Bellman Ford algorithm used in OSPF
to that of aloop-free distance vector algorithm. In particular, this
work looked at stability issues such as paths affected by routing
loops when alink or a node changes state.

In[23], the authors looked at the performance of OSPF and BGP
(the Border Gateway Protocol [20]) in the presence of traffic over-
load. Thiswork developed an analytical model of route flap times
and adjacency recovery times based on Markov Chains and vali-
dated the model using data from areal 3-node network. The main
finding in this work was that both route flap times and adjacency
recovery times decrease with an increase in traffic overload (and
hence message loss). Our results also confirm these findings. Ad-
ditionally, we show that while routes flap more frequently as mes-
sage lossincreases, the routing load on processors does not change
very significantly (in alarge network).

Calculation of optimal traffic-engineered paths has also been a
subject of research. Most recently, Fortz and Thorup [11] have ex-
amined how OSPF link costs can be set such that path calculations
yield end-to-end connections that minimize the maximum link uti-
lization. They show that this problem is NP-Complete and propose
heuristicsthat yield solutions reasonably close to theideal solution.

Floyd and Jacobson [10] were the one of the first to observe the
synchronization of periodic routing messages. They used simu-
lations and (Markov Chain based) analysis to show that the transi-
tion from unsynchronized to synchronized trafficisvery abrupt and
suggested that randomization techniques may be used to avoid this
kind of synchronization. More recently, Zinin [26] has proposed a
scheme for randomizing refresh LSAs in OSPF that we have de-
scribed earlier in Section 7.

Finally, there has recently been some work in the area of sub-
second I1GP convergence. In [1], the authors proposed the idea of
reducing the HELLO intervals in IGPs to the millisecond range.
The goa was to achieve convergence in milliseconds (as opposed
to seconds) when the network state changes. They showed, using a
combination of simulations and measurements, that this technique
works well for the IS-IS[19] protocol.

10. Conclusionsand Future Work

In this paper, we have presented a detailed experimental study
of stahility issues for OSPF routing. Our experiments use a simu-
lation tool based on a realistic implementation of OSPF and a de-
tailed processor model from a commercially available router. The
network topology that we have used corresponds (with minor mod-
ifications) to areal ISP network with 292 nodes and 765 links. We
find that adding Traffic Engineering (TE) extensions to OSPF does
not substantially change the stability properties of OSPF. However,

multiple failuresthat are close together in time can lead to potential
instabilities. We al so find that using subsecond HEL L O timers con-
siderably improves the convergence times for OSPF without sig-
nificantly adding to processor loads. Finaly, we study the LSA
refresh synchronization problem and suggest a technique to avoid
such synchronized L SA refreshes.

Inthefuture, wewould like to extend this study in multiple ways.
First, we would like to explore in more detail the interactions be-
tween multiple node failures and how they affect stability, and (if
possible) suggest modifications to OSPF to handle these scenarios
gracefully. Thisisimportant since as networks grow in size, mul-
tiple concurrent failures become more likely. Second, we would
like to study stability issues using arealistic data traffic model that
uses bursty traffic to load the network. We did attempt some stud-
ies using CBR traffic sources to load the network. However, due to
the nature of CBR sources, the queues do not build up enough to
affect convergence times. Given that most Internet traffic today is
of abursty nature, we feel that it would be more appropriate to use
atraffic source modeled on some heavy-tailed distribution. Finally,
we would like to extend our simulations to multiple OSPF areas
and aso explore interactions with an Exterior Gateway Protocol
such as BGP.

11. Acknowledgments

We would like to thank Suvo Mittra and the anonymous referees
for their valuable comments.

12. References

[1] C. Aleettinoglu, V. Jacobson, and H. Yu. Towards Milli-
Second IGP Convergence. Internet Draft draft-alaettinoglu-
isis-convergence-00.txt, IETF, November 2000.
C. Aleettinoglu, A. U. Shankar, K. Dussa-Zieger, and
I. Matta. Design and Implementation of MaRS: A Routing
Testbed. Journal of Internetworking: Research & Experience,
5(1):17-41, 1994.
O. Aoboul-Magd et. a. Constraint-Based LSP Setup us-
ing LDP. Internet Draft draft-ietf-mpls-cr-ldp-05.txt, |ETF,
February 2001.
G. Apostolopoulos, R. Guérin, and S. Kamat. Implementa-
tion and Performance Measurements of QoS Routing Exten-
sionsto OSPF. In Proceedings of Infocom’ 99, New York, NY,
March 1999.
G. Apostolopoulos, R. Guérin, S. Kamat, and S. K. Tripathi.
Quality of Service Based Routing: A Performance Perspec-
tive. In Proceedings of SGCOMM '98, pages 29-40, Van-
couver, Canada, August—September 1998.
D. O. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan,
and G. Swallow. RSVP-TE: Extensions to RSVP for LSP
Tunnels. Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-08.txt,
IETF, February 2001.
J. Behrens and J. J. Garcia-Luna Aceves. Distributed, Scal-
able Routing Based on Link-State Vectors. In Proceedings of
S GCOMM ' 94, pages 136147, London, England, August—
September 1994.
[8] R.K.Boel. Dynamic Routing in Delay Networks: Ergodicity,
Transients and Large Excursions. In Proceedings of the 30th

(2]

(6l

236

Conference on Decision and Control, Brighton, England, De-
cember 1991.

[9] B.Chinoy. Dynamics of Internet Routing Information. In Pro-
ceedings of SGCOMM ' 93, pages 45-52, San Francisco, CA,
September 1993.

[10] S. Floyd and V. Jacobson. The Synchronization of Periodic
Routing Messages. In Proceedings of SSGCOMM ' 93, pages
3344, San Francisco, CA, September 1993.

[11] B.Fortzand M. Thorup. Internet Traffic Engineering by Opti-
mizing OSPF Weights. In Proceedings of | EEE Infocom 2000,
Tel Aviv, Israel, March 2000.

[12] F. Hao and E. Zegura. On Scalable QoS Routing: Perfor-
mance Evaluation of Topology Aggregation. In Proceedings
of IEEE Infocom 2000, Tel Aviv, Israel, March 2000.

[13] D. Katz and D. Yeung. Traffic Engineering Extensions

to OSPF. Internet Draft draft-katz-yeung-ospf-traffic-03.txt,

IETF, September 2000.

A. Khanna and J. Zinky. The Revised ARPANET Rout-

ing Metric. In Proceedings of SGCOMM ’89, pages 45-56,

Austin, TX, September 1989.

C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian. Delayed

Internet Routing Convergence. In Proceedings of SGCOMM

' 00, pages 175-187, Stockholm, Sweden, August—September

2000.

C. Labovitz, A. Ahuja, and F. Jahanian. Experimental Study

of Internet Stability and Wide-Area Backbone Failures. In

Proceedings of the Twenty-Ninth Annual International Sym-

posium on Fault-Tolerant Computing, Madison, WI, June

1999.

The GateDaemon (GateD) Project. Merit GateD Consortium.

http://www.gated.org.

J. Moy. OSPF Version 2. RFC 2328, IETF, April 1998.

D. Oran. OSl ISIS Intradomain Routing Protocol. RFC

1142, |ETF, February 1990.

Y. Rekhter and T. Li. A Border Gateway Protocol 4 (BGP-4).

RFC 1771, IETF, March 1995.

E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol La-

bel Switching Architecture. RFC 3031, IETF, January 2001.

[22] A. shaikh, J. Rexford, and K. G. Shin. Evaluating the Over-

heads of Source-Directed Quality-of-Service Routing. In Pro-

ceedings of the 6th IEEE International Conference on Net-

work Protocols, Austin, TX, October 1998.

A. Shaikh, A. Varma, L. Kalampoukas, and R. Dube. Rout-

ing Stability in Congested Networks: Experimentation and

Analysis. In Proceedings of SGCOMM ' 00, pages 163-174,

Stockholm, Sweden, August—September 2000.

D. Sidhu, T. Fu, S. Abdallah, and R. Nair. Open Shortest Path

First (OSPF) Routing Protocol Simulation. In Proceedings of

S GCOMM ' 93, pages 53-62, San Francisco, CA, September

1993.

W. T. Zaumen and J. J. Garcia-Luna Aceves. Dynamics of

Distributed Shortest-Path Routing Algorithms. In Proceed-

ings of SGCOMM '91, pages 3142, Zurich, Switzerland,

September 1991.

A. Zinin. Guidelines for Efficient LSA Refreshment in OSPF.

Internet Draft draft-ietf-ospf-refresh-guide-OL.txt, IETF, July

2000.

[14]

[19]

[16]

[17]

[18]
[19]

[20]

[21]

[23]

[24]

[29]

[26]

