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Stability, -Gain and Asynchronous Control of
Discrete-Time Switched Systems With Average Dwell Time

Lixian Zhang and Peng Shi

Abstract—This paper first investigates the stability and -gain problems
for a class of discrete-time switched systems with average dwell time (ADT)
switching by allowing the Lyapunov-like functions to increase during the
running time of subsystems. The obtained results then facilitate the studies
on the issue of asynchronous control, where “asynchronous” means the
switching of the controllers has a lag to the switching of system modes. In
light of the proposed Lyapunov-like functions, the desired mode-dependent
controllers can be designed since the unmatched controllers are allowed to
perform in the interval of asynchronous switching before the matched ones
are applied. The problem of asynchronous control for the underlying
systems in linear cases is then formulated. The conditions of the existence
of admissible asynchronous controllers are derived, and a numerical
example is provided to show the potential of the developed results.

Index Terms—Asynchronous switching, average dwell time, control,
switched systems.

I. INTRODUCTION

The past decades have witnessed the extensive studies on switched
systems, which can be efficiently used to model many physical or
man-made systems displaying features of switching [1], [2]. Typically,
switched systems consist of a finite number of subsystems (described
by differential or difference equations) and an associated switching
signal governing the switching among them. The switching signals
may belong to a certain set and the set may be diverse. This differ-
entiates switched systems from the general time-varying systems,
since the solutions of the former are dependent on both system initial
conditions and switching signals [3].

The stability problem, caused by various switching, is a main con-
cern in the field of switched systems [1], [4]–[7]. So far, two stability
issues have been addressed in literature, i.e., the stability under ar-
bitrary switching and the stability under constrained switching. The
former case is mainly investigated based on constructing a common
Lyapunov function for all subsystems [1], [8]. An improved approach
in discrete-time domain is to use the switched Lyapunov function (SLF)
proposed in [5]. On the other hand, for switched systems under con-
strained switching, it is well known that the multiple Lyapunov-like
function (MLF) approach is more efficient in offering greater freedom
for demonstrating stability of the system [4], [6]. Some more general
techniques in MLF theory have also been put forward allowing the la-
tent energy function to moderately increase even during the active time
of certain subsystems except at the switching instants [6], [9]. As a
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class of typical constrained switching signals, the average dwell time
(ADT) switching means that the number of switches in a finite interval
is bounded and the average time between consecutive switching is not
less than a constant [1], [10]. The ADT switching can cover the dwell
time (DT) switching [1], and its extreme case is actually the arbitrary
switching [11]. Therefore, it is of practical and theoretical significance
to probe the stability of switched systems with ADT, and the corre-
sponding results have been available in [12], [13] for discrete-time ver-
sion and [14], [15] for relevant applications. Yet, in these results, the
Lyapunov-like functions during the running time of subsystems are re-
quired to be non-increasing. A recent extension considering partial sub-
systems to be Hurwitz unstable (the corresponding system energy is
increasing) is given in [16] for linear cases in continuous-time context.

In addition, the ��-gain (“��” in discrete-time domain) analysis of
switched systems has also been frequently related [7], [11], [17], [18].
By the SLF approach, the ��-gain analysis for a class of discrete-time
switched systems under arbitrary switching is given in [18]. Imposing
different requirements on the used MLF, some results on ��-gain anal-
ysis for switched systems with DT or ADT switching have also been
obtained [11], [17]. Likewise, the considered MLF mainly needs to
be non-increasing during the running time of subsystems. In [19], the
stability result in [16] was further extended to ��-gain analysis. A
weighted attenuation property is achieved there (i.e., a weighted distur-
bance attenuation level), and the non-weighted form can be recovered
if the weighting is zero, which corresponds to the case that the ADT
is infinite when the system is required to be stable [11], [19]. Thus,
if one discards the initial switchings, the switchings between any in-
terval will be zero, and the system will stay at one of subsystems and
the ��-gain of the system will be the one of that subsystem. This fact
means that the non-weighted ��-gain of switched systems with ADT
is actually bounded by the maximum of all individual ��-gains associ-
ated with different subsystems [14]. Note also that the existing results
of ��-gain analyses for switched systems with ADT are within contin-
uous-time domain, the discrete-time counterpart has almost not been
investigated so far, with or without considering that the Lyapunov-like
functions can be increased.

Moreover, in recent years, the issue of control for switched sys-
tems has also been widely studied, see for example, [14], [20]–[24]
and the references therein. In switched systems, we also call each sub-
system a mode, and say that control problem is to design a set of
mode-dependent controllers or a single mode-independent controller1

for the unforced system and find admissible switching signals such
that the resulting system is stable and satisfies certain performances.
With an adaptation sense, the mode-dependent idea is popular for the
sake of less conservatism. However, a common assumption is that the
controllers are switched synchronously with the switching of system
modes, which is quite ideal. In practice, it inevitably takes some time
to identify the system modes and apply the matched controller, the
asynchronous phenomena between the system modes switching and the
controllers switching generally exist.2 In fact, the necessities of con-
sidering the asynchronous switching for efficient control design have
been shown in mechanical or chemical systems [25], [26] with deter-
mining the admissible delay of asynchronous switching. Other results

1Here, “mode-dependent” means that each mode (or subsystem) of the
switched system has its individual controller, either control structure or con-
troller gain, while “mode-independent” means that all the subsystems have a
common controller.

2In this paper, we slightly abused synchronous (or asynchronous) switching
to mean that the switchings of system modes and the switchings of desired
mode-dependent controllers are synchronous (respectively, asynchronous). Cor-
respondingly, the delay of asynchronous switching is the time lag from con-
trollers switching to system modes switching.

0018-9286/$26.00 © 2009 IEEE
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on the issue, such as state feedback stabilization [27], input-to-state sta-
bilization [28] and output feedback stabilization [29], have also been
available. However, in such reports, the switching signals are still re-
stricted to the DT switching, the advanced ADT switching rule has not
been included to investigate the asynchronous switching problem, even
in linear context. As for the use of ADT switching signals in switched
systems to solve the synchronous switching or switching supervisory
control problems, readers are referred to [10], [30] and the references
therein for more details.

The contributions of this paper are in two fold. By further allowing
the Lyapunov-like function to increase during the running time of ac-
tive subsystems, the extended stability and ��-gain results for switched
systems with ADT in discrete-time nonlinear setting are firstly derived.
Then, the asynchronous switching is considered and the �� control for
the underlying systems in linear cases is studied. The remainder of the
paper is organized as follows. In Section II, we review the definitions on
stability and ��-gain of switched systems and provide the corresponding
results for the switched systems with ADT switching in discrete-time
context. Section III is devoted to derive the results on stability and
��-gain analyses by considering the extended MLF. In Section IV, the
problem of asynchronous �� control for discrete-time switched linear
systems is formulated. The conditions of the existence of admissible
asynchronous �� controllers with the admissible switching are de-
rived by linear matrix inequality technique. A numerical example is
provided to show the potential and validity of the obtained results. The
paper is concluded in Section V.

Notation: The notation used in this paper is fairly standard. The su-
perscript “� ” stands for matrix transposition, � denotes the � dimen-
sional Euclidean space and represents the set of nonnegative integers,
the notation � � refers to the Euclidean vector norm. ������� is the
space of square summable infinite sequence and for � � ������ �
�������, its norm is given by ���� � �

��� �������. �� denotes
the space of continuously differentiable functions, and a function � �
����� � ����� is said to be of class 	� if it is continuous, strictly
increasing, unbounded, and ���� � �. Also, a function 	 � ����� 

����� � ����� is said to be of class 	� if 	��� 
� is of class 	 for
each fixed 
 
 � and 	��� 
� decreases to 0 as 
 � � for each fixed
� 
 �. Expression � � 
 means � is equivalent to 
. In addition, in
symmetric block matrices or long matrix expressions, we use � as an
ellipsis for the terms that are introduced by symmetry and ��	
�� � ��
stands for a block-diagonal matrix. The notation � � � �
 �� means
� is real symmetric and positive definite (semi-positive definite).

II. PRELIMINARIES

Consider a class of discrete-time switched systems given by

��� � �� � �� ������ �����

���� � �� ������ (1)

where ���� � � is the state vector, ���� � � is the input vector,
and ���� � � is the output vector. � is a piecewise constant function
of time, called a switching signal, which takes its values in the finite set
� � ��� 
 
 
 � ��� � � � is the number of subsystems. �� and �� are
assumed to be globally Lipschitz continuous. At an arbitrary time ��
� may be dependent on � or ����, or both, or other logic rules. For
a switching sequence �� � �� � �� � 
 
 
 � � is continuous from
right everywhere and may be either autonomous or controlled. When
� � ���� �����, we say the �����th subsystem is active and therefore the
trajectory �� of system (1) is the trajectory of the �����th subsystem. In
addition, we exclude Zeno behavior for all types of switching signals as
commonly assumed in literature. The jumps of state for discrete-time
system (1), i.e., a continuous signal can not be reconstructed every-
where, is also not considered here.

In this paper, we focus our study of system (1) on a class of switching
signals with ADT switching. The following definitions are first re-
called.

Definition 1: [10] For switching signal � and any � � � � ��, let
������� be the switching numbers of � over the interval ��� ��. If for
any given �� � � and �� � �, we have ������� � �����������,
then �� and �� are called average dwell time and the chatter bound,
respectively.

Remark 1: It has been analyzed in [1] that �� � � gives switching
signals with ADT and �� � � corresponds exactly to those switching
signals with DT. Also, as an extreme case, �� � � implies that
the constraint on the switching times is almost eliminated and the
resulting switching can be arbitrary [11]. Therefore, as a typical set of
switching signals with regularities [3], the ADT switching covers the
DT switching and arbitrary switching and is relatively general.

Definition 2: [1] The switched system (1) with ���� � � is glob-
ally uniformly asymptotically stable (GUAS) if there exists a class	�
function 	 such that for all switching signals � and all initial con-
ditions �����, the solutions of (1) satisfy the inequality ������ �
	��������� ����� 
 ��.

Definition 3: For � � �, system (1) is said to be GUAS with an
��-gain, if under zero initial condition, system (1) is GUAS and the
inequality �

��� �� ������� � �

��� ���� ������� holds for all
nonzero ���� � �������.

Before proceeding further, we present the following results on the
stability and ��-gain analyses for system (1) here for later use.

Lemma 1: [13] Consider switched system (1) with �� � � and
let � � � � � and � 
 � be given constants. Suppose that there
exist �� functions ����� � � � � ���� � � , and two class
	� functions �� and �� such that ����� �  � �� �������� �
������ � ���������������� �������� � ������ � ��������
and �� � !� � � 
 ��  �� !� ����� � � ��	��� �, then the system is
GUAS for any switching signal with ADT

�� � ��� � � ���� ����� ��" (2)

Lemma 2: Consider switched system (1) and let � � � � � and
�� � �� � � � be given constants. Suppose that there exists positive
definite �� functions ����� �

� � � ���� � � , with ���� ���� � �
� such that �� � !� � � 
 ��  �� !� ����� � � ��	��� � and � �
��������� � ������������ ������ �

�
� �� , then the switched system

is GUAS for any switching signal with ADT (2) and has an ��-gain no
greater than � � �	�����.

Remark 2: Note that the uniformity of stability expressed in
Lemmas 1 and 2 means the uniformity over the set of switching
signals with the property (2). The proof of Lemma 2 can be completed
by referring to the proof of Theorem 2 in [14].

III. STABILITY AND ��-GAIN ANALYSIS

In this section, by further considering a class of Lyapunov-like func-
tions allowed to increase with bounded increase rate, the improved re-
sults of Lemma 1 and Lemma 2 will be obtained. For concise nota-
tion, let �� and ����� �� � denote the starting time and ending time
of some active subsystem, while ������ ����� and ������ ����� rep-
resent the unions of the dispersed intervals during which Lyapunov
function is increasing and decreasing within the interval ���� �����.
The division gives that ���� ����� � ������ ����� � ������ ����� and
Fig. 1 illustrates the considered Lyapunov-like function. Also, we use
������� � ��� and ������� � ��� to denote the length of ������ �����
and ������ �����, respectively.

Theorem 1: Consider switched system (1) with �� � � and let
� � � � �� 	 
 � and � 
 � be given constants. Suppose that

Authorized licensed use limited to: The University of Hong Kong. Downloaded on September 13, 2009 at 23:05 from IEEE Xplore.  Restrictions apply. 
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Fig. 1. Extended Lyapunov-like function. The sets � � and
� � denote the unions of the dispersed intervals during which Lya-

punov function is increasing and decreasing within � �, respectively.

there exist �� functions ����� � � � � ���� � � , and two class
�� functions �� and �� such that ����� � � � �

�������� � ������ � �������� (3)

������� � 	��������� � 
����� �����
	�������� � 
����� ����� (4)

and ���� 
� � � � �� � �� 


����� � � ������ � (5)

then the system is GUAS for any switching signal with ADT

�� 
 ��� � 	

� ����	 
 	�	 �� ��� 
 ����� �� �� (6)

where �� � 		 �� 
� 
��� 
������ 	 ���� �� � .
Proof: �� � ���� �����, denoting � �	 
 	���		 ��, it holds

from (4) that

���������

� ��� ���� ��	 
 	�� ���� ����� � ��� �

� ���� ���� ��� ���� ���� ���� ����� � ��� �

� ������ ��� ���� ����� � ��� � (7)

Then, by Definition 2, together with (5) and (7), one obtains

���������

� ������ ��� ���� ������ ��� ��� �

� ������ ��� ����� ��� ��� � � � � �

� ������ ���� �	 �� 
���	 �� 
������ � ��� �

� �	 �	 � ����� �� ���� ����� ����� � ��� �

If ADT satisfies (6), letting � 	 �� ����
� �� � 
 ����

���� �� ����

� ��� �
�

� ����� ��


� ����� �� ���� ��
 � ����� � 	�

Therefore, we conclude that ��������� converges to zero as � � �,
then the asymptotic stability can be deduced with the aid of (3).

Remark 3: The proof of Theorem 1 is similar to the one of Lemma
1. Note that the hypothesis (4) relaxes the counterpart of Lemma 1,
namely, the considered energy function in Theorem 1 can be increased
both at switching instants and during the running time of subsystems.

Fig. 2. Typical case of the Extended Lyapunov-like function in Fig. 1. Here,
� � is the only interval close to the switching times.

However, the possible increment will be compensated by the more spe-
cific decrement (by limiting the lower bound of ADT), therefore, the
system energy is decreasing from a whole perspective and the system
stability is guaranteed accordingly.

Now, further invoking the extended Lyapunov-like function illus-
trated in Fig. 1, the corresponding ��-gain analysis for system (1) is
given in the following Theorem.

Theorem 2: Consider switched system (1) and let � � � � 	� 	 � �
and �� 
 ���� � � be given constants. Suppose that there exist positive
definite �� functions ����� �

� � � ���� � � , with ���� ���� � �
� such that ���� 
� � � � �� � �� 
� ����� � � ������ � and �� � � ,
denoting ���� ��� �� 	 ��� �

�
� ��

������� � 	������	 ������� � 
����� �����
	�����	 ������� � 
����� ����� (8)

then the switched system is GUAS for any switching signal satisfying
(6) and has an ��-gain no greater than �� � 
��


�
�� �����, where

� �	 
 	�		 ��� 
� is denoted in (6) and we assume 
� � 	.
Proof: To simplify the expressions, we consider below a typ-

ical case that the period 
����� ����� is the only interval close to the
switching instants as shown in Fig. 2. The proof for the general case can
be demonstrated to complete by the same techniques and ideas used in
the simple case.

Then, according to (8), � � �	 
 	�	 	 �� and denoting ����
��� �� 	 ��� �

�
� ��� �� 		 �� �	 	 
 	, we have ����� � � � �

������ � ����� �� �� ��� �	
���

��� ��

�����������

	
� �� ��

���

������ �� � �	� �� ��������

� ����� �� �� ��� �	
���

��� ��

�����������

	
� �� ��

���

��������� �� ��������� (9)

Under zero condition, one has ����� � � � and ������ � �, thus
� �� ��

���

�������� 


���

��� ��

������ � �

where �� �������� �� �� �� ����. Then we have

� �� ��

���

������� �� 


���

��� ��

����� ��
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�
� �� ��

���

������� �
�
� �� �

���

��� ��

����� �
�
� ���

Thus, from � � � (accordingly � � �� � �� ��), we obtain that

���

���

����� �� �
���

���

�
� ������� �

�
� ��� (10)

Therefore, further letting � �� ����, we have

�

���

���

���

����� �� �
�

���

���

���

���� �
�
� ��

�
�

���

�

���

����� �� �
�

���

�

���

���� �
�
� ��

�
�

���

�

���
�
�
� �� �

�

���

�

���
�
� ��

�
�
� �

�
� ��

�
�

���

�
�
� �� �

�

���

�
� ��

�
�
� �

�
� ���

As a result, for 	th subsystem, we know the 
�-gain is not greater
than

�
�� ����. Therefore, we conclude that system (1) can have

the 
�-gain as �� � ����
�
�� �����. It is straightforward that the

techniques to obtain (10) can be still used for the general case, i.e.,
��	��� ����
 is randomly dispersed within ���� ����
.

Remark 4: It can be seen that Theorem 1 presents a more general
result than Lemma 1 which corresponds to the special case of �� � �.
Note also that if �� � �, one readily knows from (9) that


�	��
 � ����� 
�	�� 
�
���

���

�������
	�
� (11)

Then from (11) and the same procedure in the proof for Theorem 2,
we can conclude that the switched system is GUAS for any switching
signal satisfying (6) and has an 
�-gain no greater than � � �������,
i.e., Theorem 2 reduces to Lemma 2.

IV. APPLICATION TO ASYNCHRONOUS SWITCHING IN LINEAR CASES

In the results obtained above, a natural question is how �� will be
known in advance. Generally, that is hard since within ���� ����
� �
 	
�� ��	��� ����
 includes all the randomly dispersed intervals during

which the Lyapunov function is increasing, consequently, the applica-
tions of Theorems 1 and 2 are actually limited. However, they enable
the study on the issues of asynchronous switching, where the corre-
sponding ��	��� ����
 will be only the interval close to the switching
instants as illustrated in Fig. 2. In practice, the interval depends on the
identification of system modes and the scheduling of the candidate con-
troller, then the length of such intervals may be different in different
environments. Without loss of generality, we assume that the maximal
delay of asynchronous switching, also denoted by �� , is known a
priori here.

In this section, we will consider the issue of asynchronous switching
in linear cases and investigate the problem of designing the mode-de-
pendent controllers for the underlying systems in the presence of asyn-
chronous switching.

A. Problem Description

Consider a class of discrete-time switched linear systems given by

�	� � �
 � ���	�
 ����	�
 ����	�
 (12)

�	�
 � ���	�
 ����	�
 � ���	�
 (13)

where �	�
 and �	�
 are described in (1), �	�
 	 � is the con-
trol input and �	�
 	 � is the disturbance input which belongs to

����

. � is the switching signal discussed in Section I and we also
consider it to be with ADT property. For the system in the presence of
asynchronous switching, we are interested in designing a set of ��
state-feedback controllers �	�
 � ���	�
, where �� 	�� � 	 	 �

is the controller gain to be determined.

If there exists the asynchronous switching, i.e., the switches of ��

do not coincide in real time with those of system modes, then the con-
trol input will become �	�
 � ������ ��	�
� �� 	 ���� �� � �� 
.
Hence, the resulting closed-loop system is given by ��	� � �� 
 �
�� �	�
 � 	� 	 �� � (14), as shown at the bottom of the page, where
��� � �� � ���	 � ��� � �� � ����� ��� � �� � ���	 � ��� �
�� � ����� ��� � ��� � ��� ��� � ��� � ��. Then, the controllers
as well as the switching signals, designed in the case assuming syn-
chronous switching, may cause instability or a worse performance.

Therefore, our objective is to design a set of mode-dependent state-
feedback controllers and find a set of admissible switching signals with
ADT such that the resulting closed-loop systems (14) is GUAS and has
a guaranteed �� disturbance attenuation performance, i.e., 
�
�� �
��
�
�� for a � � � in the presence of asynchronous switching. Note
that as shown in (14), the mismatched controller only appears once
during the closed loop interval for the active subsystems.

The above problem can be solved starting from the so-called
bounded real lemma (BRL), which is used to give stability and ��
performance analyses for system (14).

B. Bounded Real Lemma

Using Theorem 1 and Theorem 2, we arrive at a BRL for system (14)
in the following Theorem.

Theorem 3: Consider switched linear system (14) and let � � � �

�� � � �� �� � ���	 	 � and � � � be given constants. If there
exist matrices �� � � �	 	 � , such that �		� �
 	 � � �� 	 �� ��

�� � ��	 ��� � � and ��	 � �, where

��

��� � �� ��� �� ���

� �� ���
���

� � �	�� �
�� �

� � � ���� �
�

��	

��� � �� ��� �� ���

� �� ���
���

� � �	� � �
�� �

� � � ���� �

�	� � �
 � ����	�
 � ����	�


�	�
 � ����	�
 � ����	�

� �� 	 ���� �� � �� 


�	� � �
 � ����	�
 � ����	�


�	�
 � ����	�
 � ����	�

� �� 	 ��� � �� � ����


(14)
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then under the asynchronous delay �� , the corresponding system is
GUAS for any switching signal satisfying (6) and has a guaranteed��

performance index �� � ����
�
�� �����.

Proof: Consider the extended Lyapunov-like function shown in
Fig. 2 as the following quadratic form:

������ � �
�
� ����� ���	� � 
 � � (15)

where �� is a positive definite matrix. Firstly, it is straightforward to
know that (15) satisfies the hypothesis (3).

Now assuming zero disturbance input to the system, we know from
(4), (5) and (14) that ��
� �� � � � �� 
 	� �

�������
 ������� � �
�
�
�	�����	 � 
	�� 	� � ���

������� � 
������ � �
�
�
�	�����	 � 
	� � �� � 	����

����� �
 ������ � � �
�
� 
�� 
 ��� 
 ��

where �	�
���
� �� ��� 
 ��� 
 ��� �	�

���
� �� ��� � 
�� 
 ��. From

�� � � and ��� � �, we readily know that


�� �� ���

� 
��
 
���
� ��


�� �� ���

� 
�� � ����
� �

which, by Schur complement, imply �	� � � and �	� � �. There-
fore, if we further have �� 
 ��� � �, system (14) is GUAS for any
switching signal satisfying (6). Now consider the disturbance input, one
has �	 � 
	�� 	� � �� ���������
 ������� � ��� �� 
 ��� �

�
� �� �

�� �	������	� and �	 � 
	� � �� � 	������������ � 
������ �
��� �� 
 ��� �

�
� �� � �� �	������	�, where ��	� 
�� �	��� �	�
�

and

���
�	� � ���

�
���

���
� �� ��� � ���

�
���

� 
��� � � ���
� �� ��� � �� �

�
���

���
�	� � ���

�
���

���
� �� ��� � ���

�
���

� 
��� � � ���
� �� ��� � �� �

�
���

�

By Schur complement, �� � � and ��� � � are equivalent to ��� � �
and ��� � �� respectively. Therefore, one has

�������

� 

������ � ��� �� 
 ��� �
�
� ����	 � 
	� � �� � 	����

����	� � ��� �� 
 ��� �
�
� ����	 � 
	�� 	� � �� �

by which the proof ends according to (8) in Theorem 2.

C. �� Control

Based on the obtained BRL, the following theorem presents a suffi-
cient condition of the existence of a set of mode-dependent state-feed-
back �� controllers for system (12)–(13) in the presence of asyn-
chronous switching.

Theorem 4: Consider switched system (12)–(13) and let � � 
 �

�� � 
 �� �� � ���
 � � and � 
 � be given constants. If there
exist matrices �� � � and ��� �
 � � , such that ��
� �� � � � ��

 	� �� �� � ��� ��� � � and ��� � �, where

��


�� � ���� ����� ��

� 
� ���� ����� ��

� � 
��
 
��� �

� � � 
��� �
�

���


�� � ���� ����� ��

� 
� ���� ����� ��

� � 
�� � �� �� 
 �� 
 ��� �

� � � 
��� �

then there exists a set of mode-dependent state-feedback controllers
with the asynchronous delay �� such that system (14) is GUAS for any
switching signal with ADT satisfying (2) and has an �� performance
index �� � ����

�
�� �����. Moreover, if a feasible solution exists,

the admissible controllers gains are given by �
 � �

�� � ���
��
� � (16)

Proof: Replace ���� ��� of �� and ��� in Theorem 3 by the ones
in (14). Setting �� ���� � �� ���� and performing a congruence
transformation [23] to �� � � via ��������� � �� ���� � ��, we can ob-
tain �� � �. In addition, from the fact ��� 
 ���

������ 
 ��� 
 �,
we have �� 
 �� 
 ��� 
 
��� ���� �� . Then, if ��� � �, one has


�� � ���� ����� ��

� 
� ���� ����� ��

� � 
�� � ����� �
��
� �� �

� � � 
��� �
� ��

Performing a congruence transformation to the above inequality via
��������� � �� ���� � ��, we can obtain ��� � �. Further, �� � ���
ensures �� � ��� � ��
� �� � � � �� 
 	� � in Theorem 3. Meanwhile,
the mode-dependent controllers gains are given by �� � ���

��
� .

In the absence of asynchronous switching, i.e., �� � � in Theorem
4, we can easily get the following Corollary.

Corollary 1: Consider switched system (12)–(13) and let � � 
 �

�� �� � ���
 � � and � 
 � be given constants. If there exist matrices
�� � � and ��� �
 � � , such that ��
� �� � � � �� 
 	� �� �� �
��� ��� � �, where�� is shown in Theorem 4, then there exists a set of
mode-dependent state-feedback controllers such that system (12)–(13)
is GUAS for any switching signal with ADT satisfying (6) and has an
�� performance index � � �������. Moreover, if a feasible solution
exists, the controllers gains are given by (16).

Remark 5: Solving the convex problems contained in the above The-
orem 4 and Corollary 1, the scalars � and �� can be optimized in terms
of the feasibility of the corresponding conditions. In addition, it is ob-
vious that �� 
 �, which means that the �� performance achieved
in the presence of asynchronous switching is worse than the one in
the case of synchronous switching. However, the controllers designed
assuming synchronous switching, even under the admissible switching
(6), may fail to obtain the prescribed (or optimized) � or even ��, which
we will show via the example in the next subsection.

D. Numerical Example

Consider discrete-time switched linear system (12)–(13) consisting
of three subsystems described by

�� �
���� 
����
���� 
���� � �� �

���� ����

���� ����

�� �

���� ����

���� ����
�� �


����

��� �

�� �

���
����

�� � 

��� ����
� � �� � 
���� ����


�� � �����

�� � 
���� ����
� �� � 

���� ����


�� � 
����
�� � ����� �� � ����� �� � ����� �� � 
����
�� �

����

����
� �� �

����

����
� �� �


����
����

�

The maximal delay of asynchronous switching �� � �.
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Fig. 3. State responses of the closed-loop systems by controllers in (17). (a) � � ��� � �, (b) � � ��� � �, (c) � � ��� �

�, and (d) � � ��� � �.

Our purpose here is to design a set of mode-dependent state-feed-
back controllers and find out the admissible switching signals such that
the resulting closed-loop system is stable with an optimized �� dis-
turbance attenuation performance.

First, we shall demonstrate that if one studies the control problem
of the above system assuming synchronous switching, i.e., based on
Corollary 1, the corresponding design results will be invalid in the pres-
ence of asynchronous switching. Given � � ���� and � � ���� and
solving the convex optimization problem in Corollary 1 (minimizing
� in the criteria), one can obtain ��� � ������� �� � �����	 and the
controllers gains as

�� � 
��	��� �����	�� �� � 
������ ����
��

�� � 
����
�� ����
��� (17)

Applying the controllers in (17) and generating a possible switching
sequence satisfying �� � � 	 ������, one can get the steady-state
response of the resulting closed-loop system as shown in Fig. 3(a) for

��� � ��� ����������. Now if there exists asynchronous switching
in practice with �� � �, the state response of the resulting systems
for switching sequences with �� � �� �� � are plotted, respectively, in
Fig. 3(b)–(d). One can observe that although the states become con-
verging as the selected ADT is increasing, all the practical �� perfor-
mance indices are greater than the optimized one. It is actually hard by

trial-and-error to find admissible switching signals since the designed
controllers may be also wrong.

Thus, we consider the asynchronous switching in the design phase
and turn to Theorem 4. By further giving � � ���� and solving the
corresponding convex optimization problem in Theorem 4, we obtain
��� � �����	� ��� � ������ and the controllers gains as

�� � 
����	� �������� �� � 
����	� ��������

�� � 
������� ����
��� (18)

Using the controllers in (18) and giving switching sequences with �� �
� and �� � 
 (both are greater than 2.6559), respectively, the state re-
sponses of the resulting system are given in Fig. 4(a)–(b). In addition,
generating randomly 200 switching sequences with �� � �, Fig. 5
gives the comparison on the�� performance indices that the resulting
closed-loop systems can achieve when applying (17) and (18), respec-
tively. It can be seen from Figs. 4 and 5 that the designed controllers in
(18) under the admissible switching signals is effective despite asyn-
chronous switching. Also, in Fig. 5, it is obvious that the controllers in
(17) even cannot guarantee ��� � ������, although the switching with
�� � � are admissible. Therefore, combining with Fig. 3, we conclude
that only increasing ADT is not sufficient to ensure the system stability
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Fig. 4. State responses of the closed-loop systems by the controllers in (18).
(a) � � ��� � �. (b) � � ��� � �.

and/or performance, which also shows the necessity of Theorem 4 and
its potential in practice.

V. CONCLUSION

The problems of stability and ��-gain analysis for a class of dis-
crete-time switched systems with ADT switching are first investigated
in this paper. By allowing the MLF to increase during the running time
of subsystems with a limited increase rate, the more general stability
and ��-gain results are obtained. Aiming at a class of practical problem
that the switching of the controllers may have a lag to the switching of
system modes, we then considered the problem of the so-called asyn-
chronous switching. Via linear matrix inequalities formulation, we de-
rived the existence conditions of the asynchronous �� controllers for
the underlying systems in linear case. We also showed that the obtained
conditions cover the cases of synchronous switching. A numerical ex-
ample illustrates the theoretical findings.
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Fig. 5. performance indices of the closed-loop systems by the controllers
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Optimal Robust Steady-State Tracking for
Unknown First-Order Plant

V. F. Sokolov

Abstract—This note considers the problem of the optimal “steady-state”
tracking for an unknown first-order plant with an unknown control delay,
under the assumption of known upper bounds on model parameters and
the control delay. The plant is subjected to perturbations in output and
control as well as an exogenous disturbance with unknown upper bounds.
The solution of the problem is based on treating the control criterion, which
is the worst-case steady-state value of an error signal, as the identification
criterion.

Index Terms—Steady-state.

I. INTRODUCTION

Citing [2], “The basic control problem for a given process can be
stated as follows: Given some prior information about the process and
a set of finite data, design a feedback controller that meets given per-
formance specifications. Traditionally, this problem has been tackled
by the introduction of an intermediate step, namely finding a model
which describes the process in some precise sense, and then designing
a robust controller using the model as the nominal plant.” The perfor-
mance specification in this technical note is a near-optimal steady-state
tracking for unknown discrete-time plant. The plant is modeled in the
form of a first-order nominal system under an exogenous disturbance
of the bounded magnitude and perturbations in the output and the con-
trol with bounded-induced norms. Such prior information is associated
with the robust control in the �� setup, basics of which were developed
in [6] and [7]. In contrast to the classical robust synthesis, parameters
of the nominal model, upper bounds on the exogenous disturbance and
the perturbations, and the control delay are assumed to be unknown to
the controller designer.

The near-optimal steady-state tracking will be based on the idea of
treating the control criterion as the identification criterion. This idea
was first proposed in [10] and [11] in the framework of the adaptive ��
optimal control and then applied to the adaptive �� robust synthesis in
[12] and [14]. A similar idea for synthesis of the adaptive robust control
in the �� setup was proposed in [8] on a methodological level under
the name of “preferential identification”. Such a strongly control-ori-
ented approach to identification generally leads to extremely difficult
optimization problems [9], and their sample and computational com-
plexities are crucial issues to consider and circumvent [2].

Three main problems associated with optimal robust synthesis, under
the use of the control-oriented estimation scheme described in [14], in-
clude: 1) the synthesis of the optimal controller for a known system;
2) the computation of the best model in the current set estimate for
the set of unfalsified models; and 3) computationally tractable updating
of the set estimate for the set of unfalsified models. While a solution
to the third problem in the context of the robust regulation problem
was proposed in [14], the first problem is generally very complex and
was not considered in control literature in the context of the tracking
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