
Stability limit of human-in-the-loopmodel reference adaptive control
architectures

Tansel Yucelen a, Yildiray Yildizb, Rifat Sipahic, Ehsan Youse�b and Nhan Nguyend

aDepartment of Mechanical Engineering, University of South Florida, Tampa, FL, USA; bDepartment of Mechanical Engineering, Bilkent
University, Ankara, Turkey; cDepartment of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA; dIntelligent
Systems Division, National Aeronautics and Space Administration, Moffett Field, CA, USA

ARTICLE HISTORY

Received  August 
Accepted  June 

KEYWORDS

Uncertain dynamical
systems; model reference
adaptive control;
human-in-the-loop systems;
closed-loop system stability;
human reaction time delay

ABSTRACT

Model reference adaptive control (MRAC) o�ers mathematical and design tools to e�ectively cope
withmany challenges of real-world control problems such as exogenous disturbances, systemuncer-
tainties and degradedmodes of operations. On the other hand, when faced with human-in-the-loop
settings, these controllers can lead to unstable system trajectories in certain applications. To estab-
lish an understanding of stability limitations of MRAC architectures in the presence of humans, here
amathematical framework is developed whereby anMRAC is designed in conjunction with a class of
linear humanmodels includinghuman reactiondelays. This framework is thenused to reveal, through
stability analysis tools, the stability limit of the MRAC–human closed-loop system and the range
of model parameters respecting this limit. An illustrative numerical example of an adaptive �ight
control application with a Neal–Smith pilot model is presented to demonstrate the e�ectiveness of
developed approaches.

1 Introduction

Achieving system stability and a level of desired sys-
tem performance when dealing with uncertain dynam-
ical systems is one of the major challenges aris-
ing in control theory. While �xed-gain robust control
design approaches (Skogestad & Postlethwaite, 2007;
Weinmann, 2012; Zhou &Doyle, 1998; Zhou et al., 1996)
can deal with such dynamical systems, the knowledge of
system uncertainty bounds is required and characterisa-
tion of these bounds is not trivial in general due to prac-
tical constraints such as extensive and costly veri�cation
and validation procedures. On the other hand, adaptive
control design approaches (Åström &Wittenmark, 2013;
Ioannou & Sun, 2012; Lavretsky &Wise, 2012; Narendra
&Annaswamy, 2012) are important candidates for uncer-
tain dynamical systems since they can e�ectively cope
with the e�ects of systemuncertainties online and require
less modelling information than �xed-gain robust con-
trol design approaches (Yucelen, De La Torre, & Johnson,
2014; Yucelen & Haddad, 2012).

This paper builds on one of the well-known and
important class of adaptive controllers; namelymodel ref-
erence adaptive controllers (MRACs) (Osburn,Whitaker,
& Kezer, 1961; Whitaker, Yamron, & Kezer, 1958), where
their architecture includes a referencemodel, a parameter
adjustment mechanism and a controller. In this setting, a
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desired closed-loop dynamical system behaviour is cap-
tured by the reference model, where its output (respec-
tively, state) is compared with the output (respectively,
state) of the uncertain dynamical system. This compar-
ison yields a system error signal, which is used to drive
an online parameter adjustment mechanism. Then, the
controller adapts feedback gains to minimise this error
signal using the information received from the parameter
adjustment mechanism. As a consequence, under proper
settings, the output (respectively, state) of the uncertain
dynamical system behaves as the output (respectively,
state) of the reference model asymptotically or approxi-
mately in time, and hence, guarantees system stability and
achieves a level of desired closed-loop dynamical system
behaviour.

While MRAC o�ers mathematical and design tools
to e�ectively cope with system uncertainties aris-
ing from ideal assumptions (e.g. linearisation, model
order reduction, exogenous disturbances and degraded
modes of operations), its capabilities when interfaced
with human operators can, however, be quite limited.
Indeed, in certain applications when humans are in the
loop (Miller, 2011; Ryu & Andrisani, 2003; Trujillo &
Gregory, 2013; Trujillo, Gregory, & Hempley, 2015), the
arising closed loop with MRAC can become unstable. As
a matter of fact, such problems are not only limited to
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MRAC–human interactions and have been reported to
arise in various human-in-the-loop control problems
including, for example, pilot-induced oscillations (Klyde
& McRuer, 2009). To address these issues, novel control
design ideas were proposed and/or experimentally tested
including adaptive control as well as smart-cue/smart-
gain concepts (Klyde & McRuer, 2009; Richards, Adams,
Klyde, & Cogan, 2015). On the other hand, an analytical
framework aimed at understanding these phenomena
and that can ultimately be used to drive rigorous control
design is currently lacking. These observations motivate
this study where the main objective is to develop com-
prehensive models from a system-level perspective and
analyse such models to develop a strong understand-
ing of the aforementioned stability limits, in particular
within the framework of human-in-the-loop MRAC
architectures.

With the human-in-the-loop, one critical parameter
added to the control problem that can be responsible
for instabilities is the human reaction delays – a topic
which has been long investigated (Green, 2000; Helbing,
2001; McRuer, 1974; Stépán, 2009; Treiber, Kesting, &
Helbing, 2006) including adaptive control of time-delay
systems (Bekiaris-Liberis & Krstic, 2010; Bresch-Pietri
& Krstic, 2009; Krstic, 1994; Niculescu & Annaswamy,
2003; Ortega & Lozano, 1988; Yildiz, Annaswamy,
Kolmanovsky, & Yanakiev, 2010), but not thoroughly in
the context of human-in-the-loop adaptive control. It is
known that the presence of time delays is a source of
instability, which must be carefully dealt with and explic-
itly addressed in any control design framework (Bellman
& Cooke, 1963; Stépán, 1989). Delay-induced instability
phenomenon has been recognised in numerous applica-
tions including robotics, physics, cyber-physical systems
and operational psychology (Sipahi, Niculescu, Abdallah,
Michiels, & Gu, 2011). For example, in physics literature,
e�ects of human decision-making process and reaction
delays are studied to explain the arising car driving pat-
terns, tra�c �ow characteristics, tra�c jams, and stop-
and-go waves (Bando, Hasebe, Nakanishi, & Nakayama,
1998; Helbing, 2001).

In terms of mathematical modelling of human
behaviour, many studies focus on developing a rep-
resentative transfer function of the human in a speci�c
task within a certain frequency band. Along these lines,
we cite three key models; (i) human driver models
(Helbing, 2001), (ii) McRuer cross-over model (McRuer,
1974), and (iii) Neal–Smith pilot model; for example,
see Schmidt and Bacon (1983), Thurling (2000), Ryu
and Andrisani (2003) and Witte (2004), Miller (2011).
Human driver models are proposed in the context of car
driving, speci�cally in longitudinal car-following tasks
in a �xed lane. While these models vary depending on

the degree of their complexity, for example, see Treiber
et al. (2006), their simplest form is a pure time delay
representing the dead time between arrival of stimulus
and reaction produced by the driver. McRuer’s model
was, on the other hand, proposed to capture human
pilot behaviour, to further understand �ight stability and
human–vehicle integration. Among many of its varia-
tions, this model is essentially an integrator dynamics
with a time lag to capture human reaction delays and a
gain modulated to maintain a speci�c bandwidth. Sim-
ilarly, the Neal–Smith pilot model, which is essentially
a �rst-order lead-lag-type compensator with a gain and
time lag, can be utilised to study the behaviour of human
pilots (see the above-cited references).

In light of the above discussions, it is of strong inter-
est to understand the limitations of MRACwhen coupled
with human operators in a closed-loop setting. For this
purpose, here MRAC is �rst incorporated into a general
linear human model with reaction delays. Through the
use of stability theory, this model is then studied to reveal
its fundamental stability limit, and the parameter space of
the model where such limit is respected hence MRAC–
human-combined model produces stable trajectories. An
illustrative numerical example of an adaptive �ight con-
trol applicationwith aNeal–Smith pilotmodel anduncer-
tainties is presented next to demonstrate the e�ectiveness
of developed approaches.

The main contribution of this study is the develop-
ment of a comprehensive control-theoretic modelling
approach, where the dynamic interactions between a gen-
eral class of human models and MRAC framework can
be investigated. We particularly focus on understand-
ing how an ideal MRAC would perform in conjunction
with a human model including human reaction delays
and how such delays could pose strong limitations to
the stabilisation and performance of the arising closed-
loop human–MRAC architecture. To this end, we lay out
the approaches and the pertaining theory with rigorous
proofs guaranteeing stability independent of delays and
conditions under which stability can be lost. These results
pave the way towards studying more complex human
models with MRAC, advancing the design of MRAC
to better accommodate human dynamics, and driving
experimental studies with an analytical foundation.

The notation used in this paper is standard.
Speci�cally, R denotes the set of real numbers,
R

n denotes the set of n × 1 real column vectors, R
n×m

denotes the set of n × m real matrices, R+ (resp., R+)
denotes the set of positive (resp., non-negative-de�nite)

real numbers, R
n×n
+ (resp., R

n×n

+ ) denotes the set of n ×

n positive-de�nite (resp., non-negative-de�nite) real
matrices, S

n×n denotes the set of n × n symmetric real
matrices, D

n×n denotes the n × n real matrices with
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Figure . Block diagram of the human-in-the-loop model reference adaptive control architecture.

diagonal scalar entries, (·)T denotes transpose, (·)−1

denotes inverse, and ‘�’ denotes equality by de�nition.
In addition, we write λmin(A) (resp., λmax(A)) for the
minimum (resp., maximum) eigenvalue of the matrix A,
tr(·) for the trace operator, vec(·) for the column stack-
ing operator, ‖·‖2 for the Euclidian norm, ‖·‖� for the
in�nity norm, and ‖·‖F for the Frobenius matrix norm.

2 Problem formulation

To study human-in-the-loop model reference adaptive
controllers, we start with the block diagram con�gu-
ration given by Figure 1. In the �gure, the outer-loop
architecture includes the reference that is fed into the
human dynamics to generate a command for the inner-
loop architecture in response to the variations resulting
from the uncertain dynamical system. In this setting, the
reference input is what the human aims to achieve in a
task, and the uncertain dynamical system is the machine
on which this task is being performed. The inner-loop
architecture includes the uncertain dynamical system as
well as the model reference adaptive controller compo-
nents (i.e. the reference model, the parameter adjustment
mechanism and the controller). Speci�cally, at the outer-
loop architecture, we consider a general class of linear
human models with constant time delay given by

ξ̇ (t ) = Ahξ (t ) + Bhθ (t − τ ), ξ (0) = ξ0, (1)

c(t ) = Chξ (t ) + Dhθ (t − τ ), (2)

where ξ (t ) ∈ R
nξ is the internal human state vector, τ ∈

R+ is the internal human time delay, Ah ∈ R
nξ ×nξ , Bh ∈

R
nξ ×nr , Ch ∈ R

nc×nξ , Dh ∈ R
nc×nr and c(t ) ∈ R

nc is the
command produced by the human, which is the input to
the inner-loop architecture as shown in Figure 1. Here,

input to the human dynamics is given by

θ (t ) � r(t ) − Ehx(t ), (3)

where θ (t ) ∈ R
nr , with r(t ) ∈ R

nr being the bounded ref-
erence. Here x(t ) ∈ R

n is the state vector (further details
below) and Eh ∈ R

nr×n selects the appropriate states to be
compared with r(t). Note that the dynamics given by (1)–
(3) is general enough to capture, for example, widely stud-
ied linear time-invariant human models with time-delay
including Neal–Smith model and its extensions (Miller,
2011; Ryu & Andrisani, 2003; Schmidt & Bacon, 1983;
Thurling, 2000; Witte, 2004).

Next, at the inner-loop architecture, we consider the
uncertain dynamical system given by

ẋp(t ) = Apxp(t ) + Bp�u(t ) + Bpδp(xp(t )),

xp(0) = xp0, (4)

where xp(t ) ∈ R
np is the accessible state vector, u(t ) ∈

R
m is the control input, δp : R

np → R
m is an uncertainty,

Ap ∈ R
np×np is a known system matrix, Bp ∈ R

np×m is a
known control input matrix and � ∈ R

m×m
+ ∩ D

m×m is
an unknown control e�ectiveness matrix. Furthermore,
we assume that the pair (Ap, Bp) is controllable and the
uncertainty is parameterised as

δp(xp) = WT
p σp(xp), xp ∈ R

np, (5)

where Wp ∈ R
s×m is an unknown weight matrix and

σp : R
np → R

s is a known basis function of the form
σp(xp) = [σp1 (xp), σp2 (xp), . . . , σps (xp)]

T.

Remark 2.1: Note for the case where the basis function
σp(xp) is unknown, the parameterisation in (5) can be
relaxed (Lewis, Liu, & Yesildirek, 1995; Lewis, Yesildirek,
& Liu, 1996) without signi�cantly changing the results of
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this paper by considering

δp(xp) = WT
p σ nn

p (VT
p xp) + εnnp (xp), xp ∈ Dxp, (6)

where Wp ∈ R
s×m and Vp ∈ R

np×s are unknown weight
matrices, σ nn

p : Dxp → R
s is a known basis composed

of neural networks function approximators, εnnp : Dxp →

R
m is an unknown residual error, and Dxp is a compact

subset of R
np .

To address command following at the inner-loop
architecture, let xc(t ) ∈ R

nc be the integrator state satis-
fying

ẋc(t ) = Epxp(t ) − c(t ), xc(0) = xc0, (7)

where Ep ∈ R
nc×np allows to choose a subset of xp(t) to be

followed by c(t). Now, (4) can be augmented with (7) as

ẋ(t ) = Ax(t ) + B�u(t ) + BWT
p σp(xp(t ))

+Brc(t ), x(0) = x0, (8)

where

A �

[

Ap 0np×nc

Ep 0nc×nc

]

∈ R
n×n, (9)

B �
[

BT
p , 0

T
nc×m

]T
∈ R

n×m, (10)

Br �
[

0Tnp×nc
, −Inc×nc

]T
∈ R

n×nc, (11)

and x(t ) � [xTp (t ), xTc (t )]T ∈ R
n is the augmented state

vector, x0 � [xTp0, x
T
c0
]T ∈ R

n, and n = np + nc. In this
inner-loop architecture setting, without loss of theoret-
ical generality, it is practically reasonable to set Eh =

[Ehp, 0nr×nc] in (3) with Ehp ∈ R
nr×np , since a subset of the

accessible state vector is usually available and/or sensed
by the human at the outer loop (but not the states of the
integrator).

Finally, consider the feedback control law at the inner-
loop architecture given by

u(t ) = un(t ) + ua(t ), (12)

where un(t ) ∈ R
m and ua(t ) ∈ R

m are the nominal and
adaptive control laws, respectively. Furthermore, let the
nominal control law be

un(t ) = −Kx(t ), (13)

with K ∈ R
m×n, such that Ar � A − BK is Hurwitz. For

instance, suchK exists if and only if (A,B) is a controllable

pair. Using (12) and (13) in (8) next yields

ẋ(t ) = Arx(t ) + Brc(t ) + B�
[

ua(t ) +WTσ
(

x(t )
)]

,

(14)

where WT � [�−1WT
p , (�−1 − Im×m)K] ∈ R

(s+n)×m is

an unknown aggregated weight matrix and σ T(x(t )) �

[σ T
p (xp(t )), x

T(t )] ∈ R
s+n is a known aggregated basis

function. Considering (14), let the adaptive control law
be

ua(t ) = −ŴT(t )σ (x(t )), (15)

where Ŵ (t ) ∈ R
(s+n)×m is the estimate of W satisfying

the parameter adjustment mechanism

˙̂
W (t ) = γ σ (x(t ))eT(t )PB, Ŵ (0) = Ŵ0, (16)

where γ ∈ R+ is the learning rate,1 and system error
reads

e(t ) � x(t ) − xr(t ), (17)

with xr(t ) ∈ R
n being the reference state vector satisfying

the reference system

ẋr(t ) = Arxr(t ) + Brc(t ), xr(0) = xr0, (18)

and P ∈ R
n×n
+ ∩ S

n×n is a solution of the Lyapunov equa-
tion

0 = AT
r P + PAr + R, (19)

with R ∈ R
n×n
+ ∩ S

n×n. Since Ar is Hurwitz, it follows
from Haddad, Chellaboina, and Kablar (1999) that there
exists a unique P ∈ R

n×n
+ ∩ S

n×n satisfying (19) for a
given R ∈ R

n×n
+ ∩ S

n×n.
Based on the given problem formulation, the

next section analyses the stability of the coupled
inner and outer-loop architectures depicted in
Figure 1 in order to establish a fundamental sta-
bility limit for guaranteeing the closed-loop system
stability. Speci�cally, it is of interest to reveal the con-
ditions under which this limit is satis�ed in terms of
human model parameters at the outer loop and the given
adaptive controller gains at the inner loop.

3 Fundamental stability limit

To analyse the stability of the coupled inner and outer-
loop architectures introduced in the previous section, we
�rst write the system error dynamics using (14), (15) and
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(18) as

ė(t )=Are(t ) − B�W̃T(t )σ (x(t )), e(0) = e0,

(20)

where

W̃ (t ) � Ŵ (t ) −W ∈ R
(s+n)×m, (21)

is the weight error, and e0 � x0 − xr0 . In addition, we
write the weight error dynamics using (16) as

˙̃
W (t ) = γ σ (x(t ))eT(t )PB, W̃ (0) = W̃0, (22)

where W̃0 � Ŵ (0) −W . The following lemma is now
immediate.

Lemma 3.1: Consider the uncertain dynamical system

given by (4) subject to (5), the referencemodel given by (18),
and the feedback control law given by (12), (13), (15) and
(16). Then, the solution (e(t ),W̃ (t )) is Lyapunov stable for

all (e0,W̃0) ∈ R
n × R

(s+n)×m and t ∈ R+.

Proof: To show Lyapunov stability of the solution
(e(t ),W̃ (t )) given by (20) and (22) for all (e0,W̃0) ∈

R
n × R

(s+n)×m and t ∈ R+, consider the Lyapunov func-
tion candidate

V(e,W̃ ) = eTPe + γ −1tr (W̃�
1
2 )T(W̃�

1
2 ). (23)

Note that V(0, 0) = 0, V(e,W̃ ) > 0 for all (e,W̃ ) �=

(0, 0), and V(e,W̃ ) is radially unbounded. Di�erentiat-
ing (23) along the trajectories of (20) and (22) yields

V̇(e(t ),W̃ (t )) = −eT(t )Re(t ) ≤ 0, (24)

where the result is now immediate. �

Since the solution (e(t ),W̃ (t )) is Lyapunov stable for
all (e0,W̃0) ∈ R

n × R
(s+n)×m and t ∈ R+ from Lemma

3.1, this trivially implies that e(t ) ∈ L∞ andW̃ (t ) ∈ L∞.
At this stage in our analysis, it should be noted that one
cannot use the Barbalat’s lemma (Khalil, 1996) to con-
clude limt → �e(t) = 0. To elucidate this point, one can
write

V̈(e(t ),W̃ (t )) = −2eT(t )R
[

Are(t )

− B�W̃T(t )σ (e(t ) + xr(t ))
]

,

(25)

but since xr(t) can be unbounded due to the coupling
between the inner and outer-loop architectures, one can-
not conclude the boundedness of (25), which is neces-
sary for utilising the Barbalat’s lemma in (24). Motivated
from this standpoint, we next provide the conditions to

ensure the boundedness of the reference model states
xr(t), which also reveal the fundamental stability limit
(FSL) for guaranteeing the closed-loop system stability.
It is noted that two FSLs are provided below; namely a
delay-independent FSL and a delay-dependent FSL.

3.1 Delay-independent FSL

A linear time-invariant system subject to time delay can
in some cases be stable regardless of how large the time
delay τ is (Chen & Latchman, 1995; Gu, Kharitonov, &
Chen, 2003). This well-known delay-independent stabil-
ity concept is investigated here. Mainly we present the
mathematical conditions under which the system at hand
can be delay-independent stable. For this, start with using
(2) in (18), and �rst write

ẋr(t ) = Arxr(t ) + Br(Chξ (t ) + Dhθ (t − τ )),

= Arxr(t ) − BrDhEhxr(t − τ ) + BrChξ (t )

− BrDhEhe(t − τ ) + BrDhr(t − τ ). (26)

Next, it follows from (1) that

ξ̇ (t ) = Ahξ (t ) − BhEhxr(t − τ ) − BhEhe(t − τ )

+ Bhr(t − τ ). (27)

Finally, by letting φ(t ) � [xTr (t ), ξT(t )]T, and using (26)
and (27), one can write

φ̇(t ) = A0φ(t ) + Aτφ(t − τ ) + ϕ(·),

φ(0) = φ0, (28)

where

A0 �

[

Ar BrCh

0nξ ×n Ah

]

∈ R
(n+nξ )×(n+nξ ), (29)

Aτ �

[

−BrDhEh 0n×nξ

−BhEh 0nξ ×nξ

]

∈ R
(n+nξ )×(n+nξ ), (30)

ϕ(·) �

[

−BrDhEhe(t − τ ) + BrDhr(t − τ )

−BhEhe(t − τ ) + Bhr(t − τ )

]

∈ R
n+nξ .

(31)

As a consequence of Lemma 3.1 and the boundedness of
the reference r(t), one can conclude that ϕ(·) ∈ L∞. We
now state the following necessary lemma for the main
results of this paper.
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Lemma 3.2: Let P ∈ R
(n+nξ )×(n+nξ )

+ ∩ S
(n+nξ )×(n+nξ )

and S ∈ R
(n+nξ )×(n+nξ )

+ ∩ S
(n+nξ )×(n+nξ ) such that the lin-

ear matrix inequality (LMI)

F �

[

AT
0P + PA0 + S PAτ

AT
τP −S

]

< 0, (32)

holds. Then, φ(t) of the dynamical system given by (28) is
bounded for any τ ∈ R+ and for all φ(0) ∈ R

n+nξ and t ∈

R+.

Proof: Consider the Lyapunov–Krasovskii (LK)
functional candidate given by V(φ) = φTPφ +
∫ 0
−τ

φT(t + μ)Sφ(t + μ)dμ. Since ϕ(·) ∈ L∞, let
ϕ∗ ∈ R+ be such that ‖ϕ(·)‖2 � ϕ*. Di�erentiating
this LK functional along the trajectory of (28) yields
V̇(φ(t )) ≤ ηT(t )Fη(t ) + 2λmax(P )ϕ∗‖η(t )‖2, where
η(t ) � [φT(t ), φT(t − τ )]T. If (32) holds, it then follows
that V̇(φ(t )) ≤ −k‖η(t )‖2(‖η(t )‖2 − 2k−1λmax(P )ϕ∗),
where k � −λmin(F ). Consequently, there exists
a compact set R � {η(t ) ∈ R

2(n+nξ ) : ‖η(t )‖2 ≤

2k−1λmax(P )ϕ∗} such that V̇(φ(t )) < 0 outside of
this set, which proves the boundedness of (28) for any
τ ∈ R+ and for all φ(0) ∈ R

n+nξ and t ∈ R+. �

Note that the LMI given by (32) is standard in the
literature (for example, see Theorem 3.1 of Verriest and
Ivanov (1994) for the same LMI appearing when ϕ(·) �

0). Lemma 3.2 establishes the boundedness of not only
the reference model states, the dynamics of which are
given by (18), but also the internal humandynamics given
by (1), and hence, xr(t ) ∈ L∞ and ξ (t ) ∈ L∞. We are
now ready to state the �rst main result of this paper.

Theorem 3.1: Consider the uncertain dynamical system

given by (4) subject to (5), the reference model given by

(18), the feedback control law given by (12), (13), (15) and
(16), and the human dynamics given by (1)–(3). Then,
e(t ) ∈ L∞ andW̃ (t ) ∈ L∞. If, in addition, there existP ∈

R
(n+nξ )×(n+nξ )

+ ∩ S
(n+nξ )×(n+nξ ) andS ∈ R

(n+nξ )×(n+nξ )

+ ∩

S
(n+nξ )×(n+nξ ) such that the LMI given by (32) holds, then

xr(t ) ∈ L∞, ξ (t ) ∈ L∞ and limt → �e(t) = 0.

Proof: As a consequence of Lemma 3.1, recall that
e(t ) ∈ L∞ and W̃ (t ) ∈ L∞. In addition, note that ϕ(·) ∈

L∞ in (28). Next, if there exist P ∈ R
(n+nξ )×(n+nξ )

+ ∩

S
(n+nξ )×(n+nξ ) and S ∈ R

(n+nξ )×(n+nξ )

+ ∩ S
(n+nξ )×(n+nξ )

such that the LMI given by (32) holds, recall from Lemma
3.2 that xr(t ) ∈ L∞ and ξ (t ) ∈ L∞. Finally, since e(t ) ∈

L∞, xr(t ) ∈ L∞ and W̃ (t ) ∈ L∞ ensure the bounded-
ness of (25), it now follows from the Barbalat’s lemma that
limt → �e(t) = 0. �

For the boundedness of all closed-loop system signals
and limt → �e(t)= 0, Theorem 3.1 requires the FSL given

by the LMI (32) to hold. Note that this FSL can be equiv-
alently written in an equality form as Richard (2003)

0 = AT
0P + PA0 + PAτS

−1AT
τP + S + Q, (33)

where P ∈ R
(n+nξ )×(n+nξ )

+ ∩ S
(n+nξ )×(n+nξ ), S ∈

R
(n+nξ )×(n+nξ )

+ ∩ S
(n+nξ )×(n+nξ ), and Q ∈ R

(n+nξ )×(n+nξ )

+

∩S
(n+nξ )×(n+nξ ) with A0 and Aτ , respectively, given by

(29) and (30). Importantly, in addition, note thatA0 and
Aτ do not depend on any unknown parameters and they
only depend on the given set of human model and ref-
erence model parameters. As a consequence, for a given
human model of the form (1)–(3), if the FSL respects
(33) (or, equivalently (32)) with respect to a judiciously
chosen reference model parameters, then the trajectories
of the nonlinear closed-loop system including uncertain-
ties and controlled by by MRAC are guaranteed to be
stable.

Notice that the proof of delay-independent stability in
Lemma 3.2 is based on a time-domain technique using a
Lyapunov-Krasovskii functional, also see Gu et al. (2003).
A large body of literature was devoted to this e�ort where
one main focus was to reduce the inherent conservatism
imposed by the choice of candidate functionals. An alter-
native ‘matrix measure method’ is proposed in Nguyen
and Summers (2011) to this end. Another method would
be to employ frequency-domain tools where one instead
studies the eigenvalues of the corresponding linear time-
invariant system with time delay. For example, consider
the nominal part of (28); e.g. ϕ(·) � 0 and let τ → �. In
this case, the systemwill behave like an open-loop system
whose stability is determined by the eigenvalues of A0.
For the system to be stable in the open-loop setting, A0

must be Hurwitz. That is, the stability of the open-loop
system is a necessary condition for delay-independent
stability. Next, note that matrix A0 is invertible since
it is Hurwitz. Hence, the characteristic function of the
dynamical system

f := det[sI − A0 − Aτ e
−sτ ] (34)

can be rearranged as

det[I − (sI − A0)
−1Aτ e

−sτ ] · det[sI − A0]. (35)

Note that for the class of time-delay systems being consid-
ered here, as a parameter of interest; e.g. delay, changes,
the system may switch from a stable to unstable regime
(or vice versa) only if the system has imaginary eigen-
values s = jω (Stépán, 1989). Investigation of whether
or not such a switch could arise then requires studying
the zeros of the system characteristic function (35) at
s = jω, where ω � 0 without loss of generality. On the
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imaginary axis, however, only the �rst determinant in
(35) can be zero since the second determinant is always
non-zero owing to A0 being Hurwitz. One can then fol-
low a number of techniques to test whether or not the
dynamics is delay-independent stable. One practical and
widely utilised technique is the one proposed inChen and
Latchman (1995), which requires simple computations to
assess delay-independent stability, as presented next.

Corollary 3.1: Let the human dynamics given by (1)–(3)
be a single-input–single-output system (SISO)with gain kp.
Then, for (28)with ϕ(·)� 0 to be delay-independent stable,
it is necessary that

kp <
1

ρ(A−1
r BrEh)

(36)

holds, where ρ(·) denotes the spectral radius.

Proof: Start with (29) and (30) and rewrite the character-
istic function (34) explicitly as

f := det[sI − Ar + Br(Ch(sI − Ah)
−1Bh + Dh)Ehe

−τ s],

(37)

which simpli�es to

f := det[sI − Ar + BrEhG(s)e−τ s], (38)

where G(s) is the scalar transfer function correspond-
ing to the SISO system given by (1) and (2). Note that
the above expression is in the exact form as (34) hence
for (28) with ϕ(·) � 0 to be delay-independent stable, it
is necessary that the open-loop system is stable, which
requires that Ar is Hurwitz. As per the construction in
(13), this always holds. Then, from Chen and Latchman
(1995), it is also necessary that stability is guaranteed for
s = 0. This condition is equivalent to

ρ((−Ar)
−1(BrEh)kp) < 1, (39)

where we made the substitution kp = G(0). This then
gives (36), and hence, the proof is complete. �

It is worthy to note that the results in Corollary 3.1
can be further improved in many practical scenarios. For
example, observe that the reference input to the human
model and the human command are of dimension one in
the SISO case. In addition, since generally the outer-loop
and inner-loop command following objectives are the
same, note that Ehp = Ep (see also the illustrative numer-
ical example given in Section 4). Thus, in view of these,
the following result is now immediate.

Corollary 3.2: Given Ehp = Ep and under the conditions

in Corollary 3.1, the necessary condition for the human-

in-the loop MRAC model (28) with ϕ(·) � 0 to be delay-

independent stable is given by

kp < 1. (40)

Proof: Note that A−1
r Br and Eh in (36) are col-

umn vectors. Therefore, as per Appendix 1, we have
ρ(A−1

r BrEh) =
∣

∣EhA
−1
r Br

∣

∣. Since in the scalar case
EhA

−1
r Br = −1 as per Appendix 2, then (40) follows. �

In the above corollary, we prove that the human gain
must be less than one such that (28) with ϕ(·) � 0 can
have a chance to be delay-independent stable. Su�ciency
can be numerically studied by checking whether or not
ρ((jω − Ar)

−1(BrEh)G(jω)) is less than one for the
bounded single sweep parameter ω � 0, see Chen and
Latchman (1995) as well as the next section. What is
interesting in the above analysis is that human’s aggres-
siveness as measured by kp can be a strong limiting fac-
tor ruining delay-independent stability. Moreover, since
by the design of stable MRAC we have zero steady-state
error in tracking, the necessary condition kp < 1 is solely
inherent to the human’s gain and holds irrespective of the
model-reference controller gain K. While in many cases
it is reasonable to assume that the human model can be
considered as SISO dynamics; e.g. when the human pro-
duces a single output to steer a manipulator, in the case
when an auto-human model is utilised in multi-input–
multi-output (MIMO) settings, the necessary condition
(39) can be revised as follows:

ρ(A−1
r Br[G(0)]Eh) < 1, (41)

where [G(0)] denotes the matrix transfer function of the
MIMO auto-human model with s = 0 in all its entries.

It is important to note that while guaranteeing delay-
independent stability in a dynamical system is attractive
as this makes the system completely immune to destabil-
ising e�ects of delays, in some cases by the nature of the
problem, delay-independent stability cannot be possible
as is the case above for kp > 1. Indeed, in the case when
MRAC deals with a relatively more aggressive human
behaviour with kp > 1, it is impossible to avoid instabil-
ity for some delay values τ . One then wonders how large
these delays can be before instability is introduced.More-
over, a trade-o� in delay-independent stable cases arises
in particular on system’s performance, which may deteri-
orate for large delays despite stability is preserved (Nia &
Sipahi, 2014). In light of this, we now turn our attention to
the case when delay-independent stability is not possible,
or not desired, and hence, system stability is a�ected by
the numerical value of the delay in the dynamical system.
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3.2 Delay-dependent FSL

Delay-independent FSL given in the previous section
guarantees the boundedness of all closed-loop system sig-
nals and limt → �e(t) = 0 for any τ ∈ R+. Since the time
delay in human dynamics can in general be known in
practice for certain applications, at least within a certain
range, it is possible to relax these conditions by utilising
the delay information in the stability analysis. Towards
this goal, we �rst provide the following lemma.

Lemma 3.3: Consider the following system dynamics

given by

ż(t ) = Fz(t ) + Gz(t − τ ) + h(t, z(t )), z(0) = z0,

(42)

where z(t ) ∈ R
n is the state vector, F ∈ R

nxn andG ∈ R
nxn

are constant matrices, τ is the time delay, and h(t, z(t)) is
piecewise continuous and bounded nonlinear forcing term,

which is in general a function of state z. If the homogeneous

dynamical system given by

ż(t ) = Fz(t ) + Gz(t − τ ), (43)

is asymptotically stable, then the states of the original

inhomogeneous dynamical system given by (42) remain

bounded for all times.

Proof: Since h(t, z(t)) is piecewise continuous and
bounded, this signal can be considered as an exoge-
nous input to the homogeneous system (43). Under the
assumption that this system is asymptotically stable, the
output z(t) of (42) remains bounded. �

Having established Lemma 3.3, we are now ready to
state the second main result of this paper, which provides
a more relaxed delay-dependent stability condition for
the overall human-in-the-loop system and convergence
of the system error, e(t), to zero.

Theorem 3.2: Consider the uncertain dynamical system

given by (4) subject to (5), the reference model given by

(18), the feedback control law given by (12), (13), (15) and
(16), and the human dynamics given by (1)–(3). Then,
e(t ) ∈ L∞ and W̃ (t ) ∈ L∞. If, in addition, the real parts

of all the in�nitelymany roots of the following characteristic

equation

det
(

sI −
(

A0 + Aτ e
−τ s

))

= 0 (44)

have strictly negative real parts, then xr(t ) ∈ L∞, ξ (t ) ∈

L∞, and limt → �e(t) = 0.

Proof: As a consequence of Lemma 3.1, recall that e(t ) ∈

L∞ and W̃ (t ) ∈ L∞. In addition, note that ϕ(·) ∈ L∞

in (28). Therefore, if all of the roots of the characteristic

equation given by (44) have strictly negative real parts,
making the homogeneous equation

φ̇(t ) = A0φ(t ) + Aτφ(t − τ ) (45)

asymptotically stable, then, as per Lemma 3.3,
φ(t ) � [xTr (t ), ξT(t )]T ∈ L∞. Finally, since e(t ) ∈ L∞,
xr(t ) ∈ L∞, and W̃ (t ) ∈ L∞ ensure the boundedness
of (25), it now follows from the Barbalat’s lemma that
limt → �e(t) = 0. �

Remark 3.1: Several methods are available in the lit-
erature for the analysis of the root locations of (44).
The four most used methods are TRACE-DDE (Breda,
Maset, & Vermiglio, 2006), DDE-BIFTOOL (Engel-
borghs, Luzyanina, & Roose, 2000), QPMR Vyhlidal and
Zitek (2009) and Lambert-W function (Yi, Nelson, &
Ulsoy, 2010). In essence, one provides the matrices A0

andAτ aswell as the delay τ to thesemethods and obtains
the numerical values of the rightmost root locations of
(44). In some sense, these methods perform a non-trivial
approximation of the in�nite-dimensional spectrum of
the system (45) with which they are able to identify the
most relevant roots – the rightmost roots. In the illus-
trative numerical example provided below, we employ
TRACE-DDE (available for downloading Breda, 2008).

Before we close this section, we remark that the
above-presented stability analysis approach, for both
delay-dependent and delay-independent cases, consists
of studying two interconnected subsystemsS1 andS2 in a
sequential manner, where S1 refers to the inner-loop sys-
tem while S2 refers to the outer-loop system, which com-
prises the model reference dynamics and the homoge-
neous linear time-invariant systemmodelling the human
dynamics. It is important to realise that the inner-loop
system S1 is delay free but the outer-loop system is in�u-
enced by human reaction delay τ . To be able to prove
the overall stability of the combined systems S1 and S2,
we �rst start only with S1, and show the boundedness
of the signals in the inner loop consisting of the refer-
ence model, controller, uncertain dynamical system and
the parameter adjustmentmechanism (see Figure 1). This
is achieved through Lemma 3.1 concerning the stability
of the tracking error e(t) and adaptive control parame-
ter vector Ŵ (t ) dynamics. Next, Lemma 3.2 proves the
boundedness of the internal human dynamics states ξ (t)
in S2 as well as the reference model states xr(t). Theorem
3.1 then proves the asymptotic stability of the inner-
loop system S1 and the delay-independent stability of
the overall closed-loop dynamics S1 and S2 combined.
A similar procedure is followed for the delay-dependent
case, where Lemma 3.1 and Theorem 3.1 are replaced,
respectively, by Lemma 3.3 and Theorem 3.2.
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Ultimately, the above-developed framework enables
that the stability of the nonlinear time-delayed system
can be proved by the decomposition of the total sys-
tem into two subsystems S1 and S2, namely the inner
and outer loops, and by interconnecting the stability
proofs obtained independently for each subsystem. To
the best knowledge of the authors, this is a new develop-
ment and philosophy that can be useful in analysing and
designing coupled inner–outer loop systems. Speci�cally,
the framework provides a constructive way to treat the
problem in sequential steps and lays out tools to design
the controllers, which can be easier than treating the
entire problem all at once.

While di�erent from this framework, notable results
were reported on the stability of nonlinear systems with
state delays, for example, see input-to-state stability (ISS)
and integral-ISS (iISS)methodology in Sontag (1998) and
Pepe and Jiang (2005, 2006). Interestingly, in Pepe and
Jiang (2006, p. 4209), the authors point out the opportu-
nity of utilising delay-dependent and delay-independent
stability conditions of linear systems with delays towards
studying iISS properties of bilinear systems with delays
using a carefully selected Lyapunov-Krasovskii func-
tional. Although this development is quite di�erent than
the one presented above, its philosophy is aligned with
ours; that is, there is the strong potential to treat nonlin-
ear systems with time delays in modular ways while ben-
e�tting from existing theories on linear systems with time
delays.

4 Illustrative numerical example

Consider the longitudinal motion of a Boeing 747 air-
plane linearised at an altitude of 40 kft and a veloc-
ity of 774 ft/sec with the dynamics given by Bryson
(1994)

ẋ(t ) = Apx(t ) + Bp(u(t ) +WTσ (x(t )), x(0) = x0,

(46)

where x(t) = [x1(t), x2(t), x3(t), x4(t)]
T is the state vec-

tor. Note that (46) can be equivalently written as (4) with
� = I. Here, x1(t), x2(t) and x3(t), respectively, repre-
sent the components of the velocity along the x, z and
y axes of the aircraft with respect to the reference axes
(in crad/sec), x4(t) represents the pitch Euler angle of
the aircraft body axis with respect to the reference axes
(in crad), and u(t ) ∈ R represents the elevator control
input (in crad), where 0.01 radian= 1 crad (centiradian).
Finally, W ∈ R

3 is an unknown weighting matrix and
σ (x(t)) = [1, x1(t), x2(t)]

T is a known basis function. In
the following simulations, unless stated otherwise, we set
W = [0.1 0.3 −0.3]T. The dynamical system given in

Table . Numerical data used in the illustrative
numerical example.

Tp 
Tz 
τ .
Ap [− . . − .;− .−

. . ; .− .− . ;    ]
Bp [.;− .;− .; ]
Ep [   ]
Eh [    ]

Br [    ]T

Q diag([    .])

(46) is assumed to be controlled using a model reference
adaptive controller, the details of which are explained in
Section 2. In addition, the aircraft is assumed to be oper-
ated by a pilot whose Neal–Schmidt Model (Schmidt &
Bacon, 1983) is given by

kp
Tps + 1

Tzs + 1
e−τ s, (47)

where kp is the positive scalar pilot gain, Tp and Tz are
positive scalar time constants, and τ is the pilot reaction
time delay. Parameter values used in the simulations are
provided in Table 1.

To obtain the nominal controller K, a linear quadratic
regulator (LQR) approach is utilised with the following
objective function to be minimised:

J(·) =

∫ ∞

0

(xT(t )Qx(t ) + μu2(t ))dt, (48)

where Q is a positive-de�nite weighting matrix of appro-
priate dimension and μ is a positive weighting scalar.
Notice that the framework developed in Section 2 is not
limited to a particular design method for the nominal
controller. To this end, this task can be handled by a
number of di�erent ways. Here LQR is utilised for con-
venience reasons. In this setting, the selection of the
weighing matrices, as expected, will a�ect the resulting
nominal controller gain K in (13), which in turn will
determine the reference model dynamics (18). In the
following simulation studies, the e�ect of the weighting
matrices, and thus the e�ects of reference model parame-
ters on the overall closed-loop system stability are inves-
tigated for various values of pilot model parameters. To
facilitate the analysis, reference model parameter varia-
tions are achieved mainly by manipulating the control
penalty variable μ.

Note that the purpose of the numerical examples pro-
vided in this section is to verify the theoretical stabil-
ity predictions of the proposed framework. Therefore,
the simulation results are created to present the stabil-
ity/instability of the closed-loop system without further
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tuning parameters for enhanced transient response char-
acteristics.

4.1 Delay-independent stability

.. LMI approach

We set kp = 1/2 and investigate whether or not the
nominal part of the closed-loop system in (28) is delay-
independent stable. Speci�cally, we �rst use the LQR con-
trol designer in MATLAB with μ = 1.0 to design K,
which returnsK= [− 0.0185, 0.0815,−1.5809,−2.7560,
−1.5811]. Next, the matrices A0 and Aτ are constructed
based on the information provided in Table 1. Assign-
ing P and S as positive de�nite, greater than 0.5I ∈

R
(n+nξ )×(n+nξ ) while imposing the negativity constraint

in (32) asF < −0.1I ∈ R
(n+nξ )×(n+nξ ), the YALMIP LMI

optimisation toolbox returns a feasible set of matrices P
and S , indicating that the closed-loop system is delay-
independent stable.

.. Frequency-domain approach

To be consistent with the previous subsection, we set
kp = 1/2 and μ = 1.0 in the LQR optimisation. Based on
Corollary 3.2, since kp < 1 and Ar is Hurwitz, the nec-
essary conditions for delay-independent stability are sat-
is�ed. Next, the su�cient condition is studied simply by
checking whether or not the metric M(ω) := ρ(( jω −

Ar)
−1(BrEh)G( jω)) is less than one for ω � 0, see details

inChen andLatchman (1995).We�ndout that themetric
valueM(0) = kp = 1/2 decreases for larger ω �= 0, while
remaining always less than 1. That is, the nominal part
of the closed-loop system (28) will remain stable for any
choice of delay τ . Keepingμ = 1 but letting kp = 0.95 has
only negligible e�ects on K, and again it is easy to show
that M(ω) < 1 for ω � 0. On the other hand, selecting

kp = 1.05 violates this condition, that is, the system loses
its delay-independent stability characteristics.

4.2 Delay-dependent stability

.. Effect of control penalty on system stability for

different pilot reaction time delays

To investigate the e�ects of the reference model param-
eter variations on the stability of the closed-loop system,
the control weight μ is manipulated by assigning values
in the range [0, 50]. Then, the real part of the rightmost
pole (RMP) of the system, whose characteristic equation
is given by (44), is plotted against theseμ values. This pro-
cedure is repeated for various pilot reaction time delays
and the results are presented in Figure 2.

Figure 2 reveals several interesting results. First, it
is shown that if the reference model dynamics is not
designed carefully with an appropriate μ value, then
the human-in-the-loop adaptive control system can
be indeed unstable as characterised by the instability
(RMP > 0) of the nominal linear time-invariant dynam-
ics with delay in (28). Second, this linear system can be
stable for small and large values of the parameter μ and
be unstable in between. Third, it is observed that as the
pilot reaction time delay increases, the unstable region of
μ gets larger as indicated by RMP > 0. Ultimately, these
stability/instability characteristics will be re�ected to the
closed-loop dynamics with uncertainties and controlled
with MRAC, as per the results established in the previous
section.

Consider next in Figure 2 the case for μ = 10, where
pilot reaction time delay τ = 0.2 and τ = 0.5 result,
respectively, in a stable and unstable linear time-invariant
system with delay in (28). Time-domain tracking and

Figure . The real part of the rightmost pole (RMP) of () with respect to the control penalty variableμ, for different pilot reaction time
delays.
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Figure . Tracking and control signal curves under uncertainties and MRAC for two different values of the pilot reaction time delays, τ =
. and τ = ., withμ =  in the LQR design.

control signal plots corresponding to the closed-loop sys-
tem with uncertainties and controlled by MRAC pre-
sented in Figure 3 con�rm this prediction. As noted ear-
lier, the simulation results are employed to verify the
theoretical stability predictions of the proposed method
and therefore controllers are not tuned to obtain the
best transient response. This investigation is left to future
research.

It is noted that the numerical value of the considered
uncertainty weighting matrix does not a�ect the stability
of the system, mainly because the fundamental stability
theorems developed in the previous sections do not pose
any restrictions on the amount of uncertainty. However,
it is expected that the amount of uncertainty will a�ect
the performance of the controllers. To this end, Figure 4 is
provided where the tracking and control signal curves are

compared for two di�erent values of uncertain weighting
matrix, one withW1 := W = [0.1, 0.3, − 0.3]T originally
used for plotting Figure 3 and the otherW2 = 2W1 repre-
senting increased uncertainty due to doubling ofW1. As
seen in Figure 4, although tracking performance remains
similar in both cases, control signal ampli�es in the sec-
ond case to be able to accommodate the increased uncer-
tainty in the closed-loop system.

.. Effect of control penalty on system stability for

different values of pilot model poles

The poles of the pilot model (47) represent how fast the
pilot responds to changes in the aircraft pitch angle, which
can also be interpreted as pilot aggressiveness. In this

Figure . Tracking and control signal curves under uncertainties and MRAC for two different values of the considered weighting matrix:
W= [., .,− .]T (the value considered for plotting Figure ) andW= [., .,− .]T.
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Figure . The location of the rightmost pole of () with respect to the control penalty variableμ, for different pilot transfer function pole
locations.

section, the e�ect of pilot aggressiveness on system sta-
bility is investigated while assigning values to the control
penalty μ from 0 to 50.

Figure 5 depicts the e�ect of the pilot pole locations
on the real part of the RMP of the linear time-invariant
dynamics with delay. The zero location and the time delay
of the pilot model are kept at their nominal values of −1
and 0.5, respectively. It is seen from the �gure that, in gen-
eral, unstable–stable–unstable transition is observed for
increasing values of μ and, as expected, higher values of
poles, corresponding to faster pilot response, decrease the
μ region of stability.

Figure 6 depicts how tracking and control signal
curves of closed-loop dynamics with uncertainties and
controlled by MRAC are impacted by linear pilot model

with two di�erent pole locations; i.e. −0.175 and −0.2,
when μ = 10. As predicted in Figure 5, closed-loop sys-
tem remains stable when the pole is located at−0.175 and
becomes unstable when the pole is at −0.2.

.. Effect of control penalty on system stability for

different values of pilot model zeros

In this section, the e�ect of zeros of the linear pilot trans-
fer function (47) on the stability of the overall closed-loop
dynamics with uncertainties and controlled by MRAC is
investigated where the control penalty μ takes values in
the range [0,50]. The pole location and the time delay of
the pilot transfer function are kept at their nominal values
of−0.2 and 0.5, respectively. Changes in the zero location
of the model can be interpreted as an adjustment to the

Figure . Tracking and control signal curves under uncertainties and MRAC for two different values of the pilot transfer function pole
locations, p= −. and p= −., whenμ = .
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Figure . The location of the rightmost pole of () with respect to the control penalty variableμ, for different pilot transfer function zero
locations.

‘lead’ nature of the pilot, which is related to pilot’s antici-
pation capabilities.

As seen in Figure 7, stable–unstable–stable transition
structure still exists, in general, for increasing μ val-
ues. Furthermore, it is seen that when the pilot trans-
fer function does not have a zero, a large μ region of
instability arises. It is noted that for the given nomi-
nal values of the system parameters, no value of zero
can make the system always stable, regardless of the
considered range of μ. This is mainly because delay-
independent stability is determined only by the pilot’s
gain kp, as per the results established in the previous
section.

Figure 8 presents tracking and control signal curves for
pilot model zero locations −0.2 and −0.909, for the case
when μ = 1. As predicted in Figure 7, the closed-loop
system becomes stable for the former but unstable for the
latter zero value.

.. Effect of control penalty on system stability for

different values of pilot model gains

The pilot gain kp in (47) determines the intensity of the
response that the pilot gives to the pitch angle deviations
in the aircraft. In some sense, this gain also represents the
aggressiveness of the pilot.

Figure . Tracking and control signal curves under uncertainties and MRAC for two different values of the pilot transfer function zero
locations, z= − and z= −., whenμ = .
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Figure . The location of the rightmost pole of () with respect to the control penalty variableμ, for different pilot transfer function gain
values.

Stability properties of the pilot-in-the-loop system
depending on the nominal control penaltyμ and the pilot
gain kp is presented in Figure 9, where the RMP vs. μ

is plotted for certain values of kp. In these analyses, the
pole and zero locations and time delay of the pilot transfer
function are kept at their nominal values of−0.2,−1 and
0.5, respectively. From the �gure, stable–unstable–stable
stability transition is once again observed for increasing
values of μ. On the other hand, it is seen that, similar
to the trend for the pilot pole location, as the pilot gain
increases, the μ stability region shrinks. As an example,
it is predicted in Figure 9 that the closed-loop system

will be stable for kp = 4 and unstable for kp = 5, when
μ = 10. This is con�rmed by the results presented in
Figure 10, where time-domain tracking and control sig-
nal curves under uncertainties andMRAC are plotted for
these gain values. While the settings in our simulations
are not selected to address a speci�c application prob-
lem, predicted instability in the simulations due to human
reaction delays and human high gain provides an inter-
esting perspective and alignment with the well-known
adverse e�ects of high gain of pilots on system stabil-
ity, such as pilot-induced oscillations (Acosta et al., 2014;
Yildiz & Kolmanovsky, 2011; McRuer, 1992).

Figure . Tracking and control signal curves under uncertainties and MRAC for two different values of the pilot transfer function gain
values, kp =  and kp = , whenμ = .
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5 Conclusion

We analyse human-in-the-loop model reference adaptive
control architectures and explicitly derive FSLs for both
delay-independent and delay-dependent stability cases.
Speci�cally, this stability limit results from the coupling
between outer and inner-loop architectures, where the
outer-loop portion includes the human dynamics mod-
elled as a linear dynamical system with time delay and
the inner-loop portion includes the uncertain dynamical
system, the reference model, the parameter adjustment
mechanism and the controller. In particular, a decou-
pling of the inner and outer loops enables one to prove
the stability of each loop independently, which is then
tailored together to declare the overall stability of the
closed-loop system where the two loops are coupled.
With this philosophy, not only the complex inner–outer-
loop dynamics is guaranteed to be stable, but it becomes
possible to propose in a systematic way the tools needed
to analyse and design the inner–outer-loop dynamics.
The arising analysis points to several FSLs, which can
be shown to be independent of the inner-loop adap-
tive controller but only depend on the human dynam-
ics and a nominally designed reference model, enabling
a clear view of what the in�uencing factors on such
limits are. With this in mind, a number of simulation
case studies are presented involving di�erent designs for
the reference model, human reaction delays, and against
di�erent levels of uncertainties, all demonstrating sup-
portive results of the theoretical stability predictions.
While the main focus of this study was to reveal stabil-
ity limit of human-in-the-loop model reference adaptive
control architectures, it is key to emphasise the modular-
ity of the developed framework and how it decomposes
the stability problem intomanageable pieces. This o�ers a
new perspective to handling control problems of nonlin-
ear systems and whereby humans can be in the loop. Last
but not least, several future studies are under considera-
tion. Speci�cally, it is important to �ne-tune the design
parameters to render more desirable transient charac-
teristics, to understand the interplay between the band-
widths of model reference control and human dynamics,
and their impacts on the closed-loop system, and ulti-
mately generalise the approach across a number of di�er-
ent nonlinear controllers, including sliding mode control
and input–output linearisation.

Note

1. Although we consider a speci�c yet widely studied param-
eter adjustment mechanism given by (16), one can also
consider other types of parameter adjustment mecha-
nisms without changing the essence of this paper; for
example, see Narendra and Annaswamy (1987), Ioannou

and Kokotovic (1984), Pomet and Praly (1992), Yucelen
and Calise (2010), Nguyen, Krishnakumar, and Boskovic
(2008), Nguyen, Bakhtiari-Nejad, and Ishihira (2010),
Yucelen, Calise, and Nguyen (2011), Calise and Yucelen
(2012), Chowdhary and Johnson (2010),Chowdhary,
Yucelen, Mühlegg, and Johnson (2013), Yucelen and
Calise (2011), Yucelen and Haddad (2013), Yucelen,
Gruenwald, and Muse (2015), Gruenwald and Yucelen
(2015).
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Appendix 1

Let a and b be two n-dimensional column vectors with
real entries. Then the matrix M = baT is rank one, and
hence, it hasn− 1 number of zero eigenvalues,λℓ(M)= 0,
ℓ = 1,… , n− 1 and a non-zero eigenvalue λn(M) �= 0. In
this case, the well-known property tr(M) =

∑n
ℓ=1 λℓ(M)

reduces to tr(M) = λn(M). Moreover, it is easy to see that
tr(M) = aTb. Therefore, the spectral radius of M, which
is given by ρ(baT) = |λn(M)|, is equal to |aTb|.

Appendix 2

Westart with the following lemma fromBernstein (2009).

LemmaB.1: Let A1 ∈ R
n×n, A2 ∈ R

n×m, A3 ∈ R
m×n and

A4 ∈ R
m×m. If A1 and A4 − A3A1

−1A2 are non-singular,

then

[

A1 A2

A3 A4

]−1

=

[

M1 M2

M3 M4

]

, (B.1)

where M2 = −A1
−1A2(A4 − A3A1

−1A2)
−1.

Next, let K = [K1, K2], where K1 ∈ R
m×np and K2 ∈

R
m×nc , and assume that Ap − BpK1 and Ep(Ap −

BpK1)
−1BpK2 are nonsingular matrices. Note that this is

without loss ofmuch generality since in general thesematri-

ces are indeed nonsingular especially when m � np.

LemmaB.2: GivenAr, Br, and Eh de�ned in Section 2with
Ehp = Ep, EhA

−1
r Br = −I holds.

Proof: It follows from Ar = A − BK that

Ar =

[

Ap 0
Ep 0

]

−

[

Bp

0

]

[K1,K2] =

[

X Y

Ep 0

]

, (B.2)

where X � Ap − BpK1 and Y � BpK2. Letting

A−1
r �

[

M1 M2

M3 M4

]

, (B.3)
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it follows from Lemma B.1 that M2 = X−1Y(EpX
−1Y)−1.

Using Br and Eh, one can further write

EhA
−1
r Br =

[

Ehp 0
]

[

M1 M2

M3 M4

] [

0
−I

]

=
[

Ep 0
]

[

−M2

−M4

]

= −EpM2, (B.4)

when Ehp = Ep. Finally, it is now immediate that

EhA
−1
r Br = −EpM2 = −EpX

−1Y (EpX
−1Y )−1 = −I,

(B.5)

which completes the proof. �

Notice for the SISO case considered in Corollary 3.2
that EhA

−1
r Br = −1.
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