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STABILITY LIMITS FOR A CLAMPED SPHERICAL
SHELL SEGMENT UNDER UNIFORM PRESSURE*

BY

ROBERT R. ARCHER

Massachusetts Institute of Technology

Summary. An integration procedure for the differential equations for the finite

deflections of clamped shallow spherical shells under uniform pressure is developed.

Stability limits for the clamped shell are obtained for a range of the central height to

thickness ratio from about 1 to 35. This serves to correct and extend previously known

stability limits for this problem.

1. Introduction. The existing literature on the subject of spherical shells allowing

finite deflections under uniform radial pressure or point load at the apex divides into

two parts. One part represented by the work of von Karman and Tsien [12, 13, 15];**

Friedrichs [4]; Yoshimura and Uemura [14, 16]; Mushtari and Surkin [6]; and Feodosev

[3] involves a determination of buckling pressures by means of a minimization of a potential

energy expression for the shell with respect to a special class of deflection functions.

Because of the rather special form of the assumed deflections in these papers, it is difficult

to compare these results with integrations of the non-linear equations which as is noted

in [8] can be derived as the Euler equations of the variational problem to minimize the

potential energy of the shell; and therefore whose integrals correspond to a minimization

with respect to a completely general class of deflection functions.

The" other part represented by the work of Biezeno [2], Kaplan and Fung [5], and

Simons [9] is based on integrations of non-linear differential equations corresponding

to those which are used in this paper for shallow spherical shells. However, since Biezeno

integrated the equations after assuming special forms for the non-linear terms in the

differential equations, it is difficult to decide what influence this has on the results.

Kaplan and Fung are able to get integrals of the non-linear equations, but "unfortu-

nately they are able to determine buckling pressures, stresses, and deflections only for

very low shells where the deflection shapes are of a simple type. In this range, their

results are correct as far as they have gone in the perturbation of the non-linear equations,

but appreciable corrections are to be found in the higher perturbations even in this

range.

Simons generalizes the power series method given by Way for flat plates (see [11],

p. 338) to shallow spherical shells. Numerical results when compared with those of

Kaplan and Fung for the clamped shell are found to differ considerably owing to the

retention of only a few terms in the power series solution.

In this paper (and in [2, 5, 9]), the so-called "classical criterion" of buckling as

distinguished from the "energy criterion" developed by von Karman and Tsien is

applied to interpret the buckling phenomenon. In the "classical criterion", it is assumed

that a given state of equilibrium becomes unstable when there are equilibrium positions

'Received October 26, 1956. The material in this paper was submitted as part of a thesis by the

author to the Massachusetts Institute of Technology, May 1956, in partial fulfillment of the require-

ments for the degree of Doctor of Philosophy.

"Numbers in brackets refer to references at end of paper.
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infinitesimally near to that state of equilibrium for the same external load. Thus, it is

a question of obtaining the pressure-deflection relations for a given problem and properly

interpreting the buckling pressure according to the above criterion. It is found that the

center deflection to pressure relation used in [2, 5, 9] to interpret buckling must be

generalized by interpreting buckling from a maximum deflection (in general, away from

the center) to pressure relation in order to reveal the buckling in the cases where the

deflection modes get more involved.

It might be noted here that problems of finite axi-symmetric deflections of flat

plates are included as a limiting case of the shallow shell, and thus the methods given

in this paper carry over to these problems.

With a view to the application of high speed digital computing equipment, the

basic approach in this paper has been to reduce the integration of the non-linear differ-

ential equations to the problem of solutions of algebraic equations by means of suitable

sets of functions for the various cases. Thus, the rapidly increasing store of methods for

applying computers to solving algebraic equations can be brought to bear on these

problems.

2. Equations for shallow spherical shells. The equations for the finite deflections

of shallow spherical shells under uniform radial pressure which form the basis of this

analysis are derived by Reissner in [8] and are listed here for reference:

D/a(J3" + P'/Z - fi/f) = + \Pa\ + ¥£/£, (la)

1 /Eha&" + *'/£ - SF/*2) = 0 - §07$, (lb)

aV = |pa2£, aQ = —^ + "J'/S/f, (2a)

aN( = V/tj, aNe = >£', (2b)

aM( = DOr + vP/i;), aMe = D(,9/f + ^'), (2c)

u = Z/Eh(*' - v*/Q, w = -a f m, (2d)
/

Wh3
* =a^' D (2e)

Fig. 1. Element of the shell showing stress resultants and couples.
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The equations of the middle surface of the spherical shell in its undeformed state

are taken in the form

r0 = a sin £ z0 = —a cos £ 0 < £ < ,

where £, is to represent one-half the opening angle of the shell. The components of

surface loading for uniform radial pressure take the form

pk = p sin <t> p, = — p cos <t>

Equations (1) and (2) are the result of restricting attention to shallow shells where

« tt/2.
The following non-dimensional form of the variables will be used

P* = /V*. , r = */EhMm2, (3a)

V = — p/Per , X = £/£, , (3b)

X2 = gm2a/h, m4 = 12(1 - v), (3c)

where pcr is the minimum buckling pressure for the corresponding complete sphere

from the linear theory {pCT = 4Eh2/m2a2, see [10]). Using the non-dimensional variables

(1) becomes

l/X2L*jS* + ** = -2px+ (4a)

1 - p* = -i/3*2/x, (4b)
where

L*(- • •) = (•••)" + (■•"•)'/& - (5)

The corresponding expressions for stress resultants, stress couples, and displacements

take the form

aNt = Eh2\p* /xm2, aNe = Eh2^*'/m2, (6a)

aMt = DOS*1 + vfi*/x), aMe = D(JS*/x + p/3*1), (6b)

"A = — v\]/*/x)x, w/h = — X2/m21/" /3* dx. (6c)

"vA.H /M,

Fig. 2. Side view of element of shell in undeformed and deformed states.
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3. Statement of the problem. The edge conditions for a clamped shell segment are

given by

u({.) = 0, m = 0, (7)

which in non-dimensional form becomes using (6c)

**'(1) - p**(l) = 0, /3*(1) = 0, (8)

In addition to (8) for shells without central hole we have the condition

13*{x), 4>*{x) regular at x = 0. (9)

The small finite deflections of a clamped spherical segment under uniform radial

pressure are determined by solutions of the Eq. (4) subject to the conditions (8) and (9).

4. Perturbation solution. A convenient method for getting solutions of (4) is to

expand j3*, \p*, and the inward pressure p into series in powers of a certain parameter

and convert (4) into a sequence of systems of linear differential equations. The per-

turbation parameter W will take the form of a ratio of deflection to thickness as a

result of conditions imposed later. Thus, we write

0* = f)p,W', r=i*iWl, (10a)
l-l J-l

2p = Z ViW1 (10b)
I- 1

and substitute into (4). Equating coefficients of powers of W tb zero leads to the sequence

of linear systems

1 /X2L*ft + = —piX, (11.1a)

1/X!LV. - ft = 0, (11.1b)

l/X2L*ft + *2 = -p2x + MJx, (11.2a)

1 /\2L**2 - ft = -hti/x, (11.2b)

1/X2L*ft + h = -p,x + Z Mi/x, i o , n (11 •&)
»+J-i \l1 j — A> ' ' ' J * — L)

1 /X2L*^ - ft = -§ £ ftft/z. (11 •&)

The boundary conditions in terms of ft and become

ft(z)> (%) regular at x = 0 (12Ja)

ft(l) = 0, #(1) - ^,(1) = 0 (12.Zb)

for all I.
4.1. Determination of ft , , and py. ft and \pi are to be solutions of (11.1) satisfy-

ing the conditions (12.1). We seek solutions of (11.1) as expansions in terms of Bessel
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functions of the first kind in the form

&(*) - f(13a)
n—1

h(x) =clX+ it bn'JM, (13b)
n—1

where the X„ are defined by

</iOO = 0 (n- 1,2, •••). (14)

Thus, /8i satisfies (12.1), and it remains to choose Cj so that satisfies (12.1). From

(13b), we have

(1) = c, + £ Kb^MK)
n—1

and

J^i(l) = VCi ,

where we have used (14) and the formula

Ji(\nx) = \nJ0(\nx) — l/xJ^Kx). (15)

Now \[/i will satisfy (12.1) if

ci = — E^'^oW. (16)
^ n—1

If (13) is substituted into (11.1), it follows that

+ K" = (fii + p,)r„ , (17a)

al" + (K/\)XV = 0, (17b)

where we have used

LVi(M] = -XMKx) (18)

and equated coefficients of Ji(\„x) to zero. The T„ are defined by

oo

x = D TJM (19)

and using

we get

f x2Jl(Xnx) dx = — 1/X„J0(X„) (20a)
Jo

f1 xJ!(\nx) dx = (20b)
J 0

r" X„J0(X„) (21)
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Solving (17) gives

.(i) _ ~2(ct -f- p,)(A„/A)2 (22a)
X„/0(X„)[1 + (Xn/X)4]

j,<» 2(ci -f-   (22b)
Xn70(X„)[l + (X„/X)4] K )

The coefficients pe will be determined from the following conditions on the deflection.

Using the expression for w/h from (6c), it follows that

w(x*) - id(i) = _ r w,
h m Ji

where x* (0 < x* < 1) will be taken at the point where the deflection is a maximum.

If we impose the conditions

1 = X2/m2 f Pi{x) dx, (24.1)
J x •

0 = f p2(x) dx, (24.2)
J x *

0 = f pfa) dx, (24-0
Jx *

then (23) reduce to

w(x*) — w(l)
k -w <25>

which serves to define the parameter W. The Eq. (24) will determine the coefficients

p, in the expansion for the inward pressure p.

To determine px , we use (13) to write (24.1) in the form

1 = \2/m2 [ a">J1(X,lx) dx
J x* n™1

2(c, + p,)X2 A (X„/X)2[Jo(X„x*) - .70(Xn)]

m2 £i X2./„(Xn)[ 1 + (X„/X)4]

or

_ 0(r -4- n \ — ™2< V Jp(X„X*) — Jp(Xn) \
I 5 J0(x„)[i + (X„/X)4]J ' (26)

where we have used the integral formula

J Ji(Kx) dx = J0{Kx). (27)

Since cx is known from (16), px is determined.
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4.2. Solution for any /?; , , and p, . Let

oo

/3i(x) = J2all)J (28a)
n= 1

i,(x) = CiX + X) KnJi(Kx), (28b)
B=1

then substitution into (lli) leads to

- (X„/X)V' + bi" = -(c, + p;)I\, + ff'", (29a)

oi" + (X„/X)2^ = G'1', (29b)

where the are defined by

CO CO

oL" = I E E c;'( E
'-1 '-1 ,+'-' (s, t = 1,2, ... ,1- 1)

(30a)

Hi" = E c.ai° + E E C''"( E (30b)
•' — 1 | — 1 a + f — {

and the C" defined by

1/xJi(\fx) = E C'n'Ji(Xnx). (31)
n = 1

The G"' and are known from the 1, 2, • • * , I — 1 stages of the computation. Solving

(29), gives

2(C' x~ Jo'(x!)n/X)2 ~ (x5)2 + G"°} [1 + (x-/x)4]_l (32a)a„ = S —

6"!) = { 2x'w') + H"" + (X"/X)2(?"7 [1 + (X»/X)4r] (32b)

and for the 2th stage (16) becomes

c, = -rr^— E KKl)Jo(K) (33)
1 V n= l

which forces x//, to satisfy the boundary condition (12J). The condition (24J) leads to

an equation for the /th stage similar to (26) for the first in the form

o( _i_ ■* _ \2/ V* JoO^nX*) Jo(XQ \
+ Vl) - x I h /o(X„)[l + (XB/X)4] /

V K*»A)2ff»" - G^'IfJoCxy) - 7o(Xn)l\
h X„[1 + (X„/X)4] /•

Therefore, c, and pl are determined; and the a"' and b'nl> are completely determined.

Starting with a"', b(nu, cx , and ; the G(n2) and II^ can be computed and then

a"1, 5^2), c2, and p2 . Similarly, and //^n are computed leading to a"\ 6"', cl , and

p, . This can be continued to obtain any number of terms in the series for /?*, \p*, and

2p. Stresses and displacements can be computed from the Eq. (6). The buckling pressure
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is determined from

2P= Z p,W' (35)
Z-l

by the condition

dp/dW = 0. (36)

5. Numerical solutions. This section involves numerical calculations using the

integration procedure set up in the previous section to obtain new results for the finite

deflections of a clamped spherical shell segment under uniform pressure. The perturb-

ation of the non-linear equations is carried out far enough to determine the deflection

curves as a function of the pressure for maximum deflections up to about one thickness

of the shell. For the case of inward pressure, the buckling phenomenon is observed in

this range of deflections and buckling pressures are found using the "classical criterion"

for a range of the central height to thiekness ratio from about 1 to 35. (See Figs. 3 and 4).

In the numerical computation for this problem or for other cases of loading and

edge restraint involving shallow spherical shells, it is necessary to compute the expansion

coefficients, c'n', which enter the computation from the non-linear terms. These were

computed directly from the definition

C'J = MK)]-1 [' dx (37)
Jo

1.2

0.8

P

0.4

10 15 20 30

12 4 6 8 10 15 20 30 40 50 100
_H_
h

Fig. 3. Known theoretical and experimental results are compared. A represents the theory in [5], B

the theory in this paper, C the theory in [12], the solid dots the experiments in [5], the hollow dots

the experiments in [12], and D the classical buckling load for a complete sphere given here for reference.

using Simpson's rule with one hundred values of the integrand. The results obtained

by machine computation are given in Table 1. It is shown in [1] that these coefficients

can be used to solve a variety of other problems involving other conditions of loading

and edge restraint.

In determining the buckling pressures given in Fig. 3, terms were computed in the

perturbation series used in finding the pressure-maximum deflection curves until it was
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seen that the higher order terms were no longer substantially affecting the curves in the

neighborhood of the point where dp/dW = 0. The linear solution checks the linear

solution given in [5] which is the same as the one given by Reissner in [7]. The second

1.2

i.o

0.8

P

0.6

0.4

0.2

Fig. 4. The curves A, B, C, and D represent results using two, three, four, and five terms respectively

in the perturbation series of this paper. E and the cross are computed in [5] using two and four terms

respectively in a perturbation series while the solid dots represent the experimental results reported

in [5]. F represents the buckling pressure for a complete sphere (linear theory) and is given here for

reference.

Table la. Numerical values jor the expansion coefficients C\' and CI'.

ci' X 10 1 2 3 4 5 6 7 8
1 10.123 3.0232 -0.20513 0.067211 -0.029812 0.015362 -0.0094689 0.0060496
2 5.9445 1.9771 -0.15236 0.054438 -0.025949 0.014360 -0.0089100
3 4.1592 1.4594 -0.11913 0.044558 -0.029812 0.012264
4 3.1925 1.1564 -0.097467 0.037596 -0.032196
<5 2.5891 0.95663 -0.082360 0.032196

6 2.1770 0.81565 -0.071173
7 1.8778 0.71087
8 1.6506

ci1 X 10
1 5.4449 10.706 3.5608 -0.27440 0.098043 -0.046734 0.025862 -0.016047
2 8.1792 7.4106 2.4816 -0.21304 0.082514 -0.042530 0.023878
3 6.1991 5.5398 1.8982 -0.17083 0.069546 -0.036298
4 4.88463 4.4079 1.5366 -0.14285 0.058814
•5 4.0093 3.6553 1.2906 -0.12160

6 3.3932 3.1208 1.1123
7 2.9386 2.7218
8 2.5901
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Table lb. Numerical values for the expansion coefficients C5' and CI1.

C\' X 10 1 2 3 4 >5 6 7 8
1 -0.53368 5.1437 10.821 3.7968 -0.30992 0.11592 -0.05795 0.031905
2 10.705 8.9547 8.0023 2.7420 -0.24677 0.10046 -0.052433
3 9.0110 7.3074 6.2026 2.1426 -0.20310 0.085728
4 7.2969 5.9928 5.0455 1.7617 -0.16981

*5 6.0597 5.0423 4.2489 1.4948

6 5.1395 4.3403 3.6684
7 4.4845 3.8044
8 3.9618

C'J X 10
1 0.22866 -0.51834 4.9651 10.861 3.9340 -0.33159 0.12791 -0.063310
2 4.6872 10.465 9.2271 8.3266 2.9027 -0.26985 0.11110
3 9.5559 9.5422 7.8368 6.5981 2.3038 -0.22206
4 8.4625 8.0664 6.5892 5.4518 1.9135
<5 7.2569 6.7884 5.6391 4.6415

6 6.2774 5.9621 4.9127
7 5.5059 5.2500
8 4.8913

Table lc. Numerical values jor the expansion coefficients CI' and CI'.

Ci1 X 10+1 1 2 3 4 >5 6 7 8
1 -0.12529 0.22878 -0.50064 4.8597 10.881 4.0204 -0.34613 0.13531
2 -0.49712 4.4294 10.286 9.3556 8.5295 3.0115 -0.28374

3 10.020 9.6808 9.7889 8.1454 6.8637 2.4148
4 9.9644 8.9645 8.4968 6.9660 5.7337
'5 8.8285 7.9038 7.3757 6.0342

6 7.7507 6.9680 6.4774
7 6.8521 6.1939
8 6.1189

Ci' X 10+1

1 0.07686 -0.12983 0.2293 -0.48764 '4.7862 10.892 4.0808 -0.35609
2 0.22922 -0.47456 4.2687 10.154 9.4264 8.6695 3.0890
3 4.1205 9.7031 9.6969 9.9222 8.3468 7.0547
4 9.6901 10.115 9.2316 8.7678 7.2246
•5 9.4093 9.2271 8.2952. 7.112

6 8.5468 8.2610 7.4116
7 7.6093 7.4078
8 6.9348

Table Id. Numerical values oj the expansion coefficients C)' and C\'.

C)' X10+1 1 2 3 4 '5 6 7 8
1 -0.054954 0.083337 - 0.12927 0.21819 -0.47798 4.7337 10.898 4.1255
2 -0.13705 0.22411 -0.46033 4.1587 10.057 9.4692 8.7706
3 - 0.45308 3.9300 9.4784 9.6822 10.004 8.4868
4 9.3001 9.6196 10.171 9.3924 8.9559

<5 10.185 9.6224 9.4624 8.5534

6 9.5827 8.9196 8.5929
7 8.7609 8.1406
8 7.9766
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ci' X 10+»
1 0.039952 -0.058843 0.080990 -0.12290 0.21263 -0.47003 4.6946 10.901
2 0.087558 -0.13310 0.21567 -0.44588 4.07865 9.9804 9.4976
3 0.21762 -0.43106 3.7946 9.3122 9.6574 10.057
4 3.7145 9.0100 9.5364 10.191 9.4949
5 9.4823 10.178 9.7333 9.6154
6 9.7833 9.7782 9.1540
7 9.2635 9.0768
8 8.5853

order solution checks with that given in [5] for 3 < X < 5 where the maximum deflection

is at the center.

The Massachusetts Institute of Technology digital computer, Whirlwind I, was used

extensively to reduce the computation time. The programs used for the machine were

checked by independent calculations using a desk calculator.

In Figs. 3 and 4, the stability limits found in this paper are compared with known

experimental and theoretical results. It is seen that the theoretical curve given in [5]

based on two terms of a perturbation series is subject to considerable correction when

more terms in the series are computed. In particular, the minimum value of H*/h for

which buckling occurs must be revised upward from the value of about 0.67 given in

[5] to 2.2 found in this paper. Also, it is seen that the experimental results depart from

the theoretical results of this investigation as H*/h increases. As indicated in the refer-

ences, this is probably due to the fact that the shell, under disturbances during the

testing, jumps to a nearby buckles state before reaching the buckling pressure predicted

by the theory in this paper which allows only continuous load-deflection processes.
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