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Stability Margin Scaling Laws for Distributed Formation
Control as a Function of Network Structure

He Hao, Prabir Barooah, and Prashant G. Mehta

Abstract— We describe a methodology for modeling, analysis, and dis-
tributed control design of a large vehicular formation whose information
graph is a D-dimensional lattice. We derive asymptotic formulae for
the closed-loop stability margin based on a PDE approximation of the
formation. We show that the exponent in the scaling law for the stability
margin is influenced by the structure of the information graph and by the
control architecture (symmetric or asymmetric). For a given fixed number
of vehicles, we show that the scaling law can be improved significantly by
employing a higher dimensional information graph and/or byintroducing
small asymmetry (mistuning) in the nominally symmetric proportional
control gains. We also provide a characterization of the error introduced
by the PDE approximation.

Index Terms— Distributed control, formation control, mistuning, par-
tial differential equation, stability margin.

I. I NTRODUCTION

We consider the problem of distributed control of a large vehicular
formation. The control objective is that vehicles maintaina desired
formation geometry while following a constant-velocity type desired
trajectory. The desired formation geometry is specified in terms of
desired relative positions between pairs of vehicles. The desired
trajectory of the formation is specified in terms of trajectories of a
few lead vehicles. The problem is relevant to a number of applications
such as formation control of aerial, ground, and autonomousvehi-
cles for transportation, surveillance, reconnaissance, mine-sweeping
etc. [1], [2].

Each vehicle is modeled as a fully actuated point mass. This means
that (i) the dynamics of each coordinate of the vehicle’s position
are modeled using a double integrator, (ii) the dynamics along the
coordinates are decoupled, and (iii) an independent force control input
actuates each coordinate. A distributed control law is examined: the
control input for an individual vehicle depends on (i) its own velocity
and (ii) the relative position measurements with a small subset of
vehicles (neighbors) in the formation. The neighbor relationship is
defined according to aninformation graph. The existence of an edge
(i, j) in the graph meansi and j can measure each other’s relative
position and use that in computing their respective controlinputs.

The information graph has been recognized to play an important
role in closed-loop stability of the formation [3], [4]. In arecent work,
Bamiehet. al. studied controlledsymmetricvehicle formations with
a D-dimensional torus as the information graph [5]. Scaling laws,
as a function of number of vehiclesN , are considered for certain
performance measures that quantify the sensitivity of the closed-loop
to stochastic disturbance. The scaling laws are shown to depend on
the dimensionD of the information graph.

The scaling laws of stability margin – defined as the absolutevalue
of the real part of the least stable closed-loop eigenvalue -for one-
dimensional platoons, and their dependence of asymmetry incontrol
gains, have been examined previously in [6]. An extension totwo-
dimensional formations is considered in [7].

In this paper, we investigate scaling laws for stability margin of
the closed-loop as a function of i) number of vehicles, ii) structure
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of the information graph, and iii) the control architecture(symmetric
or asymmetric control gains). We limit the study to a specialclass of
information graphs, namely,D-dimensional (finite) lattices. A lattice
is a natural choice in formations where relative measurements are
available between vehicles that are physically close [8].

The analysis of this paper is based on a PDE approximation of the
formation. Such a PDE approximation was originally proposed in [6]
for analysis of one-dimensional lattice; such approximations have
also been considered in [9] for multi-agent coordination problems.
A similar methodology based on partial difference equations has
been developed in [10]. In this paper, we extend the one-dimensional
analysis of [6] toD-dimensional lattices. We show that for a square
lattice with symmetric control architecture, the stability margin scales
as O(1/N2/D) for large N . Thus, one can improve the stability
margin by deploying a higher dimensional information graph. For a
non-square information graph, it is possible to improve thestability
margin as a function ofN . In fact, it is even possible to make
the stability margin independent ofN . The price one pays for such
improvement is either long range communication between vehicles
and/or increased number of lead vehicles.

The stability margin can be further improved by introducingsmall
amount of asymmetry (mistuning) in the control gains. In particular,
the stability margin for a square information graph with mistuned
control gains scales asO(1/N1/D) – i.e., the exponent is reduced by
a factor of2 compared to the symmetric case. In the mistuned design,
information from distinct neighbors is weighted differently according
to an optimal mistuning profile. Certain details that have been omitted
due to space limitations appear in a companion paper [11].

II. PROBLEM STATEMENT

We consider the formation control ofN identical vehicles. The
position of each vehicle is aDs-dimensional vector (withDs ≥
1). Ds is referred to as thespatial dimensionof the formation. Let
p
(d)
i ∈ R be thed-th coordinate of thei-th vehicle’s position, whose

dynamics are modeled by a double integrator:

p̈
(d)
i = u

(d)
i , d = 1, . . . ,Ds, (1)

whereu(d)
i ∈ R is the control input. The underlying assumption is

that the vehicles arefully actuated:
Assumption 1:Each of theDs coordinates of a vehicle’s position

can be independently actuated. �

The control objective is that the vehicles maintain a desired rigid
formation geometry while following a desired trajectory. The de-
sired formation geometry is specified by the desired values of
p
(d)
i (t) − p

(d)
j (t) for everypair of vehicles(i, j). The desired inter-

vehicular spacing is denoted by∆(d)
i,j along thed-axis of a Euclidean

coordinate system. These spacings must be mutually consistent, i.e.,
∆

(d)
i,j = ∆

(d)
i,k + ∆

(d)
k,j for every triplei, j, k. Since we consider rigid

formations,∆(d)
i,j ’s are assumed to be constant and known a priori.

In this paper, we consider the desired reference trajectoryof the
formation to be of constant-velocity type and it is known only to a
few lead vehicles. We introduceNr fictitious “reference vehicles”,
one for each lead vehicle. A reference vehicle perfectly tracks its
own desired trajectory, and the lead vehicle can measure therelative
position between itself and its corresponding reference vehicle.

The control law is distributed and described in terms of an
information graph:

Definition 1: An information graphis an undirected graphG =
(V,E), where the set ofnodesV = {1, 2, . . . , N,N + 1, . . . , N +
Nr} consists ofN real vehicles andNr reference vehicles. Two
nodesi and j are calledneighbors if (i, j) ∈ E, and the set of
neighbors ofi are denoted byNi. �
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Each vehiclei is allowed to use the following information in
computing its control signal: (i) measurements of relativepositions
pi(t) − pj(t), j ∈ Ni, with respect to its neighbors as specified by
the information graph, and (ii) its own velocity as well as the desired
velocity of the formation. The control law is:

u
(d)
i =

X

j∈Ni

−k(d)
(i,j)(p

(d)
i − p

(d)
j − ∆

(d)
i,j ) − b

(d)
i (ṗ

(d)
i − v∗(d)),

where i = 1, . . . , N , v∗(d) is the d-th component of the desired
velocity of the formation,k(d)

(·) are proportional gains andb(d)
(·)

are derivative gains. The closed-loop dynamics of thei-th vehicle
are obtained by combining the open loop dynamics (1) with the
distributed control law, which yields

p̈i =
X

j∈Ni

−k(i,j)(pi − pj − ∆i,j) − bi(ṗi − v∗), (2)

where the superscriptd is suppressed sincethe closed loop dynamics
in each of theDs spatial dimensions are decoupled(due to the fully
actuated assumption, and because the control inputu

(d)
i is based only

on measurements taken along thed-th dimension).
Let p∗i (t) denote the desired trajectory of thei-th vehicle – this

trajectory is uniquely determined by the trajectories of the reference
vehicles and the desired formation geometry. For example, if r is a
reference vehicle, thenp∗i (t) = p∗r(t) + ∆

(d)
i,r . To facilitate analysis,

we define the following coordinate transformation:p̃i := pi − p∗i , so
that ˙̃pi = ṗi − v∗. Substituting these into (2), we have

¨̃pi =
X

j∈Ni

−k(i,j)(p̃i − p̃j) − bi ˙̃pi. (3)

Since the trajectory of a reference vehicle is assumed to be equal to
its desired trajectory,̃pr = 0 if r is a reference vehicle. To express the
closed-loop dynamics of the formation compactly, we define:ψ :=
[p̃1, ˙̃p1, . . . , p̃N , ˙̃pN ]T . Using (3), the state-space model of the vehicle
formation can now be written compactly aṡψ = Aψ, whereA is
the closed-loop state matrix.

In this paper we restrict ourselves to lattices as information graphs:
Definition 2 (D-dimensional lattice):A D-dimensional lattice,

specifically an1×n2×· · ·×nD lattice, is a graph withn1n2 . . . nD

nodes. In theD-dimensional spaceRD , the coordinate of thei-th
node is~i := [i1, . . . , iD], whereid ∈ {0, 1, . . . , (nd − 1)}. An edge
exists between two nodes~i and~j if and only if ‖~i−~j‖ = 1, where
‖ · ‖ is the Euclidean norm inRD . A n1 × n2 × · · · × nD lattice is
denoted byZn1×n2×···×nD . �

A D-dimensional lattice is drawn inRD with a Cartesian reference
frame whose axes are denoted byx1, x2, . . . , xD.

Remark 1 (Spatial Dimension vs. Information Graph Dimension):
The dimensionD of the information graph is distinct from the spatial
dimensionDs. Figure 1 depicts an example of two formations in
space, one withDs = 1 and the other withDs = 2. The information
graph, depicted in part (c) of the figure, is the same3 × 3 two-
dimensional lattice for either formation (i.e.,D = 2). Note that the
coordinate axes used in defining a lattice are, in general, not related
to the coordinate axes in the physical spaceR

Ds .
Due to the fully actuated nature of dynamics, the spatial dimension

Ds plays no role in the results of this paper. The dimension of the
information graphD, on the other hand, will be shown to play a
crucial role. �

In this paper an information graphG is a latticeZn1×···×nD ,
where n1n2 . . . nD = N + Nr. For a givenN , the choice of
Nr,D, n1, n2, . . . , nD determines the specific information graph
within the class. An information graph is said to besquare if
n1 − 1 = n2 = . . . = nD .

For the ease of exposition, we only consider the following arrange-
ment of lead (and therefore of the reference) vehicles:

Assumption 2:The reference vehicles are arranged so that a node
~i := [i1, . . . , iD] in the information graph corresponds to a reference
vehicle if and only ifi1 = n1 − 1. �

Assumption 2 means that all reference vehicles are assumed to be
arranged on a single “face” of the lattice, and every vehicleon this
face is a reference vehicle. Therefore,N = (n1 − 1)n2 . . . nD and
Nr = n2 . . . nD . Assumption 2 simplifies the presentation of the
proposed methodology; other arrangements of reference vehicles can
also be considered and some of these are described in [11].

III. PDE-BASED ANALYSIS AND DESIGN

Our goal is to analyze the closed-loop stability margin as function
of the number of vehiclesN and the information graph dimensionD,
and to devise ways to improve the stability margin by appropriately
choosing the controller gains. Recall that thestability marginof the
closed loop, denoted byS, is the absolute value of the real part of
the least stable eigenvalue of the closed-loop state matrix. Instead
of analyzing the state matrix, we proceed by first approximating the
dynamics of the formation by a partial differential equation (PDE)
model for largeN . The PDE model yields insights that are useful
for analysis and control design.

A. PDE model of the controlled vehicle formation

We first redraw the information graph in such a way so that it
always lies in the unitD-cell [0, 1]D , irrespective of the number of
vehicles. Note that in graph-theoretic terms, a graph is defined only in
terms of its node and edge sets. A drawing of a graph in an Euclidean
space, also called an embedding,is merely a convenient visualization
tool. For the remainder of this section, we will consider thefollowing
drawing (embedding) of the latticeZn1×···×nD in the Euclidean
spaceRD. The coordinate of thei-th node, whose “original” position
was [i1, . . . , iD], is now drawn at position[i1c1, i2c2, . . . , iDcD],
wherecd := 1/(nd − 1), for d = 1, . . . ,D.

The starting point of the PDE derivation is to consider a func-
tion p̃(~x, t) : [0, 1]D × [0, ∞) → R that satisfies:p̃i(t) =
p̃(~x, t)|~x=[i1c1,i2c2,...,iDcD]. A function that is originally defined at
discrete points (the vertices of the latticeZn1×···×nD ) is approxi-
mated by a smooth function that is defined everywhere in[0, 1]D . The
original function is obtained by sampling the smooth approximation.

For the i-th node with coordinate~i = [i1c1, . . . , iDcD], we use
id+ and id− to denote the nodes with coordinates

id+ := [i1c1, . . . , id−1cd−1, (id + 1)cd, id+1cd+1, . . . , iDcD],

id− := [i1c1, . . . , id−1cd−1, (id − 1)cd, id+1cd+1, . . . , iDcD],

respectively. The closed-loop dynamics (3) can now be expressed as:

¨̃pi + bi ˙̃pi =−
D

X

d=1

k(i,id+)(p̃i −p̃id+)−
D

X

d=1

k(i,id−)(p̃i − p̃id−). (4)

We next introduce the scalar functionskf
d , k

b
d, b : [0, 1]D → R (for

d ∈ {1, . . . ,D}) defined according to the stipulation:

k(i,id+) = kf
d (~x)|~x=[i1c1,...,iDcD ], k(i,id−) = kb

d(~x)|~x=[i1c1,...,iDcD],

bi = b(~x)|~x=[i1c1,...,iDcD]. (5)

By using the following finite difference approximations forevery
d ∈ {1, . . . ,D}:

h p̃id+ − p̃id−

2cd

i

=
h∂p̃(~x, t)

∂xd

i

~x=[i1c1,...,iDcD ]
,

h p̃id+ − 2p̃i + p̃id−

c2d

i

=
h∂2p̃(~x, t)

∂xd
2

i

~x=[i1c1,...,iDcD]
,
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(a) A one-dimensional spatial formation.
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(b) A two-dimensional spatial formation.
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(c) The information graph for both (a) and (b).

Fig. 1. (a, b): Two distinct spatial formations that have thesame associated information graph, which is shown in (c). Red (filled) circles represent fictitious
reference vehicles and black (unfilled) circles represent real vehicles. Dashed lines (in (a), (b)) represent desired relative positions, while solid lines represent
edges in the information graph.

the closed-loop dynamics (4) is seen as a finite difference approxi-
mation of the following PDE:

“ ∂2

∂t2
+ b(~x)

∂

∂t

”

p̃(~x, t) =

D
X

d=1

“kf
d (~x) − kb

d(~x)

nd − 1

∂

∂xd

+
kf

d (~x) + kb
d(~x)

2(nd − 1)2
∂2

∂xd
2

”

p̃(~x, t). (6)

A more detailed derivation of (6) appears in [11], and is entirely
analogous to the PDE derivation in [6] for the one-dimensional case.
The PDE model (6) approximates the original coupled ODEs (3), and
the approximation improves as each of thend’s gets larger.

Under Assumption 2, the boundary condition of the PDE (6) is
of the Dirichlet type on the face of the unit cell with the reference
vehicles, and is of the Neumann type on all other faces:

p̃(1, x2, . . . , xD, t) = 0,
∂p̃

∂x1
(0, x2, . . . , xD, t) = 0,

∂p̃

∂xd
(~x, t)|xd=0 or 1 = 0, (d > 1). (7)

B. Stability margin with symmetric control

Definition 3: The control law issymmetricif every vehicle uses
the same gains:k(i,j) = k0, for all (i, j) ∈ E and bi = b0 for all
i ∈ V, wherek0 and b0 are positive constants. �

In case of symmetric control, we have for everyd = 1, . . . ,D,

kf
d (~x) + kb

d(~x) = 2k0, kf
d (~x) − kb

d(~x) = 0, b(~x) = b0,

and the PDE (6) simplifies to a damped wave equation:
“ ∂2

∂t2
+ b0

∂

∂t

”

p̃(~x, t) = L0p̃(~x, t), (8)

whereL0 is the Laplacian operatorL0 =

D
X

d=1

k0

(nd − 1)2
∂2

∂xd
2

. The

analysis of the stability margin requires consideration ofthe eigen-
value problem

L0φ(~x) = −λφ(~x).

For the given boundary condition (7), the eigenvalues and eigenfunc-
tions of L0 are given by

λ~l = π2k0

“ (2l1 − 1)2

4(n1 − 1)2
+

l22
(n2 − 1)2

+ · · · + l2D
(nD − 1)2

”

,

φ~l = cos
` (2l1 − 1)πx1

2

´

cos(l2πx2) · · · cos(lDπxD), (9)

where ~l = (l1, . . . , lD) and l1 ∈ {1, 2, . . . }, l2, . . . , lD ∈
{0, 1, 2, . . . }. The interested reader is referred to [12] for further
discussion on the eigenvalues of PDEs.

The eigenvalues of the PDE are obtained in terms of
λ~l. Specifically, we consider a Fourier series expansion
p̃(~x, t) =

P

φ~l(~x)α~l(t). In these Fourier eigenfunction
coordinates, taking a Laplace transform of (8) yields the
characteristic equations2 + b0s+ λ~l = 0. The two roots are

s±~l := 1
2

“

−b0 ±
p

b20 − 4λ~l

”

. If the discriminant b20 − 4λ~l is

positive, both the eigenvalues are real-valued. In this case, s+~l is

closer to the origin thans−~l ; so we call s+~l the ~l-th less-stable
eigenvalue. Theleast stableeigenvalue is the one among these that
is closest to the imaginary axis, and the stability margin isthe
absolute value of its real part. The least stable eigenvaluecan be
obtained by minimizingλ~l over theD-tuple (l1, . . . , lD). Using (9),
we see that this minimum is achieved atl1 = 1, l2 = · · · = lD = 0,
whereλ(1,0,...,0) = π2k0

4(n1−1)2
. Therefore,

smin := min
(l1,...,lD)

s+~l =
b0
2

“

− 1 +
“

1 − π2k0

b20(n1 − 1)2

”1/2”

= − π2k0

4b0(n1 − 1)2
+O(

1

n4
1

),

where the last equality holds whenn1 ≫ 1+π
√
k0/b0. The stability

margin is S = |Re(smin)|, and the analysis above leads to the
following result for the stability margin.

Theorem 1:Consider a vehicle formation with closed-loop dynam-
ics (3). With symmetric control under Assumption 2, the stability
marginS of the PDE model (8) of the closed loop dynamics has the
asymptotic formula

S =
π2k0

4b0

1

(n1 − 1)2
+O(

1

n4
1

), (10)

that holds asn1 → ∞. �

This result tells us that the stability margin of the vehicleformation
depends only uponn1 – the number of vehicles along thex1 axis. The
x1 axis is special because it is normal to the face of the graph with
the reference vehicles. In the PDE model, the boundary condition is
of the Dirichlet type on this face (see (7)). Analogous estimates also
hold with different arrangement of the reference vehicles (see [7],
[11] for details).

1) Square information graph:For a square information graph,
N = (n1−1)n2 . . . nD = (n1−1)D, and it follows from Theorem 1
that the stability margin is given by

S =
π2k0

4b0

1

N2/D
+O(

1

N4/D
). (11)

This shows that for a constant choice of symmetric control gains
k0 and b0, the stability margin approaches0 as N → ∞. The
dimensionD of the information graph determines the exponent of
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the scaling law forS. For example, the stability margin scales as
O(1/N2) for a one-dimensional information graph and asO(1/N)
for a two-dimensional information graph. Thus,for the same control
gains, increasing the dimension of the information graph improves
the stability margin significantly. In practice, this may require long
range communication, since neighbors in the information graph need
not be physically close. Recall that an information graph isa drawing
of the connectivity.

2) Non-square information graph:Consider anon-squareinfor-
mation graph withn1 = O(Nc), wherec ∈ [0, 1] is a fixed constant.
From Theorem 1, it follows thatS = O(1/N2c). By choosing
c < 1/D, the loss of stability marginS as a function ofN can
be slowed down, as compared to the square lattice. Thus, within
the class ofD-dimensional lattices and fixedN , certain information
graphs provide better scaling of the stability margin than others. In
fact, by holdingn1 to be a constant independent of the number of
vehiclesN , the stability margin can be bounded away from zero even
as the number of vehicles increases without bound. The priceone
pays for such improvement is the increased number of lead vehicles.
This is the case becauseNr = N/(n1 − 1) by Assumption 2.

It is important to stress that not all non-square graphs are advan-
tageous. For example, ifn1 = O(N) andn2 throughnD areO(1),
it follows from Theorem 1 that the stability marginS is O(1/N2).
This is the same asymptotic trend as in a one-dimensional information
graph. In this case, theD dimensional information graph effectively
behaves as a one-dimensional graph.

Figure 2 provides numerical corroboration of the results. The sta-
bility margin S as a function ofN for three distinct two-dimensional
information graphs are shown. The margin obtained by computing
the eigenvalues of the closed-loop state matrixA is compared against
the prediction by Theorem 1. The plots show Theorem 1 provides an
excellent prediction of the stability margin trends.
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n1 − 1 = 5 (SSM)
n1 − 1 = N/5 (SSM)
n1 − 1 =

√

N (SSM)
n1 − 1 = 5 (Theorem 1)
n1 − 1 = N/5 (Theorem 1)
n1 − 1 =

√

N (Theorem 1)

Fig. 2. Stability margin predicted by Theorem 1 for a vehicleformation with
two-dimensional information graphs of different “aspect ratios”. The control
gains used arek0 = 0.01, b0 = 0.5. The legend ”SSM” (abbreviation of
“state-space model”) means the stability margin is determined from numerical
computation of eigenvalues of the state matrixA. For the first case,n1−1 =
5 and n2 = N/5. Theorem 1 predicts that in this caseS = O(1). In the
second case,n2 = 5 and n1 − 1 = N/5, which leads toS = O(1/N2).
The third case is that of a square information graph,n1 − 1 = n2 =

√
N ,

for which S = O(1/N).

C. Mistuning-based (asymmetric) control design

We next consider the effect of small perturbation to the nominally
symmetric control. The objective of themistuning-based control
design is to introduce such perturbations with the goal of improving
the scaling law for the stability margin.

Specifically, we consider gain profileskf
d (~x) = k0 +

εk̃f
d (~x), kb

d(~x) = k0 + εk̃b
d(~x), whereε > 0 is a small parameter

signifying the small amount of mistuning and̃kf
d (~x), k̃b

d(~x) are
mistuning profilesthat satisfy‖k̃f

d (~x)‖∞ = 1 and ‖k̃b
d(~x)‖∞ =

1. That is, for everyd, we requiresup~x |kf
d (~x) − k0| ≤ ε and

sup~x |kb
d(~x) − k0| ≤ ε. Define k̃s

d(~x) := k̃f
d (~x) + k̃b

d(~x) and
k̃m

d (~x) := k̃f
d (~x) − k̃b

d(~x). The PDE (6) now becomes

“ ∂2

∂t2
+ b0

∂

∂t

”

p̃(~x, t) =
D

X

d=1

“ k0

(nd − 1)2
∂2

∂x2
d

”

p̃(~x, t)

+ ε
D

X

d=1

“ k̃s
d(~x)

2(nd − 1)2
∂2

∂x2
d

+
k̃m

d (~x)

nd − 1

∂

∂xd

”

p̃(~x, t). (12)

The control problem is to design the functionsk̃s
d(~x) and k̃m

d (~x) to
maximize the stability margin. For small mistuning, the solution to
this problem is given by the following theorem:

Theorem 2:Consider the problem of maximizing the stability
margin of PDE (12) by designing the proportional control gainsk(.)

d ,
where the gains are required to satisfy|k(.)

d − k0| ≤ ε, with ε > 0
being a small pre-specified constant. The optimal control gains are
given by:

kf
1 (~x) = k0 + ε, kb

1(~x) = k0 − ε, k
(.)
d (~x) = k0 (d ≥ 2). (13)

The resulting stability margin is given by

S =
2ε

b0

1

n1 − 1
+O(

1

n2
1

). (14)

The formula is asymptotic in the sense that it holds when
n1, . . . , nD → ∞ andε→ 0. �

It follows from the result above that the corresponding optimal
control gains for thei-th vehicle (i = 1, 2, . . . , N ) are k(i,i1+) =
k0 + ε, k(i,i1−) = k0 − ε and k(i,j) = k0 for all other neighbors
j. That is, the nominally symmetric control gains are mistuned only
along thex1 axis (normal to the face with reference vehicles).

Comparing Theorems 1 and 2, we see that the effect of mistuning
is to introduce a square root in the stability margin formula. For the
special case of a square information graph, the stability margin is
given by S = 2ε

b0

1

N1/D + O( 1

N2/D ). Thus, even for small values
of ε, mistuning can improve the closed-loop stability margin bya
significant amount, especially when the number of vehicles is large.
Note that the improvement over symmetric control is broughtabout
by changes in the proportional gainsk(·)

i alone. Changes in the
derivative gainsbi do not affect the asymptotic trend of the stability
margin. Using the same perturbation method as in the proof of
Theorem 2, we can see that it is not possible to reduce it toO(1/n1)
(O(1/N1/D) for square information graph) by small changes in the
derivative gains.

Numerical verification appears in Figure 3. The proportional con-
trol gains are perturbed from their nominal symmetric values by
±10%. The figure shows that i) the eigenvalues of the PDE (12)
closely match the closed-loop eigenvalues of the formation(A ma-
trix), and ii) the mistuned eigenvalues show significant improvement
compared to the nominally symmetric case. The improvement is
particularly noticeable for large values ofN , while being significant
even for small values ofN .

Proof of Theorem 2.[sketch, see [11] for details] The proof proceeds
by using a perturbation method. The eigenvalues are obtained by
taking the Laplace transform of the perturbed PDE (12). Forε = 0,
the eigenvaluess(0)~l

and the corresponding eigenfunctionφ(0)
~l

have
already been obtained (see (9)). DenotingP(s) := s2 + b0s − L0,
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Fig. 3. Improvement in the stability marginS by mistuning for a vehicle
formation with two-dimensional square information graph.The nominal
control gains arek0 = 0.01, b0 = 0.5, and the mistuning amount is±10%
( ε = 0.001). The legends “SSM” and “PDE” correspond to the state-space
model and the PDE model, respectively, while “nominal” corresponds to
symmetric control.

we haveP(s
(0)
~l

)φ
(0)
~l

= 0. For ε > 0, we consider the eigensolution
in terms of regular perturbation about theε = 0 solution:

s~l = s
(0)
~l

+ εs
(ε)
~l

+O(ε2), φ~l = φ
(0)
~l

+ εφ
(ε)
~l

+O(ε2).

TheO(ε) balance gives:

P(s
(0)
~l

)φ
(ε)
~l

=
“

D
X

d=1

km
d (~x)

nd − 1

∂

∂xd
+

D
X

d=1

ks
d(~x)

2(nd − 1)2
∂2

∂x2
d

− b0s
(ε) − 2s

(0)
~l
s
(ε)
~l

”

φ
(0)
~l

=: R.

For a solutionφ(ε)
~l

to exist,R must lie in the range space of the

operatorP(s
(0)
~l

). SinceP(s
(0)
~l

) is self-adjoint, the range space is

orthogonal to its null space. So,< R,φ
(0)
~l

>= 0. We thus have the
following equation:

Z 1

0

..

Z 1

0

“

D
X

d=1

km
d (~x)

nd − 1

∂φ
(0)
~l

∂xd
+

D
X

d=1

ks
d(~x)

2(nd − 1)2

∂2φ
(0)
~l

∂x2
d

− b0s
(ε)
~l
φ

(0)
~l

− 2s
(0)
~l
s
(ε)
~l
φ

(0)
~l

”

φ
(0)
~l
dx1..dxD = 0.

Settingl1 = 1 and ld = 0 for d > 1 and following straightforward
manipulations, we obtain an asymptotic formula for the least stable
eigenvalue of PDE (12),

smin=s
(0)
min−

επ

2b0(n1 − 1)

Z 1

0

k̃m
1 (~x) sin

`

πx1

´

dx1

− επ2

4b0(n1 − 1)2

Z 1

0

k̃s
1(~x) cos2(

π

2
x1) dx1 +O(ε2),

where s(0)min is the least stable eigenvalue for theε = 0 problem.
To minimize the real part of the least stable eigenvalue, we need to
only choosek̃m

1 (~x), because the term involving̃km
1 (~x) is of order

1/(n1−1), whereas the term involving̃ks
1(~x) is of order1/(n1−1)2.

Therefore, we set

k̃s
d(~x) ≡ 0 ≡ k̃m

d (~x) for d = 2, . . . ,D, and k̃s
1(~x) ≡ 0.

This leads tok̃f
1 (~x) = −k̃b

1(~x) ⇔ k̃m
1 (~x) = 2k̃f

1 (~x). The stability
margin is maximized by making the integral

R 1

0
k̃m
1 (~x) sin(πx1)dx1

as large as possible. To do so, we setk̃m
1 (~x) to be the largest possible

value everywhere in the unit cell subject to the constraint|k(.)
d −

k0| ≤ ε. This give us the optimal control gains given in (13), and
the stability margin formula also follows.

D. Approximation error

The PDE model (6) is an approximation of the coupled-ODE
model (3) of the formation. Our analysis of the stability margin of
the formation (Theorem 1) is based on the least stable eigenvalue of
the PDE. The mistuning-based control design is also arrivedat by
designing for the PDE. For the conclusions derived from the PDE-
based analysis to be valid, one must address the following question:
is the least stable eigenvalue obtained from the PDE model a good
approximation of the least stable eigenvalue of the ODE model? The
answer happens to be yes, as the following result shows.

Lemma 1:With symmetric control (respectively, mistuning control
specified in Theorem 2), the difference between the stability margin
of the PDE model (6)-(7) and of the coupled-ODE model (3) is
O(1/n3

1) (respectively,O(1/n2
1) +O(ε2)). �

We see from the result above that the ratio of the difference
between the stability margin predictions by the PDE and ODE models
to the stability margin itself isO(1/n1), which is small for largen1.
The proof of the result is not included here due to space constraints;
the interested reader is referred to [11, Lemma 1].

IV. T IME DOMAIN SIMULATION

We now present results of the time-domain simulations that provide
further corroboration of the results, that the stability margin can be
improved by (i) using a higher-dimensional information graph with
symmetric control; and ii) by using mistuned control gains for the
same information graph. For the first set of simulations, we consider
N = 25 vehicles in a one-dimensional formation (Ds = 1). The
initial position and velocity of each vehicle are randomly drawn from
a uniform distribution on[−0.01, 0.01]. We carry out simulations
with two distinct information graphs for the same physical formation:
a 26 nodes (including 1 reference vehicle) one-dimensional lattice
and 6 × 5 nodes (including 5 reference vehicles) two-dimensional
lattice. Figures 4 (a) and (b) depict the trajectories of theposition
errors of the vehicles, for the one-dimensional and two-dimensional
information graphs, respectively. In both cases, the control law is
symmetric with gainsk0 = 0.01, b0 = 0.5. Comparing Figure 4
(a) and (b), we see that the transients due to initial conditions
decay faster with the two-dimensional information graph compared
to the one-dimensional case. This improvement is consistent with
the result of Theorem 1. The second set of simulations are carried
out to verify the effect of mistuning. We consider a formation with
15× 15 vehicles and15 reference vehicles employing a square two-
dimensional information graph – a16 × 15 nodes two-dimensional
lattice. The initial position and velocity of each vehicle are again
chosen as random small perturbation of the desired positionand
velocity. Figures 5 (a) and (b) depict the trajectories of the position
errors with symmetric and mistuned control gains, respectively. For
the symmetric case, the control gains arek0 = 0.01, b0 = 0.5. For
the mistuned caseε = 0.001, i.e., the gainsk(i,j) are perturbed by
±10% from the nominal symmetric valuek0. Comparing Figure 5
(a) and (b), we see that the transients due to initial conditions decay
faster for the mistuned design as compared to the symmetric case.
This improvement is consistent with results of Theorem 2.

V. D ISCUSSION

We studied the closed-loop stability margin with distributed control
of a network ofN vehicles, each modeled using a double integrator.
The effect of two main factors on the stability margin was examined:
(i) the structure of the information graph (within the classof D
dimensional lattices), and (ii) asymmetry in the use of information
from neighboring vehicles.
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Fig. 4. Comparison of symmetric control’s performance for the same
formation with one-dimensional and two-dimensional information graphs
respectively.

For a square lattice with symmetric control, the stability margin
approaches zero asO(1/N2/D) as N → ∞. Therefore, the sta-
bility margin can be improved by increasing the dimension ofthe
information graph. For a non-square information graph, thestability
margin can be made nearly independent of the number of vehicles by
choosing the “aspect ratio” appropriately. The trade-off is that increas-
ing the dimension of the information graph or choosing a beneficial
aspect ratio may require long range communication and/or entail an
increase in the number of lead vehicles. Our results are therefore
useful in investigating design trade-offs between performance and the
cost of designing information architectures for distributed control.

The other main contribution of this paper is the mistuning-based
control design. We showed that the stability margin can be improved
significantly by using a small amount of asymmetry (mistuning) in
control gains. In particular, for square lattices the stability margin can
be improved toO(1/N1/D), which is significant, especially for large
N . The additional information needed to implement the mistuned
control (as compared to the symmetric control) is minimal: every
vehicle should know the mistuning parameterε and the indices of its
neighbors in the information graph.

The results of the paper are derived by analysis of a PDE
approximation of the coupled-ODE model of the formation dynamics.
The PDE model provides insight into the role of asymmetry that the
coupled ODE model does not.

Although this paper considered only the arrangement of reference
vehicles on one face of the graph; it is straightforward to extend the
analysis to more general boundary conditions. In terms of exponent
of the scaling law, the asymptotic trend of the stability margin with
N does not change with different arrangements of the boundary
conditions (additional details appear in [7], [11]).
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