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Abstract— We describe a methodology for modeling, analysis, and dis-
tributed control design of a large vehicular formation whose information
graph is a D-dimensional lattice. We derive asymptotic formulae for
the closed-loop stability margin based on a PDE approximatin of the
formation. We show that the exponent in the scaling law for tte stability
margin is influenced by the structure of the information graph and by the
control architecture (symmetric or asymmetric). For a given fixed number
of vehicles, we show that the scaling law can be improved siditantly by
employing a higher dimensional information graph and/or byintroducing
small asymmetry (mistuning) in the nominally symmetric proportional
control gains. We also provide a characterization of the eror introduced
by the PDE approximation.

Index Terms— Distributed control, formation control, mistuning, par-
tial differential equation, stability margin.

|I. INTRODUCTION

We consider the problem of distributed control of a largeimalar
formation. The control objective is that vehicles maintaimesired
formation geometry while following a constant-velocityptydesired
trajectory. The desired formation geometry is specifiedeinms of
desired relative positions between pairs of vehicles. Thsirdd
trajectory of the formation is specified in terms of trajets of a
few lead vehicles. The problem is relevant to a number ofiegibns
such as formation control of aerial, ground, and autonomais-
cles for transportation, surveillance, reconnaissandae{sweeping
etc. [1], [2].

Each vehicle is modeled as a fully actuated point mass. Thans
that (i) the dynamics of each coordinate of the vehicle'sitfis
are modeled using a double integrator, (ii) the dynamicsglthe
coordinates are decoupled, and (iii) an independent fanta input
actuates each coordinate. A distributed control law is éxad the
control input for an individual vehicle depends on (i) itsrowelocity
and (ii) the relative position measurements with a smallsetitwf
vehicles (neighbors) in the formation. The neighbor relahip is

of the information graph, and iii) the control architectysgmmetric
or asymmetric control gains). We limit the study to a speciass of
information graphs, namely)-dimensional (finite) lattices. A lattice
is a natural choice in formations where relative measurésnare
available between vehicles that are physically close [8].

The analysis of this paper is based on a PDE approximatioheof t
formation. Such a PDE approximation was originally probise[6]
for analysis of one-dimensional lattice; such approxiomai have
also been considered in [9] for multi-agent coordinationlyems.
A similar methodology based on partial difference equatidras
been developed in [10]. In this paper, we extend the oneinaal
analysis of [6] toD-dimensional lattices. We show that for a square
lattice with symmetric control architecture, the stapiltargin scales
as O(1/N*P) for large N. Thus, one can improve the stability
margin by deploying a higher dimensional information grapbr a
non-square information graph, it is possible to improve stability
margin as a function ofV. In fact, it is even possible to make
the stability margin independent @¥. The price one pays for such
improvement is either long range communication betweericigzh
and/or increased number of lead vehicles.

The stability margin can be further improved by introducsigall
amount of asymmetry (mistuning) in the control gains. Intipatar,
the stability margin for a square information graph with tumed
control gains scales a3(1/N'/?) —i.e., the exponent is reduced by
a factor of2 compared to the symmetric case. In the mistuned design,
information from distinct neighbors is weighted differigraiccording
to an optimal mistuning profile. Certain details that haverbemitted
due to space limitations appear in a companion paper [11].

We consider the formation control a¥ identical vehicles. The
position of each vehicle is &,-dimensional vector (withD, >
1). D, is referred to as thepatial dimensiorof the formation. Let
pgd) € R be thed-th coordinate of thé-th vehicle’s position, whose
dynamics are modeled by a double integrator:

(d)

i

PROBLEM STATEMENT

P = d=1,...,D,, (1)

defined according to aimformation graph The existence of an edge where u € R is the control input. The underlying assumption is
(i,7) in the graph means and j can measure each other’s relativéhat the vehicles artully actuated

position and use that in computing their respective coritmplits.

The information graph has been recognized to play an impbrtecan be independently actuated.

role in closed-loop stability of the formation [3], [4]. Inracent work,
Bamiehet. al. studied controlledsymmetricvehicle formations with
a D-dimensional torus as the information graph [5]. Scalingslia

as a function of number of vehicled’, are considered for certain pl(-d)(t)

performance measures that quantify the sensitivity of theetl-loop
to stochastic disturbance. The scaling laws are shown terdepn
the dimensionD of the information graph.

The scaling laws of stability margin — defined as the absolatee
of the real part of the least stable closed-loop eigenvalfege ene-
dimensional platoons, and their dependence of asymmeitgritrol
gains, have been examined previously in [6]. An extensiobm
dimensional formations is considered in [7].

In this paper, we investigate scaling laws for stability giarof
the closed-loop as a function of i) number of vehicles, ifusture
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Assumption 1:Each of theD, coordinates of a vehicle’s position
d
The control objective is that the vehicles maintain a desiigid
formation geometry while following a desired trajectoryhel de-
sired formation geometry is specified by the desired valuBs o
— p;d)(t) for everypair of vehicles(i, j). The desired inter-
vehicular spacing is denoted lzlyz(f{j) along thed-axis of a Euclidean
coordinate system. These spacings must be mutually censiste.,
ALY = Al + ALY for every triplei, j, k. Since we consider rigid
formations,AEflj)’s are assumed to be constant and known a priori.

In this paper, we consider the desired reference trajecibthe
formation to be of constant-velocity type and it is knownyoto a
few lead vehicles. We introduc#’, fictitious “reference vehicles”,
one for each lead vehicle. A reference vehicle perfectlgkisaits
own desired trajectory, and the lead vehicle can measureetatve
position between itself and its corresponding referendecie

The control law is distributed and described in terms of an
information graph

Definition 1: An information graphis an undirected grapls =
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dVr} consists of N' real vehicles andV, reference vehicles. Two
nodesi and j are calledneighborsif (i,j) € E, and the set of
neighbors ofi are denoted by;. a



Each vehicle: is allowed to use the following information in  For the ease of exposition, we only consider the followinguage-
computing its control signal: (i) measurements of relafpasitions ment of lead (and therefore of the reference) vehicles:
pi(t) — p;(t), j € N;, with respect to its neighbors as specified by Assumption 2:The reference vehicles are arranged so that a node
the information graph, and (ii) its own velocity as well as tfesired i= [i1,...,ip] in the information graph corresponds to a reference

velocity of the formation. The control law is:

(d) Z —k b(_d) (Z‘)Z(_d) _

(d) (d) (d)
- AL,J ) - Y
JEN;

(d
(4,5) (p; ")

,U*(d))7

wherei = 1,...,N, v*® |s thed th component of the desired
velocity of the formatlon,k(_) are proportional gains and _d)
are derivative gains. The closed-loop dynamics of ik vehicle

are obtained by combining the open loop dynamics (1) with the

distributed control law, which yields

Bi= Y —kej (i —ps — Aij) —
JEN;

bi(pi —v"), 2
where the superscript is suppressed sindbe closed loop dynamics
in each of theD; spatial dimensions are decouplédue to the fully
actuated assumption, and because the control izmbl&ﬁs based only
on measurements taken along théh dimension).

Let p; (t) denote the desired trajectory of tle¢h vehicle — this
trajectory is uniquely determined by the trajectories @& taference
vehicles and the desired formation geometry. For example,is a
reference vehicle, thep; (¢t) = py(t) + Agdr) To facilitate analysis,
we define the following coordinate transformatigin:= p; — p}, so
thatp; = p; — v*. Substituting these into (2), we have

pi = Z —k 5 (Ps

JEN;

— bj) — bipi. ®3)
Since the trajectory of a reference vehicle is assumed tajbel éo
its desired trajectory), = 0 if r is a reference vehicle. To express th
closed-loop dynamlcs of the formation compactly, we define=
[p1, D1, - .., P~ Dn] T . Using (3), the state- -space model of the vehicl
formation can now be written compactly @s= A1, where A is
the closed-loop state matrix.

In this paper we restrict ourselves to lattices as inforamagraphs:

Definition 2 (D-dimensional lattice):A D-dimensional lattice,
specifically an; x ng X - - - x np lattice, is a graph witmins ... np
nodes. In theD-dimensional spacRD, the coordinate of thé-th
node isi := [i1,...,ip], whereig € {0,1,..., (ns — 1)}. An edge
exists between two nodeésandj if and only if ||i — j|| = 1, where
| - || is the Euclidean norm iiR”. A n; x na x --- x np lattice is
denoted bYZ,, xngyx---xnp - O

A D-dimensional lattice is drawn iR” with a Cartesian reference
frame whose axes are denoted by, z2, ..., zp.

Remark 1 (Spatial Dimension vs. Information Graph Dimemysio

vehicle if and only ifi; = nq — 1. a
Assumption 2 means that all reference vehicles are assumeéd t
arranged on a single “face” of the lattice, and every vehariethis
face is a reference vehicle. Thereforé,= (n1 — 1)n2...np and
N, .np. Assumption 2 simplifies the presentation of the
proposed methodology other arrangements of referendelesttan
also be considered and some of these are described in [11].

Our goal is to analyze the closed-loop stability margin axfion
of the number of vehicled” and the information graph dimensidn,
and to devise ways to improve the stability margin by appedely
choosing the controller gains. Recall that gtability marginof the
closed loop, denoted by, is the absolute value of the real part of
the least stable eigenvalue of the closed-loop state mdtrstead
of analyzing the state matrix, we proceed by first approxingathe
dynamics of the formation by a partial differential equati@®DE)
model for largeN. The PDE model yields insights that are useful
for analysis and control design.

PDE-BASED ANALYSIS AND DESIGN

A. PDE model of the controlled vehicle formation

We first redraw the information graph in such a way so that it
always lies in the unitD-cell [0, 1]7, irrespective of the number of
vehicles. Note that in graph-theoretic terms, a graph isiddfonly in
terms of its node and edge sets. A drawing of a graph in an daai
space, also called an embedding,is merely a convenierdlization

dool. For the remainder of this section, we will consider fibleowing

drawing (embedding) of the latticZ,, x...xn,, in the Euclidean
épacdRD. The coordinate of thé-th node, whose “original” position
was [i1,...,ip], is now drawn at positiorfiici,izcz,. ..
wherecg :=1/(ng — 1), ford=1,...,D.

The starting point of the PDE derivation is to consider a func
tion p(&,t) : [0,1]° x [0, o) — R that satisfies:p;(t)
DT, 1) |3=[i101,in00,..., 1- A function that is originally defined at
discrete points (the vertices of the latti@,, x...xn,,) IS approxi-
mated by a smooth function that is defined everywhei@,i”. The
original function is obtained by sampling the smooth appration.

For thei-th node with coordinaté = [iici,...,ipcp], we use
i andi?~ to denote the nodes with coordinates

,ipcp),

s

d—
(3

= [i101, e td—1Cd—1, (id —+ 1)Cd,id+1cd+1, .. .,iDCD],

= [i101, e ,idflcdfl, (’id — 1)Cd, id+1cd+1, ey Z'DCD]7

The dimensionD of the information graph is distinct from the spatialrespectively. The closed-loop dynamics (3) can now be eseeas:

dimension D;. Figure 1 depicts an example of two formations in

space, one wittDs = 1 and the other withDs = 2. The information
graph, depicted in part (c) of the figure, is the same 3 two-
dimensional lattice for either formation (i.e) = 2). Note that the
coordinate axes used in defining a lattice are, in generalratated
to the coordinate axes in the physical sp&dé.

Due to the fully actuated nature of dynamics, the spatiakdision

D plays no role in the results of this paper. The dimension ef th

pz + bzpz = _Z k(z Ld+)
d=1

D
ﬁid+)_z k(i,id*)(ﬁl a-). (4
d=1
We next introduce the scalar functiokg,kf;,b 0,11 — R (for
d € {1,...,D}) defined according to the stipulation:

ki aey= K5 (@) |5=liyer.....ipep]s keiia—y= k3(Z) | #=lirer,....ipep]s
bi = b(Z)|z=(ircq,.. )

sipepl:

information graphD, on the other hand, will be shown to play a

crucial role.

In this paper an information graptx is a lattice Z,, x...xnp,,
where nine...np = N + N,. For a given N, the choice of
Nr, D, ny,n2,...
within the class. An information graph is said to Ilsguare if

n—1=no=...=np.

,np determines the specific information graph

By using the following finite difference approximations fevery

de{l,...,D}:
[ﬁm —ﬁidf] _ [Bﬁ(f t)]
20d 8xd T=[i1¢1,..., ipcpl
(Buse =24 B ) _ 25 ]
c?l al’d —li1e1,minen]
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(a) A one-dimensional spatial formation.

Fig. 1.

(b) A two-dimensional spatial formation.

(c) The information graph for both (a) and (b).

(a, b): Two distinct spatial formations that have #aene associated information graph, which is shown in (c)l (Ried) circles represent fictitious

reference vehicles and black (unfilled) circles represeat vehicles. Dashed lines (in (a), (b)) represent desetdive positions, while solid lines represent

edges in the information graph.

the closed-loop dynamics (4) is seen as a finite differengeoap
mation of the following PDE:
0? kN (Z) — kY(Z) 0
(@J’_b( ) ) :1( nd—l 8xd

ki (@) + k5(E) 0% N
2(na —1)° 8l,dQ)zv(:c,t).
A more detailed derivation of (6) appears in [11], and is rehi
analogous to the PDE derivation in [6] for the one-dimensiaase.
The PDE model (6) approximates the original coupled ODEsai3)
the approximation improves as each of thgs gets larger.

Under Assumption 2, the boundary condition of the PDE (6)
of the Dirichlet type on the face of the unit cell with the nefiece
vehicles, and is of the Neumann type on all other faces:

MU

Jr

(6)

]3(1,1’2,... (O T2, ...
Op

8xd

7:ED7t):0 7:1:D7t):07

op
T

(Z,t)]eg=00r1 =0, (d>1). (@)

B. Stability margin with symmetric control

Definition 3: The control law issymmetricif every vehicle uses
the same gainsk(; jy = ko, for all (i,5) € E andb; = bo for all
i € V, whereko and b, are positive constants. O
In case of symmetric control, we have for evety=1,...,D,

EX(Z) + k5(Z) = 2ko,  kI(Z) — k5(Z) =0,  b(&) = bo,

and the PDE (6) simplifies to a damped wave equation:
2

0 0 -
(g *bogy )P(E.1) = Lob(@. 1),
D

. . ko 02
where Ly is the Laplacian operatofy = -_—
0 p p 0 ; (0 —1)? 924

analysis of the stability margin requires consideratiorthaf eigen-
value problem

(8)

. The

Lod(Z) = —Ap(T).

For the given boundary condition (7), the eigenvalues agdréunc-
tions of L, are given by

o -1 B B
Al_”ko(z;(m—1)2 (s —1)2 T +(nD—1)2)’
(211—1)7T$1
¢y = cos ( 3 ) cos(lamze) - - - cos(Ipmzp), 9)
where | = (li,...,lp) and I1 € {1,2,...}, l2,...,lp €
{0,1,2,...

discussion on the eigenvalues of PDEs.

The eigenvalues of the PDE are obtained in terms of
Aj-  Specifically, we consider a Fourier series expansion
p(Z, 1) > ¢{@)ap(t). In these Fourier eigenfunction
coordinates, taking a Laplace transform of (8) vyields the
characteristic equations” + bos + A\;=0. The two roots are
st = 3 (b VB = 4x;). If the discriminantsd — 4);

In thi$,cal§ is

positive, both the eigenvalues are real-valued.

closer to the origin thars-; so we call s the I‘th less-stable
eigenvalue. Thdeast stableeigenvalue is the one among these that
is closest to the imaginary axis, and the stability marginthe
absolute value of its real part. The least stable eigenveare be
igbtained by minimizing\;- over theD-tuple (I1,...,Ip). Using (9),

we see that this minimum is achievedlat=1,lo =--- =1Ip =0,
Tk
where\(1o,....0) = m. Therefore,
b w2k 1/2
. + O 0
o= i = 5 (1 0 ) )
smo = i sf = 2 (=14 (1=
2
™ ko 1
- - o(—
4b0(n1 — 1)2 + (n‘f)’

where the last equality holds when > 1+7+/ko/bo. The stability
margin is S = |Re(smin)|, and the analysis above leads to the
following result for the stability margin.

Theorem 1:Consider a vehicle formation with closed-loop dynam-
ics (3). With symmetric control under Assumption 2, the siigh
margin.S of the PDE model (8) of the closed loop dynamics has the
asymptotic formula

o 71'2[{30 1

N 4b0 (n1 — 1)2
that holds as; — oo. O
This result tells us that the stability margin of the vehifdemation
depends only upon; —the number of vehicles along the axis. The
1 axis is special because it is normal to the face of the graph wi
the reference vehicles. In the PDE model, the boundary tiondis
of the Dirichlet type on this face (see (7)). Analogous eates also
hold with different arrangement of the reference vehickese([7],
[11] for details).

1) Square information graph:For a square information graph,

1

(10)

N = (n1—1)nz2...np = (n1—1)7, and it follows from Theorem 1
that the stability margin is given by
ko 1 1
= o NP +O(N4/D). (11)

This shows that for a constant choice of symmetric controhgya

}. The interested reader is referred to [12] for furtheko and by, the stability margin approaches as N — oco. The

dimensionD of the information graph determines the exponent of



the scaling law forS. For example, the stability margin scales as Specifically, we consider gain profilegfﬁ(f) ko +
O(1/N?) for a one-dimensional information graph and@§1/N) ek} (%), k5(Z) = ko + ek(&), wheree > 0 is a small parameter
for a two-dimensional information graph. Thder the same control signifying the small amount of mistuning arldg )y IZ:Z(E:) are
gains, increasing the dimension of the information graplprismes mistuning profilesthat satisfy ||k} (Z)|lc = 1 and ||k}(Z)|lc =
the stability margin significantlyln practice, this may require long 1. That is, for everyd, we requiresup; |kf( ¥) — ko] < e and
range communication, since neighbors in the informati@pgmeed sup; |k5(Z) — ko| < e. Define k3(Z) := k(&) + k%(#) and
not be physically close. Recall that an information grapa isawing k7' (%) := k! 2 (@) — k:d( ). The PDE (6) now becomes
of the connectivity.
2) Non-square information graphConsider anon-squareinfor- (8_2 b
mation graph withm; = O(N°), wherec € [0, 1] is a fixed constant. oz
From Theorem 1, it follows thas = O(1/N?¢). By choosing
¢ < 1/D, the loss of stability marginS as a function ofN can
be slowed down, as compared to the square lattice. Thusjnwith

5170 =3 (o om

(@) 9% kP& 8
+€Z( nd—128m y

)80

+

—) ). (12)

ng — 1 aicd

the class ofD-dimensional lattices and fixely, certain information
graphs provide better scaling of the stability margin thémers. In
fact, by holdingn, to be a constant independent of the number

The control problem is to design the functioh$(Z) and k7 (Z) to

dpaximize the stability margin. For small mistuning, theusiain to

vehiclesN, the stability margin can be bounded away from zero evehiS Problem is given by the following theorem:

as the number of vehicles increases without bound. The pmee
pays for such improvement is the increased number of leaitlesh
This is the case becausé. = N/(n1 — 1) by Assumption 2.

It is important to stress that not all non-square graphs dvara
tageous. For example, if; = O(N) andny throughnp are O(1),
it follows from Theorem 1 that the stability margi$i is O(1/N?).
This is the same asymptotic trend as in a one-dimensionainvtion

Theorem 2:Consider the problem of maximizing the stablllty
margin of PDE (12) by designing the proportional controlngahd ,
where the gains are required to satimg') — ko| <&, withe >0
being a small pre-specified constant. The optimal contragiggyare
given by:

graph. In this case, th® dimensional information graph effectively The resulting stability margin is given by

behaves as a one-dimensional graph.
Figure 2 provides numerical corroboration of the resultse §ta-

bility margin S as a function ofV for three distinct two-dimensional

k() = ko +e, K}(&) =ko —e, k(&) = ko (d>2). (13)
2¢ 1 1
T O(n—%)- (14)

information graphs are shown. The margin obtained by comgut The formula is asymptotic in the sense that it holds when

the eigenvalues of the closed-loop state ma#iis compared against n, . ..

the prediction by Theorem 1. The plots show Theorem 1 previade
excellent prediction of the stability margin trends.
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Fig. 2. Stability margin predicted by Theorem 1 for a vehfdemation with
two-dimensional information graphs of different “aspeatios”. The control
gains used aréo = 0.01, bp = 0.5. The legend "SSM” (abbreviation of
“state-space model”) means the stability margin is deteshifrom numerical
computation of eigenvalues of the state mathix For the first casep; —1 =

5 andng = N/5. Theorem 1 predicts that in this case= O(1). In the
second casepe = 5 andny — 1 = N/5, which leads toS = O(1/N?).
The third case is that of a square information graph,— 1 = no = VN,
for which S = O(1/N).

C. Mistuning-based (asymmetric) control design

We next consider the effect of small perturbation to the mathy
symmetric control. The objective of theistuningbased control
design is to introduce such perturbations with the goal gfrowving
the scaling law for the stability margin.

,nmp — oo ande — 0. O

It follows from the result above that the corresponding ropti
control gains for thei-th vehicle ¢ = 1,2,...,N) are k(; 1+ =
ko + &,k -y = ko — e and k(; jy = ko for all other neighbors
j. That is, the nominally symmetric control gains are mistlinaly
along thex; axis (normal to the face with reference vehicles).

Comparing Theorems 1 and 2, we see that the effect of migunin
is to introduce a square root in the stability margin formiar the
special case of a square information graph, the stabilitygmas
given by S = b NI/D + O( 2/D) Thus, even for small values
of £, mistuning can improve the closed-loop stability margin &y
significant amount, especially when the number of vehiclelarige.
Note that the improvement over symmetric control is brougtut
by changes in the proportional gairké') alone. Changes in the
derivative gains; do not affect the asymptotic trend of the stability
margin. Using the same perturbation method as in the proof of
Theorem 2, we can see that it is not possible to reduceGt(tg/n:)
(O(1/N*/P) for square information graph) by small changes in the
derivative gains.

Numerical verification appears in Figure 3. The proportican-
trol gains are perturbed from their nominal symmetric vallmgy
+10%. The figure shows that i) the eigenvalues of the PDE (12)
closely match the closed-loop eigenvalues of the formatidnma-
trix), and ii) the mistuned eigenvalues show significant ioyement
compared to the nominally symmetric case. The improvemsnt i
particularly noticeable for large values 6f, while being significant
even for small values oN.

Proof of Theorem 2[sketch, see [11] for details] The proof proceeds
by using a perturbation method. The eigenvalues are olotaiye
taking the Laplace transform of the perturbed PDE (12). d&~er 0,

the elgenvalueslﬁ) and the corresponding elgenfunctlatﬁO have
already been obtained (see (9)). DenotiRgs) := s> + bos — Lo,
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é % D. Approximation error
- g 8 8 The PDE model (6) is an approximation of the coupled-ODE
103 K Q 8 Qg ] model (3) of the formation. Our analysis of the stability giarof
¥ Q 00 0 4 the formation (Theorem 1) is based on the least stable eagigof
. ® Go 00 o the PDE. The mistuning-based control design is also arratedy
* Nominal SSM ® Q- ¢ designing for the PDE. For the conclusions derived from tB&EP
1074 © Nominal PDE o e based analysis to be valid, one must address the followiegtaun:
) Mistuned SSM © e is the least stable eigenvalue obtained from the PDE modelod g
Qg&?g&? ; bE “ e approximation of the least stable eigenvalue of the ODE tiffofike
‘ ‘ ‘ ‘ ‘ ‘ j® answer happens to be yes, as the following result shows.
10 20 50 100 N 200 500 1500 Lemma 1:With symmetric control (respectively, mistuning control

specified in Theorem 2), the difference between the stabiliargin
of the PDE model (6)-(7) and of the coupled-ODE model (3) is
Fig. 3. Improvement in the stability margifi by mistuning for a vehicle O(l/n%) (respectively,O(l/n%) + 0(62))_ O

formation with two-dimensional square information graphhe nominal . .
control gains arék = 0.01, bo = 0.5, and the mistuning amount &10% We see from the result above that the ratio of the difference

(& = 0.001). The legends “SSM” and “PDE” correspond to the state-spad2@tween the stability margin predictions by the PDE and Oliefs

model and the PDE model, respectively, while “nominal” esponds to to the stability margin itself i©(1/n1), which is small for larger; .

symmetric control. The proof of the result is not included here due to space wainsg;
the interested reader is referred to [11, Lemma 1].

we haveP(s")¢\”) = 0. Fore > 0, we consider the eigensolution

. . : IV. TIME DOMAIN SIMULATION
in terms of regular perturbation about the= 0 solution:

We now present results of the time-domain simulations thatige

sp= 5;0) + 55;6) +0(*), ¢r= ¢z(“0) + 5¢l(~6) +0(e”). further corroboration of the results, that the stabilityrgim can be
The O(¢) balance gives: improved by (i) using a higher-dimensional information grawith
Do b . , symmetric control; and ii) by using mistuned control gaios fhe

P(SQO))(ﬁ&s) _ (Z kq'(¥) O Z ka(z) o0 same information graph. For the first set of simulations, wesier

l l —ng—1 0xq ! 2(ng — 1)2 022 N = 25 vehicles in a one-dimensional formatio®{ = 1). The

initial position and velocity of each vehicle are randombawin from
a uniform distribution on[—0.01, 0.01]. We carry out simulations
For a solution¢<f) to exist, R must lie in the range space of theWith two diStinCt infqrmation graphs for t_he same physicm_hﬁation:

©) } )5 o ~a 26 nodes (including 1 reference vehicle) one-dimensiondickat
operatorP(s;.”). SinceP(s;”) is self-adjoint, the range space isand ¢ x 5 nodes (including 5 reference vehicles) two-dimensional
orthogonal to its null space. Se; R, ¢l£0) >= 0. We thus have the lattice. Figures 4 (a) and (b) depict the trajectories of plsition

— bos'® — 28;0)8;5))¢§O) =: R.

following equation: errors of the vehicles, for the one-dimensional and twoedisional
1 1 D k() 8¢£0) D (2 82¢£0) information graphs, respectively. In both cases, the obraw is

/ / (Zd_‘”_l z ﬂ 12 symmetric with gainsko = 0.01, by = 0.5. Comparing Figure 4

o Jo \ina—1 duq 2(na —1)* 0Oz (@) and (b), we see that the transients due to initial coovti

decay faster with the two-dimensional information grapimpared
to the one-dimensional case. This improvement is congistéh
Settingl; = 1 andily = 0 for d > 1 and following straightforward the result of Theorem 1. The second set of simulations améedar
manipulations, we obtain an asymptotic formula for the lestsble out to verify the effect of mistuning. We consider a formatiwith

—bos o — 2S§P>slﬁs>¢l@)¢l£°>dx1..de —0.

eigenvalue of PDE (12), 15 x 15 vehicles andl5 reference vehicles employing a square two-
o e 1 dimensional information graph — ¥ x 15 nodes two-dimensional
Sminzsr(ni)n_m / k1" (%) sin (7?561) dzy lattice. The initial position and velocity of each vehiclesaagain
- 0

5 1 chosen as random small perturbation of the desired posdimh

7T / kS (2) COSQ(Em) dry + 0(52)7 velocity. Figures 5 (a) and (b) depict the trajectories & fosition

4bo(n1 — 1) Jo 2 errors with symmetric and mistuned control gains, respelsti For

where s°) is the least stable eigenvalue for the= 0 problem. the symmetric case, the control gains &te= 0.01, bo = 0.5. For
To minimize the real part of the least stable eigenvalue, eedrto the mistuned case = 0.001, i.e., the gainsk; ;) are perturbed by
only choosek?" (%), because the term involving™ (z) is of order +10% from the nominal symmetric valug,. Comparing Figure 5

1/(n1—1), whereas the term involvinks; (%) is of order1/(n; —1)%. (&) and (b), we see that the transients due to initial carmitidecay
Therefore, we set faster for the mistuned design as compared to the symmedse.c
- N - This improvement is consistent with results of Theorem 2.

This leads tok{ (#) = —k}(Z) & k{"(#) = 2k{ (). The stability  \e studied the closed-loop stability margin with distrisicontrol
margin is maximized by making the integrfif &i" (%) sin(7z1)dz1  of a network of ' vehicles, each modeled using a double integrator.
as large as possible. To do so, we B¢{() to be the largest possible The effect of two main factors on the stability margin wasreieed:
value everywhere in the unit cell subject to the constrgjt — (i) the structure of the information graph (within the clask D

ko| < e. This give us the optimal control gains given in (13), an@dimensional lattices), and (ii) asymmetry in the use of iinfation
the stability margin formula also follows. B from neighboring vehicles.
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Fig. 4. Comparison of symmetric control’s performance fbe tsame
formation with one-dimensional and two-dimensional infiation graphs
respectively.

For a square lattice with symmetric control, the stabilitargin
approaches zero a9(1/N*P) as N — oco. Therefore, the sta-
bility margin can be improved by increasing the dimensionthef
information graph. For a non-square information graph, stiadility
margin can be made nearly independent of the number of eshiigt
choosing the “aspect ratio” appropriately. The trade-®fhat increas-
ing the dimension of the information graph or choosing a beiaé
aspect ratio may require long range communication and/tilesm
increase in the number of lead vehicles. Our results aresfibrer
useful in investigating design trade-offs between perforoe and the
cost of designing information architectures for distrdgmicontrol.

The other main contribution of this paper is the mistuniagdd
control design. We showed that the stability margin can heraved
significantly by using a small amount of asymmetry (mistghim
control gains. In particular, for square lattices the diytiinargin can
be improved tcO(l/Nl/D), which is significant, especially for large
N. The additional information needed to implement the mistun
control (as compared to the symmetric control) is minimakrg
vehicle should know the mistuning parameteaind the indices of its
neighbors in the information graph.
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Fig. 5. Comparison of time-domain performance between sgimcand
mistuned control with the samis x 15 nodes (includingl5 reference vehi-
cles) two-dimensional square information graph. Only thst fi5 vehicles’
errors are shown.

(3]

(4

5

—_

(8]

El

The results of the paper are derived by analysis of a PDE

approximation of the coupled-ODE model of the formationaiyics.
The PDE model provides insight into the role of asymmetryt tha
coupled ODE model does not.

Although this paper considered only the arrangement ofeaf®
vehicles on one face of the graph; it is straightforward tteesd the
analysis to more general boundary conditions. In terms pbe&nt
of the scaling law, the asymptotic trend of the stability giarwith

10]

[11]

[12]

N does not change with different arrangements of the boundary

conditions (additional details appear in [7], [11]).
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