
Research Article

Stability of a Class of Fractional-Order Nonlinear Systems

Tianzeng Li and Yu Wang

School of Science, Sichuan University of Science and Engineering, Zigong 643000, China

Correspondence should be addressed to Yu Wang; wangyu 813@163.com

Received 23 July 2014; Revised 4 September 2014; Accepted 4 September 2014; Published 16 November 2014

Academic Editor: Zhengrong Xiang

Copyright © 2014 T. Li and Y. Wang. 	is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this letter stability analysis of fractional order nonlinear systems is studied. Some new su
cient conditions on the local (globally)
asymptotic stability for a class of fractional order nonlinear systems with order 0 < � < 2 are proposed by using properties of
Mittag-Le�er function and the Gronwall inequality. And the corresponding stabilization criteria are also given. 	e numerical
simulations of two systems with order 0 < � < 1 and two systems with order 1 < � < 2 illustrate the e�ectiveness and universality
of the proposed approach.

1. Introduction

During the last decade the fractional calculus has gained
importance in both theoretical and applied aspects of several
branches of science and engineering. 	ere are two essential
di�erences between integer order derivation and fractional
order derivation. Firstly, the integer order derivative indicates
a variation or certain attribute at particular time for a
mechanical or physical process, while the fractional order
derivative is concerned with the whole time domain. Sec-
ondly, the integer order derivative describes the local proper-
ties of a certain position, while the fractional order derivative
is related to the whole space for a physical process. 	en
many physical systems arewell characterized by the fractional
order state equations [1–4], such as fractional order Lotka-
Volterra equation [1] in biological systems, fractional order
Schödinger equation [2] in quantum mechanics, fractional
order Langevin equation [3] in anomalous di�usion, and
fractional order oscillator equation [4] in damping vibration.

However there are several open problems in this area.
Stability of fractional order systems is one of the most
fundamental and important issues. On the other hand,
because fractional di�erential operators are nonlocal and
have weakly singular kernels, some methods in dealing with
interorder systems cannot be simply extended to fractional-
order methods. To the best of knowledge, the stability of
fractional-order nonlinear systems is still relatively few. Ref-
erence [5–7] investigated the necessary and su
cient stability

conditions for linear fractional order di�erential equations
and linear time-delayed fractional di�erential equations. 	e
stability of �-dimensional linear fractional order di�erential
systems with order 1 < � < 2 has already been studied
in [8]. However, only under some special circumstances or
in certain cases, the practical problems may be regarded
as linear systems. 	erefore, stability of nonlinear system
is of great signi�cance, and it also has important value in
application. In [9], the stability of fractional nonlinear time-
delay systems for Caputo’s derivative are investigated, and
two theorems for Mittag-Le�er stability of the fractional
order nonlinear time-delay systems are proved. In [10], the
authors proposed the �nite-time stabilization of a class of
multistate time delay of fractional nonlinear systems. In [11,
12], the authors studied the stability of fractional nonlin-
ear dynamic systems using Lyapunov direct method with
the introductions of Mittag-Le�er stability and generalized
Mittag-Le�er stability notions. In [13], the authors studied
fractional order Lyapunov stability theorem and its applica-
tions in synchronization of complex dynamical networks. In
[14], some new su
cient conditions ensuring asymptotical
stability of fractional-order nonlinear system with delay are
proposed �rstly.

In this paper the stability of nonlinear fractional order
nonlinear system is studied. And by using the Gronwall
inequality and the properties of Mittag-Le�er function,
we proposed some new su
cient conditions on the local
(globally) asymptotic stability for a class of fractional order
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nonlinear systems with order 0 < � < 2. And the
corresponding stabilization criteria are also given. Finally,
four numerical simulation examples have illustrated the
e�ectiveness and universality of the proposed methods.

2. Fractional Order Derivative and
Mittag-Leffler Function

2.1. De�nitions of Fractional Derivative and Mittag-Le	er
Function. Fractional calculus plays an important role in
modern science [15–17]. Some de�nitions for fractional
derivatives are usually used, such as Grünwald-Letnikov
(GL), Riemann-Liouville (RL), and Caputo de�nition. In this
paper, we mainly use the Caputo de�nitions [15].

De�nition 1 (see [15]). 	e fractional integral ��−�� of func-
tion �(�) is de�ned as follows:

��−�� � (�) = 1Γ (�) ∫
�

�
(� − 	)�−1� (	) 
	, (1)

where fractional order � > 0, and Γ(�) = ∫∞0 ��−1
−�
� is the
gamma function.

De�nition 2 (see [15]). 	e Caputo derivative with order � of
function �(�) is given as

�
���� � (�)
= ��−(�−�)�


�
��� (�) = 1Γ (� − �) ∫
�

�
(� − 	)�−�−1�(�) (	) 
	,

(2)

where � − 1 < � < �, � ∈ �+.
	e formulas for Laplace transform of the Caputo frac-

tional derivative ����� �(�) have the following form [16]:

L { ����� � (�) ; �} = ��� (�) − �−1∑
	=0
��−	−1�(	) (0) , (3)

where � − 1 ≤ � < �, and �(�) = L{�(�); �} = ∫∞0 
−
��(�)
�.
As a generalization of the exponential function which is

frequently used in the solutions of integer-order systems, the
Mittag-Le�er function is frequently used in the solutions of
fractional systems. 	e de�nition and properties are given in
the following.

De�nition 3 (see [17]). 	eMittag-Le�er function is given as

�� (�) = ∞∑
	=0

�	Γ (�� + 1) , (4)

where � > 0 and � ∈ C.

	e generalization of Mittag-Le�er function with two
parameters is wildly used and de�ned as follows:

��,� (�) = ∞∑
	=0

�	Γ (�� + �) , (5)

where � > 0, � > 0, and � ∈ C.

Remark 4. If � = 1, we have ��,1(�) = ��(�), especially,�1,1(�) = �1(�) = 
�.
2.2. Properties of Mittag-Le	er Functions and the Gronwall
Inequality. In this section, we give the Gronwall inequality
and some important properties of the Mittag-Le�er func-
tions which are used in the following.

Lemma 5 (see [15]). Considering the Laplace transform of
Mittag-Le	er function with two parameters, we have

L {��−1��,� (−���)} = ��−��� + � , (R (�) > |�|1/�) , (6)

where � and � are, respectively, the variables in the time domain
and Laplace domain,R(�) stands for the real part of �, � ∈ R,
and L{⋅} denotes the Laplace transform.

Proof. 	e proof of this Lemma can be found in [15].

Lemma 6 (see [18, 19]). If 0 < � < 2, � ∈ R, and � satis�es �/2 < � < min{ ,  �}, there exist !1 > 0 and !2 > 0 such
that"""""��,� (�)""""" ≤ !1(1 + |�|)(1−�)/� exp (Re (�1/�)) + !21 + |�| ,

(7)

where | arg(�)| < �, |�| ≥ 0.
Lemma 7 (see [18, 19]). For the Mittage-Le	er function��,�(A��), there exist �nite real constants $��,1 ≥ 1, $��,� ≥ 1,
and $��,� ≥ 1 such that
��,1 (A��) ≤ $��,1 %%%%%%
A��%%%%%% , %%%%��,� (A��)%%%% ≤ $��,� %%%%%%
A��%%%%%% ,

for any 0 < � < 1,
��,� (A��) ≤ $��,� %%%%%%
A��%%%%%% , for any � > 1, � = 1, 2, �,

(8)

where A ∈ R
�×�.

Proof. 	e proof of this Lemma can be found in [18].

Lemma 8 (Gronwall inequality [19, 20]). Let � > 0, &(�) is
a nonnegative function locally integrable on [0, ') and *(�) is
a nonnegative, nondecreasing continuous function de�ned on[0, '), *(�) < - (constant), and suppose �(�) is nonnegative
and locally integrable on [0, ') with

� (�) ≤ & (�) + * (�) ∫�
0
(� − 	)�−1� (	) 
	, (9)

on this interval. 
en

� (�) ≤ & (�) + ∫�
0
[∞∑
	=1

(Γ (�) * (�))	Γ (��) (� − 	)	�−1& (	)] 
	.
(10)

Moreover, if &(�) is a nondecreasing function on [0, '), we have
� (�) ≤ & (�) �� (Γ (�) * (�) ��) . (11)
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3. Stability and Stabilization of Fractional
Order Nonlinear System

3.1. Stability and Stabilization of Fractional Order Nonlinear
System with Order 0 < � < 1. Firstly, we consider the Caputo
fractional nonlinear systems [16, 21]

�
0��� x (�) = f (x (�)) = Ax (�) + g (x (�)) (12)

with the initial condition x0 = x(0), where x(�) =(51(�), 52(�), . . . , 5�(�))
 ∈ R
� denotes the state vector of

the system, � ∈ (0, 1) is the order of the fractional-order
derivative, f : R

� → R
� de�nes a nonlinear vector �eld

in the �-dimensional vector space, and Ax(�) and g(x(�))
denote the linear and nonlinear parts of f(x(�)), respectively.
If f(x∗) = 0, the constant x∗ is called the equilibrium point
of Caputo fractional nonlinear system (12). Without loss of
generality, we suppose the equilibrium point is x = 0.
�eorem 9. 
e fractional order nonlinear system (12) is local
asymptotically stable, if it satis�es the following conditions:(1)Re(eig (A)) < 0 and 7 = −max Re(eig (A)) > Γ(�), whereΓ(⋅) is the gamma function; (2) g(x(�)) satis�es ‖g(x(�))‖ =9‖x(�)‖ as ‖x‖ → 0.
Proof. Applying the Laplace transform on (12), we have

?�X (?) − ?�−1x0 = AX (?) + L {g (x (�))} ; (13)

that is,

X (?) = (I?� − A)−1 (?�−1x0 + L {g (x (�))}) , (14)

where X(?) is the Laplace transform of x(�), I is an � × �
identity matrix, and L{⋅} denotes the Laplace transform. By
using the Laplace inverse transform, we obtain the solution
of (16),

x (�) = ��,1 (A��) x0
+ ∫�
0
(� − 	)�−1��,� (A(� − 	)�) g (x (	)) 
	. (15)

It follows from Lemma 7 that there exist constants -1 > 0
and-2 > 0 such that

‖x (�)‖ ≤ -1 %%%%%%
A��%%%%%% %%%%x0%%%%
+-2 ∫�

0
(� − 	)�−1 %%%%%%
A(�−�)�%%%%%% %%%%g (x (	))%%%% 
	.

(16)

Since matrix A is stable, there is a constant-3 > 0 such that‖
A��‖ ≤ -3
−��� . Substituting it into (16), one has
‖x (�)‖ ≤ -1-3 %%%%x0%%%% 
−���

+-2-3 ∫�
0
(� − 	)�−1
−�(�−�)� %%%%g (x (	))%%%% 
	. (17)

Based on the condition (2) ‖g(x(�))‖ = 9‖x(�)‖, that is,
lim‖x‖→0(‖g(x(�))‖/‖x(�)‖) = 0, there is a constant B > 0,
such that %%%%g (x (�))%%%% ≤ 1-2-3 ‖x (�)‖ , (18)

where ‖x(�)‖ < B. And (� − 	)� < �� − 	� when 0 < � < 1 and� > 	, then
‖x (�)‖ ≤ -1-3 %%%%x0%%%% 
−��� + ∫�0 (� − 	)�−1
−�(�−�)� ‖x (	)‖

≤ -1-3 %%%%x0%%%% 
−���+ ∫�0 (� − 	)�−1
−�(��−��) ‖x (	)‖ 
	.
(19)

Multiplying the inequality by 
��� , we will get

��� ‖x (�)‖ ≤ -1-3 %%%%x0%%%% + ∫�0 (� − 	)�−1
��� ‖x (	)‖ 
	.

(20)

Applying Lemma 8 (Gronwall inequality) to (20), we have


��� ‖x (�)‖
≤ -1-3 %%%%x0%%%% ��,1 (Γ (�) ��) ≤ -1-3-4 %%%%x0%%%% 
Γ(�)�� .

(21)

	en

‖x (�)‖ ≤ -1-3 %%%%x0%%%% ��,1 (Γ (�) ��) 
−���
≤ -1-3-4 %%%%x0%%%% 
−(�−Γ(�))�� .

(22)

	erefore, when � → ∞, ‖x(�)‖ → 0 for 7 > Γ(�), which
implies that the system (12) is asymptotically stable.

�eorem 10. 
e fractional order nonlinear system (12) is
globally asymptotically stable, if it satis�es the following con-
ditions: (1) g(x(�)) satis�es g(0) = 0 and the Lipschitz
condition with respect to x, that is, ‖g(x1) − g(x2)‖ ≤ D‖x1 −
x2‖; (2)Re(eig (A)) < 0 and 7 = −max Re(eig (A)) >D-3-4Γ(�), where -3 and -4 satisfy ‖
A�‖ ≤ -3
−�� and��,1(���) < -4
	�� .
Proof. Applying the Laplace transform and Laplace inverse
transform on (12), we obtain the solution of (12),

x (�) = ��,1 (A��) x0
+ ∫�
0
(� − 	)�−1��,� (A(� − 	)�) g (x (	)) 
	. (23)
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It follows from Lemma 7 that there exist constants -1 > 0,-2 > 0, and-3 > 0 such that

‖x (�)‖ ≤ -1 %%%%%%
A��%%%%%% %%%%x0%%%%
+-2 ∫�

0
(� − 	)�−1 %%%%%%
A(�−�)�%%%%%% %%%%g (x (	))%%%% 
	

≤ -1-3 %%%%x0%%%% 
−���
+-2-3 ∫�

0
(� − 	)�−1
−�(�−�)� %%%%g (x (	))%%%% 
	

≤ -1-3 %%%%x0%%%% 
−���
+ D-2-3 ∫�

0
(� − 	)�−1
−�(�−�)� ‖x (	)‖ 
	

≤ -1-3 %%%%x0%%%% 
−���
+ D-2-3 ∫�

0
(� − 	)�−1
−�(��−��) ‖x (	)‖ 
	.

(24)

Multiplying the inequality by 
��� , we will get

��� ‖x (�)‖

≤ -1-3 %%%%x0%%%% + D-2-3 ∫�0 (� − 	)�−1
��� ‖x (	)‖ 
	.
(25)

Applying Lemma 8 (Gronwall inequality) to (25), we have


��� ‖x (�)‖ ≤ -1-3 %%%%x0%%%% ��,1 (D-2-3Γ (�) ��)
≤ -1-3-4 %%%%x0%%%% 
��2�3Γ(�)�� . (26)

	en

‖x (�)‖ ≤ -1-3-4 %%%%x0%%%% ��,1 (D-2-3Γ (�) ��) 
���
≤ -1-3-4 %%%%x0%%%% 
−(�−��2�3Γ(�))�� . (27)

	erefore, when � → ∞, ‖x(�)‖ → 0 for 7 > D-2-3Γ(�),
which implies that the system (12) is globally asymptotically
stable.

	e controlled fractional order nonlinear system with
linear feedback control input is given as

�
0��� x (�) = f (x (�)) + u (�)

= (A + K) x (�) + g (x (�)) = Ax (�) + g (x (�)) ,
(28)

where u(�) = Kx(�) is the linear feedback control input, A =
A + K, and the feedback gain matrix K ∈ R

�×� needs to be
determined.

	erefore, our aim is to design a suitable feedback gain
matrix K such that the controlled system is local (globally)
asymptotically stable.

�eorem 11. 
e controlled fractional order nonlinear system
(28) is local asymptotically stable, if it satis�es the following

conditions: (1)Re(eig (A)) < 0 and 7 = −max Re(eig (A)) >Γ(�); (2) g(x(�)) satis�es ‖g(x(�))‖ = 9‖x(�)‖ as ‖x‖ → 0.
Proof. 	e proof is similar to that of 	eorem 9.

�eorem 12. 
e controlled fractional order nonlinear system
(28) is globally asymptotically stable, if it satis�es the following
conditions: (1) g(x(�)) satis�es g(0) = 0 and the Lipschitz
condition with respect to x, that is, ‖g(x1) − g(x2)‖ ≤ D‖x1 −
x2‖; (2) Re(eig (A)) < 0 and 7 = −max Re(eig (A)) >D-3-4Γ(�), where -3 and -4 satisfy ‖
A�‖ ≤ -3
−�� and��,1(���) < -4
	�� .
Proof. 	e proof is similar to that of 	eorem 10.

3.2. Stability and Stabilization of Fractional Order Nonlinear
System with Order 1 < � < 2. Firstly, we consider the Caputo
fractional nonlinear systems [16, 21]

�
0��� x (�) = f (x (�)) = Ax (�) + g (x (�)) (29)

with the initial conditions x0 = x(0) and x1 = x(1)(0), where
x(�) = (51(�), 52(�), . . . , 5�(�))
 ∈ R

� denotes the state vector
of the system, � ∈ (1, 2) is the order of the fractional order
derivative, f : R� → R

� de�nes a nonlinear vector �eld in
the �-dimensional vector space, andAx(�) and g(x(�)) denote
the linear and nonlinear parts of f(x(�)), respectively.
�eorem 13. 
e fractional order nonlinear system (29) is
local asymptotically stable, if it satis�es the following condi-
tions: (1)Re(eig (A)) < 0 and 7 = −max Re(eig (A)) >Γ(�)1/�; (2) g(x(�)) satis�es ‖g(x(�))‖ = 9‖x(�)‖ as ‖x‖ → 0.
Proof. Applying the Laplace transform on (29), we have

?�X (?) − ?�−1x0 − ?�−2x1 = AX (?) + L {g (x (�))} ; (30)

that is,

X (?) = (I?� − A)−1 (?�−1x0 + ?�−2x1 + L {g (x (�))}) , (31)

where X(?) is the Laplace transform of x(�), and I is an � × �
identity matrix. By using the Laplace inverse transform, we
obtain the solution of (29),

x (�) = ��,1 (A��) x0 + ���,2 (A��) x1
+ ∫�
0
(� − 	)�−1��,� (A(� − 	)�) g (x (	)) 
	. (32)

It follows from Lemma 7 that there exist constants -1 > 0
and-2 > 0 such that

‖x (�)‖ ≤ -1 %%%%%%
A��%%%%%% %%%%x0%%%% +-2 %%%%%%
A��%%%%%% %%%%x1%%%% �
+ -3 ∫�

0
(� − 	)�−1 %%%%%%
A(�−�)�%%%%%% %%%%g (x (	))%%%% 
	.

(33)
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Since matrix A is stable, there is a constant-4 > 0 such that‖
A��‖ ≤ -4
−��� . Substituting it into (33), one has
‖x (�)‖ ≤ -1-4 %%%%x0%%%% 
−��� +-2-4 %%%%x1%%%% 
−����

+ -3-4 ∫�
0
(� − 	)�−1
−�(�−�)� %%%%g (x (	))%%%% 
	.

(34)

Based on the condition (2) ‖g(x(�))‖ = 9‖x(�)‖, that is,
lim‖x‖→0(‖g(x(�))‖/‖x(�)‖) = 0, there is a constant B > 0,
such that

%%%%g (x (�))%%%% ≤ 1-3-4 ‖x (�)‖ , (35)

where ‖x(�)‖ < B. And (� − 	)� > � − 	 when 1 < � < 2, and
then

‖x (�)‖ ≤ -1-4 %%%%x0%%%% 
−�� +-2-4 %%%%x1%%%% 
−���
+ ∫�
0
(� − 	)�−1
−�(�−�) ‖x (	)‖ 
	. (36)

Multiplying the inequality by 
��, we will get

�� ‖x (�)‖
≤ -1-4 %%%%x0%%%% +-2-4 %%%%x1%%%% � + ∫�0 (� − 	)�−1
�� ‖x (	)‖ 
	.

(37)

Applying Lemma 8 (Gronwall inequality) and Lemma 6 to
(37), we have


�� ‖x (�)‖ ≤ (-1-4 %%%%x0%%%% + -2-4 %%%%x1%%%% �) ��,1 (Γ (�) ��)
≤ (-1-4 %%%%x0%%%% + -2-4 %%%%x1%%%% �)
× (!1
Γ(�)1/�� + !21 + Γ (�) ��) .

(38)

	en

‖x (�)‖ ≤ !1 (-1-4 %%%%x0%%%% +-2-4 %%%%x1%%%% �) 
−(�−Γ(�)1/�)�
+ !2 (-1-4 %%%%x0%%%% + -2-4 %%%%x1%%%% �)1 + Γ (�) �� 
−��. (39)

	erefore, when � → ∞, ‖x(�)‖ → 0 for 7 > Γ(�)1/�, which
implies that the system (29) is asymptotically stable.

�eorem 14. 
e fractional order nonlinear system (29)
is globally asymptotically stable, if it satis�es the following
conditions: (1) g(x(�)) satis�es g(0) = 0 and the Lipschitz
condition with respect to x, that is, ‖g(x1) − g(x2)‖ ≤ D‖x1 −
x2‖; (2)Re(eig (A)) < 0 and 7 = −max Re(eig (A)) >D-3-4Γ(�), where -3 and -4 satisfy ‖
A�‖ ≤ -3
−�� and��,1(���) < -4
	�� .

Proof. Applying the Laplace transform and Laplace inverse
transform on (29), we obtain the solution of (29),

x (�) = ��,1 (A��) x0 + ���,2 (A��) x1
+ ∫�
0
(� − 	)�−1��,� (A(� − 	)�) g (x (	)) 
	. (40)

It follows from Lemma 7 that there exist constants -1 > 0,-2 > 0, and-3 > 0 such that

‖x (�)‖ ≤ -1 %%%%%%
A��%%%%%% %%%%x0%%%% +-2 %%%%%%
A��%%%%%% %%%%x1%%%% �
+ -3 ∫�

0
(� − 	)�−1 %%%%%%
A(�−�)�%%%%%% %%%%g (x (	))%%%% 
	

≤ -1-4
−��� %%%%x0%%%% +-2-4
−��� %%%%x1%%%% �
+ -3-4 ∫�

0
(� − 	)�−1
−�(�−�)� %%%%g (x (	))%%%% 
	

≤ -1-4
−��� %%%%x0%%%% +-2-4
−��� %%%%x1%%%% �
+ D-3-4 ∫�

0
(� − 	)�−1
−�(�−�)� ‖x (	)‖ 
	

≤ -1-4
−�� %%%%x0%%%% +-2-4
−�� %%%%x1%%%% �
+ D-3-4 ∫�

0
(� − 	)�−1
−�(�−�) ‖x (	)‖ 
	.

(41)

Multiplying the inequality by 
��, we will get

�� ‖x (�)‖ ≤ -1-4 %%%%x0%%%% +-2-4 %%%%x1%%%% �

+ D-3-4 ∫�
0
(� − 	)�−1
�� ‖x (	)‖ 
	. (42)

Applying Lemma 8 (Gronwall inequality) and Lemma 6 to
(42), we have


�� ‖x (�)‖
≤ (-1-4 %%%%x0%%%% + -2-4 %%%%x1%%%% �) ��,1 (D-3-4Γ (�) ��)
≤ !1 (-1-4 %%%%x0%%%% +-2-4 %%%%x1%%%% �) 
(��3�4)1/��
+ !2 (-1-4 %%%%x0%%%% +-2-4 %%%%x1%%%% �)1 + D-3-4Γ (�) �� 
−��.

(43)

	en

‖x (�)‖ ≤ !1 (-1-4 %%%%x0%%%% +-2-4 %%%%x1%%%% �) 
−(�−(��3�4)1/�)�
+ !2 (-1-4 %%%%x0%%%% +-2-4 %%%%x1%%%% �)1 + D-3-4Γ (�) �� 
−��.

(44)

	erefore, when � → ∞, ‖x(�)‖ → 0 for 7 >(D-3-4Γ(�))1/�, which implies that the system (29) is
globally asymptotically stable.
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Figure 1: Chaotic attractors in the fractional order Chen system with � = 0.95. 	e panels (a), (b), (c), and (d) show the 52 − 51, 53 − 51,53 − 52, and 3D views, respectively.

	e controlled fractional order nonlinear system with
linear feedback control input is given as

�
0��� x (�) = f (x (�)) + u (�)

= (A + K) x (�) + g (x (�)) = Ax (�) + g (x (�)) ,
(45)

where u(�) = Kx(�) is the linear feedback control input,

A = A + K, and the feedback gain K ∈ R
�×� needs to be

determined.
	erefore, our aim is to design a suitable feedback gain

matrix K such that the controlled system is local (globally)
asymptotically stable.

�eorem 15. 
e controlled fractional order nonlinear system
(45) is local asymptotically stable, if it satis�es the following

conditions: (1)Re(eig (A)) < 0 and 7 = −max Re(eig (A)) >Γ(�); (2) g(x(�)) satis�es ‖g(x(�))‖ = 9‖x(�)‖ as ‖x‖ → 0.
Proof. 	e proof is similar to that of 	eorem 13.

�eorem 16. 
e controlled fractional-order nonlinear system
(45) is globally asymptotically stable, if it satis�es the following
conditions: (1) g(x(�)) satis�es g(0) = 0 and the Lipschitz
condition with respect to x, that is, ‖g(x1) − g(x2)‖ ≤ D‖x1 −
x2‖; (2)Re(eig (A)) < 0 and 7 = −max Re(eig (A)) >D-3-4Γ(�), where -3 and -4 satisfy ‖
A�‖ ≤ -3
−�� and��,1(���) < -4
	�� .
Proof. 	e proof is similar to that of 	eorem 14.

Remark 17. 	ere are many fractional order chaotic (hyper-
chaotic) systems which satisfy ‖I(5(�))‖ = 9‖5(�)‖ as ‖5‖ →0 or the Lipschitz condition, such as fractional order Lorenz
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Figure 2: Time waveforms of state variables 51(*), 52(J), and 53(K) of the controlled fractional order Chen system.

system, fractional order Chen system, fractional order Lü
system, fractional order Liu system, and so forth [22]. 	ere-
fore, 	eorems 9–16 can be used as the criteria to control
chaos in a class of fractional-order systems. Compared with
nonlinear control methods, the advantage of linear control
lies in reducing control cost and is easy to implement.

Remark 18. 	e obtained su
cient conditions could be
applied to a class of fractional order hyperchaotic systems
[23–25]. On the one hand, complex multiscroll chaotic
systems have garnered much attention in recent years. J. H.
Lü has done a large amount of remarkable work. In fact, the
su
cient conditions could be applied to a class of complex
multiscroll chaotic systems, which could also generate a
complex four-scroll chaotic attractor.

4. Four Illustrative Examples

In this section, we apply the proposed method in stabilizing
a fractional order Chen system, Chua system, Lü system, and
Liu system to verify its e�ectiveness and universality.

4.1. Stabilization of Fractional Order Chaotic Chen System.
	e fractional order Chen system [21, 22] with order � = 0.95
can be de described by

�
0��� 51 = * (52 − 51) ,
�
0��� 52 = (K − *) 51 + K52 − 5153,
�
0��� 53 = 5152 − J53.

(46)

When the parameters are chosen as * = 35, J = 3, K = 28, and� = 0.95, system (46) exhibits the chaotic behavior, as shown
in Figure 1. We consider system (46) as form (12)

�
0��� x (�) = Ax (�) + g (x (�)) , (47)
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Figure 3: Chaotic attractors in the fractional order Chua system with � = 0.99. 	e panels (a), (b), (c), and (d) show the 52 − 51, 53 − 51,53 − 52, and 3D views, respectively.

where

A = ( −* * 0K − * K 00 0 −J) , g (x (�)) = ( 0−51535152 ) ,

x (�) = (51 (�)52 (�)53 (�)) .
(48)

Adding control input u(�) = Kx(�) to system (47), the

controlled system can be rewritten as �0��� x(�) = Ax(�) +
g(x(�)). It is easy to demonstrate that g(x(�)) satis�es

lim
‖�‖→0

(%%%%g (x (�))%%%%‖x (�)‖ )
≤ lim
‖x‖→0

√521523 + 521522
√521 = lim

‖x‖→0
√522 + 523 = 0;

(49)

that is, ‖g(x(�))‖ = 9‖x(�)‖. 	e feedback gain matrix is
selected as

$ = (0 −35 07 −30 00 0 0) (50)

which satis�es the conditions Re(eig(A)) < 0 and 7 =−max Re(eig(A)) = 2 > Γ(�) = 1.0315 in 	eorem 11. 	e
simulation result is shown in Figure 2, which shows that the
zero solution of the controlled system is asymptotically stable.

4.2. Stabilization of Fractional Order Chaotic Chua System.
	e fractional order Chua system [26] with order � = 0.99
can be described by

�
0��� 51 = * (52 − 51 − ℎ (51)) ,
�
0��� 52 = 51 − 52 + 53,
�
0��� 53 = −J52,

(51)
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Figure 4: Time waveforms of state variables 51(*), 52(J), and 53(K) of the controlled fractional order Chua system.

where ℎ(51) = K51 + 
51|51| + 
531. When the parameters are
chosen as * = 12.8, J = 19.1, K = −0.4, 
 = −1.1, 
 = 0.45, and� = 0.99, system (55) exhibits the chaotic behavior, as shown
in Figure 3.

We consider system (51) as form (12)

�
0��� x (�) = Ax (�) + g (x (�)) , (52)

where

A = (−* (1 + K) * 01 −1 10 −J 0) ,

g (x (�)) = (−*
51 """"51"""" − *
53100 ) , x (�) = (51 (�)52 (�)53 (�)) .
(53)

Adding control input u(�) = Kx(�) to system (52), the

controlled system can be rewritten as �0��� x(�) = Ax(�) +
g(x(�)). It is easy to demonstrate that g(x(�)) satis�es
lim
‖x‖→0

(%%%%g (x (�))%%%%‖x (�)‖ )
≤ lim
‖x‖→0

√*2
2541 + *2
2561
√521 = lim

‖x‖→0
√*2
2521 + *2
2541 = 0;

(54)

that is, g(x(�)) = 9‖x(�)‖. 	e feedback gain matrix is selected
as

K = ( 0 −12.8 0−1 −1 00 19.1 −2) (55)
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Figure 5: Chaotic attractors in the fractional order Lü system with � = 1.09. 	e panels (a), (b), (c), and (d) show the 52 −51, 53 −51, 53 −52,
and 3D views, respectively.

which satis�es the conditions Re(eig(A)) < 0 and 7 =−max Re(eig(A)) = 2 > Γ(�) = 1.0059 in 	eorem 11. 	e
simulation result is shown in Figure 4, which shows that the
zero solution of the controlled system is asymptotically stable.

4.3. Stabilization of Fractional Order Chaotic Lü System. 	e
fractional order Lü [27] system with order � = 1.09 can be de
described by

�
0��� 51 = * (52 − 51) ,
�
0��� 52 = −5153 + K52,
�
0��� 53 = 5152 − J53.

(56)

When the parameters are chosen as * = 36, J = 3, K = 20, and� = 1.09, system (56) exhibits the chaotic behavior, as shown
in Figure 5.

We consider system (56) as form (33)

�
0��� x (�) = Ax (�) + g (x (�)) , (57)

where

A = (−* * 00 K 00 0 −J) , g (x (�)) = ( 0−51535152 ) ,

x (�) = (51 (�)52 (�)53 (�)) .
(58)
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Figure 6: Time waveforms of state variables 51(*), 52(J), and 53(K) of the controlled fractional order Lü system.

Adding control input u(�) = Kx(�) to system (57), the

controlled system can be rewritten as �0��� x(�) = Ax(�) +
g(x(�)). It is easy to demonstrate that g(x(�)) satis�es

lim
‖x‖→0

(%%%%g (x (�))%%%%‖x (�)‖ )
≤ lim
‖x‖→0

√521523 + 521522
√521 = lim

‖x‖→0
√523 + 522 = 0;

(59)

that is, g(x(�)) = 9‖x(�)‖. 	e feedback gain matrix is selected
as

K = (0 −36 00 −22 00 0 0) (60)

which satis�es the conditions Re(eig(A)) < 0 and 7 =−max Re(eig(A)) = 2 > Γ(�) = 0.9555 in 	eorem 15. 	e
simulation result is shown in Figure 6, which shows that the
zero solution of the controlled system is asymptotically stable.

4.4. Stabilization of Fractional Order Chaotic Liu System. 	e
fractional order Liu system [28, 29] with order � = 1.05 can
be de described by

�
0��� 51 = * (52 − 51) ,
�
0��� 52 = J51 − K5153,
�
0��� 53 = −
53 + ℎ521.

(61)

When the parameters are chosen as * = 10, J = 40, K = 10,
 = 2.8, ℎ = 4, and � = 1.05, system (65) exhibits the chaotic
behavior, as shown in Figure 7.
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Figure 7: Chaotic attractors in the fractional order Liu systemwith � = 1.05.	e panels (a), (b), (c), and (d) show the 52−51, 53−51, 53−52,
and 3D views, respectively.

We consider system (61) as form (29)

�
0��� x (�) = Ax (�) + g (x (�)) , (62)

where

A = (−* * 0J 0 00 0 −
) , g (x (�)) = ( 0−K5153ℎ521 ) ,

x (�) = (51 (�)52 (�)53 (�)) .
(63)

Adding control input u(�) = Kx(�) to system (62), the

controlled system can be rewritten as �0��� x(�) = Ax(�) +
g(x(�)). It is easy to demonstrate that g(x(�)) satis�es

lim
‖x‖→0

(%%%%g (x (�))%%%%‖x (�)‖ )
≤ lim
‖x‖→0

√K2521523 + ℎ2541
√521 = lim

‖x‖→0
√K2523 + ℎ2521 = 0;

(64)

that is, g(x(�)) = 9‖x(�)‖. 	e feedback gain matrix is selected
as

K = ( 0 −10 0−40 −2 00 0 0) (65)
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Figure 8: Time waveforms of state variables 51(*), 52(J), and 53(K) of the controlled fractional order Liu system.

which satis�es the conditions Re(eig(A)) < 0 and 7 =−max Re(eig(A)) = 2 > Γ(�) = 0.9735 in 	eorem 15. 	e
simulation result is shown in Figure 8, which shows that the
zero solution of the controlled system is asymptotically stable.

5. Conclusion

Stability of the nonlinear dynamical systems is important for
scientists and engineers. Fractional dynamic systems were
used intensively during the last decade in order to describe
the behavior of complex systems in physical and engineering.
In this paper the stabilization of nonlinear fractional order
dynamic system is studied. And by using the Gronwall
inequality and the properties of Mittag-Le�er function,
we proposed some new su
cient conditions on the local
(globally) asymptotic stability for a class of fractional order
nonlinear systems. Finally the corresponding stabilization

criteria are also given. Four numerical simulation examples
have illustrated the e�ectiveness and universality of the
proposed methods.
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