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In this letter stability analysis of fractional order nonlinear systems is studied. Some new sufficient conditions on the local (globally)
asymptotic stability for a class of fractional order nonlinear systems with order 0 < « < 2 are proposed by using properties of
Mittag-Leffler function and the Gronwall inequality. And the corresponding stabilization criteria are also given. The numerical
simulations of two systems with order 0 < & < 1 and two systems with order 1 < & < 2 illustrate the effectiveness and universality

of the proposed approach.

1. Introduction

During the last decade the fractional calculus has gained
importance in both theoretical and applied aspects of several
branches of science and engineering. There are two essential
differences between integer order derivation and fractional
order derivation. Firstly, the integer order derivative indicates
a variation or certain attribute at particular time for a
mechanical or physical process, while the fractional order
derivative is concerned with the whole time domain. Sec-
ondly, the integer order derivative describes the local proper-
ties of a certain position, while the fractional order derivative
is related to the whole space for a physical process. Then
many physical systems are well characterized by the fractional
order state equations [1-4], such as fractional order Lotka-
Volterra equation [1] in biological systems, fractional order
Schodinger equation [2] in quantum mechanics, fractional
order Langevin equation [3] in anomalous diffusion, and
fractional order oscillator equation [4] in damping vibration.

However there are several open problems in this area.
Stability of fractional order systems is one of the most
fundamental and important issues. On the other hand,
because fractional differential operators are nonlocal and
have weakly singular kernels, some methods in dealing with
interorder systems cannot be simply extended to fractional-
order methods. To the best of knowledge, the stability of
fractional-order nonlinear systems is still relatively few. Ref-
erence [5-7] investigated the necessary and sufficient stability

conditions for linear fractional order differential equations
and linear time-delayed fractional differential equations. The
stability of n-dimensional linear fractional order differential
systems with order 1 < « < 2 has already been studied
in [8]. However, only under some special circumstances or
in certain cases, the practical problems may be regarded
as linear systems. Therefore, stability of nonlinear system
is of great significance, and it also has important value in
application. In [9], the stability of fractional nonlinear time-
delay systems for Caputos derivative are investigated, and
two theorems for Mittag-Leftler stability of the fractional
order nonlinear time-delay systems are proved. In [10], the
authors proposed the finite-time stabilization of a class of
multistate time delay of fractional nonlinear systems. In [11,
12], the authors studied the stability of fractional nonlin-
ear dynamic systems using Lyapunov direct method with
the introductions of Mittag-Leffler stability and generalized
Mittag-Leffler stability notions. In [13], the authors studied
fractional order Lyapunov stability theorem and its applica-
tions in synchronization of complex dynamical networks. In
[14], some new sufficient conditions ensuring asymptotical
stability of fractional-order nonlinear system with delay are
proposed firstly.

In this paper the stability of nonlinear fractional order
nonlinear system is studied. And by using the Gronwall
inequality and the properties of Mittag-Leftler function,
we proposed some new sufficient conditions on the local
(globally) asymptotic stability for a class of fractional order



nonlinear systems with order 0 < « < 2. And the
corresponding stabilization criteria are also given. Finally,
four numerical simulation examples have illustrated the
effectiveness and universality of the proposed methods.

2. Fractional Order Derivative and
Mittag-Leffler Function

2.1. Definitions of Fractional Derivative and Mittag-Leffler
Function. Fractional calculus plays an important role in
modern science [15-17]. Some definitions for fractional
derivatives are usually used, such as Griinwald-Letnikov
(GL), Riemann-Liouville (RL), and Caputo definition. In this
paper, we mainly use the Caputo definitions [15].

Definition 1 (see [15]). The fractional integral D, “ of func-

tion f(t) is defined as follows:
DO = )J t-0 f@dr, O

where fractional order & > 0, and I'(z) = JOOO # e dt is the

gamma function.

Definition 2 (see [15]). The Caputo derivative with order « of
function f(t) is given as

CDYf ()

—(n—a) 1 ! n-oa—1
DI g O g [0
)

wheren—1<a<nneZ".
The formulas for Laplace transform of the Caputo frac-
tional derivative SD? £ (t) have the following form [16]:

n-1

e{Dr fWish=F (o) - Y00, @)
k=0
wheren—1 <« < n,and F(s) = {f(¢); s IOO e f()dt

As a generalization of the exponential function which is
frequently used in the solutions of integer-order systems, the
Mittag-Leftler function is frequently used in the solutions of
fractional systems. The definition and properties are given in
the following.

Definition 3 (see [17]). The Mittag-Lefller function is given as
o) Zk
E = _—, 4
« (@) k;)l"(koul) @
where « > 0and z € C.

The generalization of Mittag-Leftler function with two
parameters is wildly used and defined as follows:

o) Zk
E, =y ——, 5
5@ ,;r(ka+ﬁ> (5)

wherea > 0, 3> 0,and z € C.
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Remark 4. If B = 1, we have E,,(z) = E,(2), especially,
E, (z) = E|(2) = €°.

2.2. Properties of Mittag-Leffler Functions and the Gronwall
Inequality. In this section, we give the Gronwall inequality
and some important properties of the Mittag-Leftler func-
tions which are used in the following.

Lemma 5 (see [15]). Considering the Laplace transform of
Mittag-Leffler function with two parameters, we have

a-p
P B, 5 (%)) = —SZ —

wheret and s are, respectively, the variables in the time domain
and Laplace domain, R(s) stands for the real part of s, A € R,
and Y-} denotes the Laplace transform.

(R@s) > A7), (6)

Proof. The proof of this Lemma can be found in [15]. O

Lemma 6 (see [18,19]). If0 < « < 2, B € R, and p satisfies
na/2 < p < min{m, e}, there exist C; > 0 and C, > 0 such
that

G,
1+z

7)

B (2)] < €, (1 + 12D exp (Re (27%)) +

where | arg(z)| < u, |z| = 0.

Lemma 7 (see [18, 19]). For the Mittage-Leffler function
E, g(At%), there exist finite real constants Ky > 1, Kg > 1,
and KEa/s > 1 such that

E, (A1) < Kg [ Al

, |Ea.« (A£Y)] < Kg_ |l

for any 0 < ¢ < 1,

«

Eop(Af%) < Kp [

, foranya>1, f=1,2,a,
(8)

where A € R™",
Proof. The proof of this Lemma can be found in [18]. O

Lemma 8 (Gronwall inequality [19, 20]). Let & > 0, u(t) is
a nonnegative function locally integrable on [0,T) and a(t) is
a nonnegative, nondecreasing continuous function defined on
[0,T), a(t) < M (constant), and suppose z(t) is nonnegative
and locally integrable on [0, T) with

2 <ul)+al) Jt (t -1z (1) dr, 9)
0

on this interval. Then

(T () a(t)" ka1
2(t) <u()+ L [Z o=
(10)
Moreover, ifu(t) is a nondecreasing function on [0, T), we have

z(t) <u()E, (T (a)a(t)tY). (1)
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3. Stability and Stabilization of Fractional
Order Nonlinear System

3.1. Stability and Stabilization of Fractional Order Nonlinear
System with Order 0 < « < 1. Firstly, we consider the Caputo
fractional nonlinear systems [16, 21]

ngx(t) =f(x(t) = Ax(t) + g (x(t)) (12)

with the initial condition x, = x(0), where x(t) =
(21 (£), x5 (8), ...,xn(t))T € R" denotes the state vector of
the system, « € (0, 1) is the order of the fractional-order
derivative, f : R” — R” defines a nonlinear vector field
in the n-dimensional vector space, and Ax(t) and g(x(t))
denote the linear and nonlinear parts of f(x(¢)), respectively.
If f(x*) = 0, the constant x* is called the equilibrium point
of Caputo fractional nonlinear system (12). Without loss of
generality, we suppose the equilibrium point is x = 0.

Theorem 9. The fractional order nonlinear system (12) is local
asymptotically stable, if it satisfies the following conditions:
(1) Re(eig (A)) < 0 and w = —max Re(eig (A)) > I'(x), where
[(-) is the gamma function; (2) g(x(t)) satisfies ||g(x(t))|l =
ollx(®)| as [Ix|| — o.

Proof. Applying the Laplace transform on (12), we have
S*X(S) - $*'x, = AX(S) + {g (x (1))}; (13)
that is,
X($) = (15" - &) (8" 'x, + R{g (x (1)}),  (14)

where X(S) is the Laplace transform of x(¢), I is an n x n
identity matrix, and £{-} denotes the Laplace transform. By
using the Laplace inverse transform, we obtain the solution
of (16),
X (t) = E(x,l (Ata) XO
t (15)
. j (t— 1B, (Alt - D) g (x (1)) dr.
0

It follows from Lemma 7 that there exist constants M; > 0
and M, > 0 such that

I @l < M, [ o]
(16)
| Ig (x ()] dx.

t
+ M, L t-1)*" l'eA(t_T)a

Since matrix A is stable, there is a constant M5 > 0 such that
€2 ]| < Mye ™" . Substituting it into (16), one has

Ix (Ol < M, M, ||xo]| ™"

C 17)
e, [ m e g ar

Based on the condition (2) |lg(x())| = olx(t)], that is,
lim”X"H0(|Ig(x(t))||/||x(t)||) = 0, there is a constant § > 0,
such that

1

M, M,

lg x )] < Ix @I, (18)

where ||x(t)]| < 8. And (t - 7)% < t* =" when 0 < & < 1 and
t > 1, then

t
—wt® -1 - _\*
Ix ()] < M, M; x| e + L t - e Ix (1))

o t o o
< MyM; [xofl e + L (=" Ix (1)) dr,
(19)

Multiplying the inequality by e“"", we will get

t
¢ Ix ()l < My M x| + L (t -0 Ix (o) dr.
(20)

Applying Lemma 8 (Gronwall inequality) to (20), we have

e Ix @)l

< MM, o] Eqy (T (@)£%) < M, M3 M, [ e
(21)

Then

Ix (£)]] < My M %] Eqy (T (0)£%) ™"
(22)
<M M;M, "Xon e T,

Therefore, when t — oo, [|x(t)] — 0 for @ > T'(«), which
implies that the system (12) is asymptotically stable. O

Theorem 10. The fractional order nonlinear system (12) is
globally asymptotically stable, if it satisfies the following con-
ditions: (1) g(x(¢)) satisfies g(0) = 0 and the Lipschitz
condition with respect to x, that is, |g(x;) — g(x,)| < Lllx; —
X[, (2)Re(eig (A)) < 0 and w = -max Re(eig (A)) >
LM;M,T(x), where M and M, satisfy |le*'|| < Mse ™" and
Eg (kt*) < M,

Proof. Applying the Laplace transform and Laplace inverse
transform on (12), we obtain the solution of (12),

x(t) = E,; (At%) x,

; (23)
v =D B (A - D) g d
0



It follows from Lemma 7 that there exist constants M; > 0,
M, > 0,and M; > 0 such that

Ix @1 < M, [ o]

t o
+ M, Jo t-1)*" ”eA(t*T) | lg x ()| dr

< M, M; [[x, e

t o
R e T I
0 (24)
< MM, |[xo| e
t

+ LM, M, L t — )% e x (1) dr

< MM, ||x0|| e
t o o
+ LM, M, L t-1)% e Ix (1) dr.

Multiplying the inequality by e“'", we will get

t(X
e Ix®)l

t
< MM x| + LM, M, J t-1)* e |x (7)| dr.

0
(25)
Applying Lemma 8 (Gronwall inequality) to (25), we have

¢ Ix (Ol < MM, |%o| Egy (LM, M,T () £) o6
26
< MM, M, |xo || =8

Then

(Ol < M, M; M, "XOH Eoz,l (LM2M3F () t“) ewt‘x o
7
< M, M, M, x| e @ HMEMI @

Therefore, whent — oo, [|x(t)]| — 0 for w > LM, M;I'(x),
which implies that the system (12) is globally asymptotically
stable. O

The controlled fractional order nonlinear system with
linear feedback control input is given as

SDIx () = £ (x (1)) + u (t)

=(A+K)x(t) +g(x (1) = Ax(t) + g (x (1)),
(28)

where u(t) = Kx(t) is the linear feedback control input, A=
A + K, and the feedback gain matrix K € R™” needs to be
determined.

Therefore, our aim is to design a suitable feedback gain
matrix K such that the controlled system is local (globally)
asymptotically stable.
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Theorem 11. The controlled fractional order nonlinear system
(28) is local asymptotically stable, if it satisfies the following
conditions: (1) Re(eig (A)) < 0 and w = —max Re(eig (A)) >
I(a); (2) g(x(2)) satisfies |g(x(0))]l = olx(®)] as x| — 0.

Proof. The proof is similar to that of Theorem 9. O

Theorem 12. The controlled fractional order nonlinear system
(28) is globally asymptotically stable, if it satisfies the following
conditions: (1) g(x(t)) satisfies g(0) = 0 and the Lipschitz
condition with respect to x, that is, |g(x;) — g(x,)| < Lllx; —
x%0; (2) Re(eig (A) < 0and w = —max Re(eig (A)) >
LM;M,T(x), where M and M, satisfy le*'|| < Mse ™" and
Eg (kt*) < M,

Proof. The proof is similar to that of Theorem 10. O

3.2. Stability and Stabilization of Fractional Order Nonlinear
System with Order 1 < « < 2. Firstly, we consider the Caputo
fractional nonlinear systems [16, 21]

SDx () = £ (x () = Ax (1) + g (x (t)) (29)

with the initial conditions x, = x(0) and x; = xV(0), where
x(t) = (x,(t), x,(t), ... ,xn(t))T € R” denotes the state vector
of the system, & € (1,2) is the order of the fractional order
derivative, f : R” — R” defines a nonlinear vector field in
the n-dimensional vector space, and Ax(¢) and g(x(¢)) denote
the linear and nonlinear parts of f(x(t)), respectively.

Theorem 13. The fractional order nonlinear system (29) is
local asymptotically stable, if it satisfies the following condi-
tions: (1) Re(eig (A)) < 0 and w = -max Re(eig(A)) >
T()''%; (2) g(x(t)) satisfies llg(x(t) = olx(¢)] as |x]| — 0.

Proof. Applying the Laplace transform on (29), we have
S*X(S) - 8% 'xy — 8% x, = AX(S) + 2 {g(x(1))}; (30)
that is,
X(8) = (18" - A) " (8%, + 8 7x, + L{g (x ()}), (31)

where X(S) is the Laplace transform of x(¢), and Iisann x n
identity matrix. By using the Laplace inverse transform, we
obtain the solution of (29),

x () = E,; (At%)x, + tE,, (AtY) x,

t (32)
+ L (t -1 "E,, (At - 1)) g (x (1)) dT.

It follows from Lemma 7 that there exist constants M; > 0
and M, > 0 such that

I (O < My || o] + M5 [ I

‘ a-1 || _A@-1)"
+ M, L (t =" A | lg (x (o)) .
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Since matrix A is stable, there is a constant M, > 0 such that
2] < M4ef“’t . Substituting it into (33), one has

Ix (Ol < M, My [xo]| " + MyM, x| et

t
+ MM, J (t- )" g (x (1)) d.
0
(34)
Based on the condition (2) [|g(x(t))ll = olx(#)[l, that is,

limyg -, o (IgEDN/IIX(@)[) = 0, there is a constant § > 0,
such that

1
M;M,

lg x (@) < Il I 5 (35)

where ||x(t)| < 8. And (t = 7)* >t —7Twhen 1 < & < 2,and
then

Ix (Ol < My M, [xo] e + MM, x| e™'t
(36)

t
+ J (t -1 Ix (1)) dr.
0
Multiplying the inequality by e, we will get

e x @)l

t
< MM, ||xo|| + MuMy |Ix | £ + L (t-7)* e Ix ()] dr.
(37)

Applying Lemma 8 (Gronwall inequality) and Lemma 6 to
(37), we have

e IIx ()] < (MM, ||xo|| + MyM, x| £) Eny (T () £%)

< (MM, ”Xo” + M, M, "Xl " t)

x (Cler(“)”at + G >
1+7T (x)t*
(38)

Then

(w— Jo
Ix )] < C, (MM, %] + M, M, ||x, || £) @ T

39
. Co (MM, g + Mo M, i) (39)

1+ (x)t*

—wt

Therefore, when t — 00, [|x(t)|| — 0 for @ > I'(«)"*, which
implies that the system (29) is asymptotically stable. O

Theorem 14. The fractional order nonlinear system (29)
is globally asymptotically stable, if it satisfies the following
conditions: (1) g(x(t)) satisfies g(0) = 0 and the Lipschitz
condition with respect to x, that is, |g(x,) — g(x,)I < Lllx; —
%[ (2)Re(eig(A)) < 0 and w = -max Re(eig (A)) >
LM;M,T (), where My and M, satisfy et < M,e™ and
Eg (kt*) < M,

Proof. Applying the Laplace transform and Laplace inverse
transform on (29), we obtain the solution of (29),

x(t) = E,; (At")xy + tE,, (At") x,

¢ (40)
+ J (t -1 "E,q (Alt - 1)) g (x (1)) dT.
0

It follows from Lemma 7 that there exist constants M; > 0,
M, > 0,and M; > 0 such that

I (1 < My o | x| + 0 || i £

t
+ M, j t-7)*" ueA(H)
0

s x )] d
< M1M4e_wta ||x0|| + M2M4e_wta ||X1 ” t

t o
a0 e g oy e

0 (41)
< M M,e™ ||x|| + MyMye™ x| ¢

t o
+ LM;M, L (t —7)* e |x ()| dr

< MyMe™ ||xo|| + MyMye™ |xy|| ¢
t

+ LM,M, L t-17)* e |x (7)] dr.

Multiplying the inequality by e**, we will get
e x ()]l < MM, x| + MM, ||x, | ¢
t (42)

+ LM, M, J (t - e x ()] .
0

Applying Lemma 8 (Gronwall inequality) and Lemma 6 to
(42), we have

¢ Ix ()]
< (MM, [|x|| + MyM, x| £) Eqy (LM3M,T () )
1/
< C, (MM, ||xo| + MyM, |[x, || £) eMeMa

C, (MM, |[xo|| + MM, ||x, | £)
1+ LM, M,T (a) t

—wt

(43)
Then
Ix (@) < C, (M, M, "Xoll + MM, ”XI “ t) ei(wi(LM3M4)l/a)t

. C, (MM, ||xo|| + MM, ||x, | )
1+ LM;M,T () t*

—wt

(44)

Therefore, when t — oo, [x(t)] — 0 for w >
(LM3M41"(oc))1/“, which implies that the system (29) is
globally asymptotically stable. O
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FIGURE 1: Chaotic attractors in the fractional order Chen system with « = 0.95. The panels (a), (b), (c), and (d) show the x, — x|, x; — x;,

X5 — X,, and 3D views, respectively.

The controlled fractional order nonlinear system with
linear feedback control input is given as

SDx (£) = £ (x (1)) + u(t)

=(A+K)x (1) +g(x() = Ax (1) +g(x (1)),
(45)

where u(f) = Kx(t) is the linear feedback control input,
A = A + K, and the feedback gain K € R™" needs to be
determined.

Therefore, our aim is to design a suitable feedback gain
matrix K such that the controlled system is local (globally)
asymptotically stable.

Theorem 15. The controlled fractional order nonlinear system
(45) is local asymptotically stable, if it satisfies the following

conditions: (1) Re(eig (A)) < 0 and w = —max Re(eig (A)) >
[(a); (2) g(x(t)) satisfies |g(x(t))ll = ollx(t)]| as [x]| — O.

Proof. The proof is similar to that of Theorem 13. O

Theorem 16. The controlled fractional-order nonlinear system
(45) is globally asymptotically stable, if it satisfies the following
conditions: (1) g(x(t)) satisfies g(0) = 0 and the Lipschitz
condition with respect to x, that is, |g(x;) — g(x,)| < Lllx; —
x; (2) Re(eig (A) < 0and w = -max Re(eig A) >
LM, M,T(«x), where My and M, satisfy [e®| < Mse™" and
Eg (kt*) < M.

Proof. The proof is similar to that of Theorem 14. O
Remark 17. There are many fractional order chaotic (hyper-

chaotic) systems which satisfy [|g(x(¢))]| = ollx(¢)| as x| —
0 or the Lipschitz condition, such as fractional order Lorenz
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FIGURE 2: Time waveforms of state variables x, (a), x,(b), and x;(c) of the controlled fractional order Chen system.

system, fractional order Chen system, fractional order Lii
system, fractional order Liu system, and so forth [22]. There-
fore, Theorems 9-16 can be used as the criteria to control
chaos in a class of fractional-order systems. Compared with
nonlinear control methods, the advantage of linear control
lies in reducing control cost and is easy to implement.

Remark 18. The obtained sufficient conditions could be
applied to a class of fractional order hyperchaotic systems
[23-25]. On the one hand, complex multiscroll chaotic
systems have garnered much attention in recent years. J. H.
Lt has done a large amount of remarkable work. In fact, the
sufficient conditions could be applied to a class of complex
multiscroll chaotic systems, which could also generate a
complex four-scroll chaotic attractor.

4. Four Illustrative Examples

In this section, we apply the proposed method in stabilizing
a fractional order Chen system, Chua system, Lii system, and
Liu system to verify its effectiveness and universality.

4.1. Stabilization of Fractional Order Chaotic Chen System.
The fractional order Chen system [21, 22] with order & = 0.95
can be de described by

c

oDixy =a(x, —x),

SDfx, = (c — a) x, + cx, — X, X3, (46)
c
oDf x5 = x,x, — bx;.

When the parameters are chosenasa = 35,b = 3, ¢ = 28, and

a = 0.95, system (46) exhibits the chaotic behavior, as shown
in Figure 1. We consider system (46) as form (12)

CDix () = Ax(t) + g (x (£), (47)
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FIGURE 3: Chaotic attractors in the fractional order Chua system with & = 0.99. The panels (a), (b), (c), and (d) show the x, — x, x5 — x;,

X5 — X,, and 3D views, respectively.

where

-a a 0 0
A=|{c-ac 0 |, gx ()= —x1%; |,
0 0 -b X1%,

x; (1)
x(t)=| x, @) ).
X3 (1)

Adding control input u(t) = Kx(f) to system (47), the
controlled system can be rewritten as OCDf‘x(t) = Ax(t) +
g(x(t)). It is easy to demonstrate that g(x(¢)) satisfies

i, (E01)
m s
=0\ [x (@

' 2,2 242
. X1X3 + X7X5
< lim ———M
0
Ix] — 2

(48)

(49)

= lim

X2+ x3=0;
x| —0

that is, gx@®))l =
selected as

olx(t)l. The feedback gain matrix is

0 -350
K=|7 -300
0 0 O

which satisfies the conditions Re(eig(X)) < 0and w =
—max Re(eig(A)) = 2 > I'(a) = 1.0315 in Theorem 11. The
simulation result is shown in Figure 2, which shows that the
zero solution of the controlled system is asymptotically stable.

(50)

4.2. Stabilization of Fractional Order Chaotic Chua System.
The fractional order Chua system [26] with order & = 0.99
can be described by

oCD;xxl =a(x,-x —h(x))),
(?Dfxz =X = Xy + X3, (51)

Cra _
o Dy x5 = —bx,,
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FIGURE 4: Time waveforms of state variables x, (a), x,(b), and x5(c) of the controlled fractional order Chua system.

where h(x;) = cx; +dx|x;| + exi . When the parameters are
chosenasa = 12.8,b = 19.1,¢c = -0.4,d = —1.1,e = 0.45,and

a = 0.99, system (55) exhibits the chaotic
in Figure 3.

Adding control input u(t) = Kx(t) to system (52), the
controlled system can be rewritten as OCDf‘x(t) = Ax(t) +

behavior, as shown  g(x(t)). It is easy to demonstrate that g(x(t)) satisfies

We consider system (51) as form (12) im ( ||g (x (t))H
. woo\ IO
oDix () = Ax (t) + g (x (1)), (52)
a?d?x} + a*e?x$
where < Jim =, lﬁmO\/aZdzx% +a’e’x} = 0;
x| — 2 x| —
—a(l+c) a 0 *
A= ( 1 -1 1) , (54)
0 5 0 that is, g(x(t)) = olx(#)|l. The feedback gain matrix is selected
—adx, |x,| - aex; x, (t) as
g(x (1) = 0 , x(t)=| x,(t) ). 0 -128 0
0 x5 (t) K= (—1 -1 0 > (55)
(53) 0 191 -2
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40
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FIGURE 5: Chaotic attractors in the fractional order Lii system with & = 1.09. The panels (a), (b), (c), and (d) show the x, — x,, x5 — x|, X3 — x,,

and 3D views, respectively.

which satisfies the conditions Re(eig(X)) < 0and w =

—max Re(eig(X)) =2 > I'(e) = 1.0059 in Theorem 11. The
simulation result is shown in Figure 4, which shows that the
zero solution of the controlled system is asymptotically stable.

4.3. Stabilization of Fractional Order Chaotic Lii System. The
fractional order Lii [27] system with order o = 1.09 can be de
described by

C

OD?xl = a(x2 - x1) >

CD¥x, = — (56)
oDy Xy = =X1X3 + €xy,

Cra _
oDi x5 = x,x, — bx;.

When the parameters are chosenasa = 36,b = 3, ¢ = 20, and
a = 1.09, system (56) exhibits the chaotic behavior, as shown
in Figure 5.

We consider system (56) as form (33)

CDix () = Ax(t) + g (x (£), (57)

where

-aa 0 0
A:<O c 0>, g(X(t))=<—x1x3>,
0 0 -b XX,

x ()
x(t)=| x(t) |.
X3 (1)

(58)
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FIGURE 6: Time waveforms of state variables x, (a), x, (), and x5(c) of the controlled fractional order Lii system.

Adding control input u(t) = Kx(t) to system (57), the
controlled system can be rewritten as OCDf‘x(t) = Ax(t) +
g(x(t)). It is easy to demonstrate that g(x(¢)) satisfies

i, (1260
m —_—
Ixi—o\ [ ()]

3/ x2x2 + x2x? (59)
. 1%X3 T X1X3 . S
< lim ——————— = lim x5 + x5 = 0;
Ixl —0 x2 [Ix[ — 0
1

that is, g(x(t)) = o[ x(¢)|. The feedback gain matrix is selected

as
0 -36 0
K=[0-20 (60)
0 0 0

which satisfies the conditions Re(eig(K)) < 0and w =
—max Re(eig(X)) = 2 > I'(e) = 0.9555 in Theorem 15. The
simulation result is shown in Figure 6, which shows that the
zero solution of the controlled system is asymptotically stable.

4.4. Stabilization of Fractional Order Chaotic Liu System. 'The
fractional order Liu system [28, 29] with order « = 1.05 can
be de described by

Cp«
oDixy=a(x, - x),
SDYx, = bx, — (61)
o p Xo = 00Xy — X X3,
Cra _ 2
o D; x5 = —dx; + hx].

When the parameters are chosen as a = 10, b = 40, ¢ = 10,
d =2.8,h =4, and « = 1.05, system (65) exhibits the chaotic
behavior, as shown in Figure 7.
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FIGURE 7: Chaotic attractors in the fractional order Liu system with o« = 1.05. The panels (a), (b), (c), and (d) show the x, — x|, x5 —x,, x; — x,,
and 3D views, respectively.

We consider system (61) as form (29) Adding control input u(t) = Kx(f) to system (62), the
controlled system can be rewritten as OCDf‘x(t) = Ax(t) +
g(x(t)). It is easy to demonstrate that g(x(¢)) satisfies
Cra _
ODtx(t) = Ax(t) +g(X(t)), (62) ( ||g(x(t))||)

o\ Tl

lIxl —0

where
c2x2x% + hix}
——— = lim \/c2x] + h?x? = 0;

a o 0 x| — 0 \/;f Ixl[ = 0
A= ( b 0 0 ) g(x(t) = (—cx1x3>, (64)

0 0-d hxf that is, g(x(t)) = olx(¢)|l. The feedback gain matrix is selected
(63) as

x; (1) 0 -10 0
x(t)=| x,(£) ]. K=(-40 -2 0 (65)
x5 (t) 0 0 0
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FIGURE 8: Time waveforms of state variables x, (a), x,(b), and x;(c) of the controlled fractional order Liu system.

which satisfies the conditions Re(eig(A)) < 0 and w =
—max Re(eig(A)) = 2 > T'(«) = 0.9735 in Theorem 15. The
simulation result is shown in Figure 8, which shows that the
zero solution of the controlled system is asymptotically stable.

5. Conclusion

Stability of the nonlinear dynamical systems is important for
scientists and engineers. Fractional dynamic systems were
used intensively during the last decade in order to describe
the behavior of complex systems in physical and engineering.
In this paper the stabilization of nonlinear fractional order
dynamic system is studied. And by using the Gronwall
inequality and the properties of Mittag-Leftler function,
we proposed some new sufficient conditions on the local
(globally) asymptotic stability for a class of fractional order
nonlinear systems. Finally the corresponding stabilization

criteria are also given. Four numerical simulation examples
have illustrated the effectiveness and universality of the
proposed methods.
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