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is paper investigates the stability of a class of stochastic nonlinear systems with Markovian switching via output-feedback. Based
on the backstepping design method and homogeneous domination technique, an output-feedback controller is constructed to
guarantee that the closed-loop system has a unique solution and is almost surely asymptotically stable.
e e�ciency of the output-
feedback controller is demonstrated by a simulation example.

1. Introduction


ere are lots of real systems, such as hierarchical control of
manufacturing systems, �nancial engineering, and wireless
communications systems, whose structure and parameters
may change abruptly. Further, if the occurrence of these
events is governed by aMarkov chain, these systems are called
Markovian jump systems. As one branch of modern control
theory, the study of Markovian jump systems has aroused
lots of attention with fruitful results achieved for linear
case, such as the controllability and observability [1], the
stability and stabilization [2–4], �2 control [5], �∞ control
[6, 7], �ltering [8], and model reduction [9]. For semilinear
stochastic di�erential equations with Markovian switching,
[10] discusses the stabilization problem; [11] discusses the
exponential stability problem for general nonlinear di�eren-
tial equations with Markovian switching. References [12, 13]
focus on the controller design for hybrid systems with the
global Lipschitz condition or linear growth condition. Based
on the backstepping design method developed by [14–17]
investigates the control of stochastic systems withMarkovian
switching.

Considering that the system states are incompletely
measurable, the problem of output-feedback control is more
important and challenging than that of the state-feedback
control in practical applications. Reference [18] addresses
the problem of global output-feedback and link position

tracking control of robot manipulators despite the fact
that only link position measurements are available in the
presence of incomplete model information. Reference [19]
presents the output-feedback tracking controllers design for
an underactuated ship and introduces global nonlinear coor-
dinate changes to transform the ship dynamics to a system
a�ne in the ship velocities to design observers to globally
exponentially estimate unmeasured velocities. Reference [20]
focuses on the problem of output-feedback tracking control
for stochastic Lagrangian systems with the unmeasurable
velocity. By using the structural properties of Lagrangian
systems, a reduced-order observer is skillfully constructed
to estimate the velocity. Inspired by [17], this paper aims to
solve the output-feedback stabilization problem for a class
of stochastic nonlinear systems with Markovian switching.
As demonstrated by [21], due to the fact that these classes
of systems’ Jacobian linearizations are neither controllable
nor feedback linearizable, the existing design tools are hardly
applicable.

Compared with the existing results, the contributions of
this paper are as follows:

(1) 
e results in [22] consider the stabilization problem
of stochastic nonlinear systems without consider-
ing Markovian switching. However, considering that
systems may o�en undergo abrupt disturbances in
the practical environment which can be modelled

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 292794, 7 pages
http://dx.doi.org/10.1155/2015/292794



2 Mathematical Problems in Engineering

as Markovian process, thus from both practical and
theoretical points of view, the stochastic nonlinear
systemsmodel withoutMarkovian switching is some-
what restrictive. 
is paper considers the Markovian
switching version of [22].

(2) Since the dri� terms and di�usions terms are all
Markovian switching, how to design an e�ective
observer to deal with the unmeasurable states and
how to design a control to guarantee that the closed-
loop system has a unique solution and is almost surely
asymptotically stable are nontrivial work.


e remaining part of this paper is organized as fol-
lows. Section 2 o�ers some preliminary results. 
e problem
investigated is described in Section 3. A�er that, in Section 4,
the output-feedback controller is designed followed by a
simulation example to show the e�ectiveness of the designed
controller in Section 5. Finally, the paper is concluded in
Section 6.

2. Preliminary Results and Useful Lemmas


e following notations will be used throughout this paper.
R+ denotes the set of all nonnegative real numbers, and R

�

denotes the real �-dimensional space: R≥1
odd

≜ {� ∈ R : � ≥1 and � is a ratio of odd integers}. One has �� = (�1, . . .,��)�, �1 = �1, and �� = �. For a given vector or matrix	, 	� denotes its transpose, Tr{	} denotes its trace when 	
is square, and |	| is the Euclidean norm of a vector 	. C�

denotes the set of all functions with continuous 
th partial
derivatives.

Consider the stochastic di�erential equations withMark-
ovian switching:

�� (�) =  (� (�) , �, � (�)) �� + � (� (�) , �, � (�)) ��, (1)

where �(�) ∈ R
� is the state of system; � is an�-dimensional

independent standard Wiener process de�ned on the com-
plete probability space (Ω,F,F�, �) with a �ltration F�
satisfying the usual conditions (i.e., it is increasing and right
continuous while F0 contains all �-null sets). Let �(�) be
a right-continuous homogeneous Markov process on the
probability space taking values in a �nite state space � ={1, 2, . . . ,N} with generator Γ = (�pq)N×N given by

�pq (�) = � {� (� + �) = q | � (�) = p}
= {{{

�pq� + � (�) if p ̸= q

1 + �pp� + � (�) if p = q

(2)

for any �, � ≥ 0.Here �pq > 0 is the transition rate from p to q
if p ̸= q while

�pp = − �∑
q=1,q ̸=p

�pq. (3)

We assume that the Markov process �(�) is independent of
the Wiener process �(�). 
e Borel measurable functions

 : R� × R+ × � → R
� and � : R� × R+ × � → R

�×
 are
locally Lipschitz in � ∈ R

� for all � ≥ 0.
For  (�, �, �(�)) ∈ !2,1(R� × R+ × �;R+), introduce the

in�nitesimal generator by

L (�, �, p)
=  � (�, �, p) +  � (�, �, p)  (�, �, p)
+ 12Tr [�� (�, �, p)  �� (�, �, p) � (�, �, p)] + II ,

(4)

where II = ∑�
q=1 �pq (�, �, q),  �(�, �, p) = % (�, �, p)/%�, �(�, �, p) = (% (�, �, p)/%�1, . . . , % (�, �, p)/%��), and ��(�, �, p) = (%2 (�, �, p)/%�p%�q)�×�.

De�nition 1 (see [14]). A stochastic process �(�) is said to
be bounded in probability if the random variable |�(�)| is
bounded in probability uniformly in �; that is,

lim�→∞sup
�>�0
� {|� (�)| > &} = 0. (5)

Lemma 2 (see [12]). For any ' > 0, de�ne the �rst exit time *�
as

*� = inf {� : � ≥ �0, |� (�)| ≥ '} . (6)

Assume that there exist a positive function  (�, �, �(�)) ∈!2,1(R� ×R+ × �;R+) and parameters � and 4 ≥ 0 such that
5 (�, *� ∧ �, � (*� ∧ �)) ≤ 4<�(��∧�−�0),
? @→ ∞ B⇒  � = inf

�≥�0 ,|�|>�
 (�, �, � (�)) @→ ∞. (7)

	en for every �(�0) = �0 ∈ R
� and �(�0) = i0 ∈ �, there exists

a solution �(�) = �(�0, i0; �, �(�)), unique up to equivalence, of
system (1).

Lemma 3 (see [12]). Let  (�, �, �(�)) ∈ !2,1(R� ×R+ × �;R+)
and let D1, D2 be bounded stopping times such that 0 ≤ D1 ≤D2 a.s. If  (�, �, �(�)) and L (�, �, �(�)) are bounded on � ∈[D1, D2] a.s., then

5 [ (�, D2, � (D2)) −  (�, D1, � (D1))]
= 5∫�2

�1
L (�, �, � (�)) ��. (8)

3. Problem Formulation

Consider the following stochastic nonlinear systems:

��� = (�
�
�+1 + �,�(�) (��)) �� + ��

�,�(�) (��) ��,

 = 1, . . . , � − 1,

��� = (J
� + �,�(�) (��)) �� + ��
�,�(�) (��) ��,

K = �1,
(9)
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where � = (�1, . . . , ��)� ∈ R
�, J ∈ R, and K ∈ R are the

system state and control input and output, respectively.�2, . . .,�� are unmeasurable. One has �� = (�1, . . . , ��)�, 
 = 1, . . . , �.
And one has L� ∈ R

≥1
odd

, 
 = 1, . . . , �. 
e nonlinear functions�,�(�) : ?� × � → ? and ��,�(�) : ?� × � → ?�, 
 = 1, . . . , �, are
assumed to beC1, vanishing at the origin.

We need the following assumption.

Assumption 4. 
ere are constants D ≥ 0 and M > 0 such that

NNNN�,�(�) (��)NNNN ≤ M (NNNN�1
NNNN(��+�)/�1 + ⋅ ⋅ ⋅ + NNNN��

NNNN(��+�)/��) ,
NNNN��,�(�) (��)NNNN
≤ M (NNNN�1

NNNN(2��+�)/(2�1) + ⋅ ⋅ ⋅ + NNNN��
NNNN(2��+�)/(2��)) ,

(10)

where R1 = 1 and R�+1 = (R� +D)/L� > 0. Let R0 = max1≤�≤�{R�}
and S� = R0/R�, 
 = 1, . . . , �. Meanwhile, one of the following
conditions should be satis�ed:

Condition (1) R� + D ≥ R�, if S� = 1 or S� ≥ 2 for all
 = 1, . . . , �.
Condition (2) R� + D ≥ 2R�, otherwise.

Remark 5. When � = {1}, L� = 1, and D = 0, 
 =1, . . . , �, Assumption 4 reduces to the natural condition used
for output-feedback controller design [14, 15]. 
erefore,
this assumption is general and reasonable. Condition (1)
or condition (2) in Assumption 4 plays an essential role in
designing the locally Lipschitz controller, which guarantees
the existence and uniqueness of the solution of system (9).

4. Output-Feedback Stabilization of System (9)

By introducing the coordinates

T1 = �1,
T� = ��U�� ,
V
� = J
�U��+1 ,

(11)

where W1 = 0, W� = (W�−1 + 1)/L�−1, and U > 1 is a constant to be
designed, with (11), system (9) can be written as

�T� = (UT
��+1 + �,�(�) (��)U�� )�� + ��
�,�(�) (��)U�� ��,

 = 1, . . . , � − 1,

�T� = (UV
� + �,�(�) (��)U�� )�� + ��
�,�(�) (��)U�� ��,

K = T1,

(12)

whose nominal nonlinear system is

�T� = T
��+1��, 
 = 1, . . . , � − 1,
�T� = V
���,
K = T1.

(13)


e design of output-feedback controller for system (9)
is divided into three steps. In Step 1, one supposes that the
states are available for measurement, and a state-feedback
controller is designed for nominal nonlinear system (13).

en in Step 2, by constructing a reduced-order observer, an
output-feedback controller is designed for (13). Finally, by
using the homogeneous domination technique, the output-
feedback stabilization problem is solved for system (9).

For simplicity, we assume D ∈ R
+
even

= {�/� :� being an even integer and � being an odd integer}.
Under this assumption, we know that R� ∈ R

+
odd

.
Choose ' ≥ 1 to satisfy R�+D ≥ (R�+D)/' and R0 ≥ (R�+D)/',
 = 1, . . . , �. With Assumption 4, Z is chosen in the following

manner:

(a) Choose Z = R0 if condition (1) of Assumption 4 is sat-
is�ed.

(b) Z can be chosen as any Z ∈ R
+
odd

satisfying R� +D ≥ Z ≥ max1≤�≤�{(R� + D)/', 2R�} if condition (2) of
Assumption 4 holds.

Step 1 (state-feedback controller design for nominal nonlinear
system (13)). We introduce the following transformation:

\1 = T�/�11 ,
\� = T�/��� − T∗�/��� , ^ = 2, . . . , �,
T∗1 = 0,
T∗� = −\��/��−1 _��/�

�−1 , � = 2, . . . , � + 1,
(14)

where _�, 1 ≤ 
 ≤ �, are positive constants to be designed later.
By choosing the Lyapunov function

 � (T�) = �∑
�=1
∫��

�∗�
(��/�� − T∗�/��� )(4��−�−��)/� ��

≜ �∑
�=1

�̀,
(15)

one has

L � (T�) = �−1∑
�=1

% �̀%T� T

�
�+1 + % �̀%T� V


� + �∑
�=1

�−1∑
�=1

% �̀%T� T

�
�+1

= �−1∑
�=1

% �̀%T� (T

�
�+1 − T∗
��+1)
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− �−1∑
�=1

% �̀%T� \
��+1
�/�
� _��+1
�/�

� + % �̀%T� V

�

+ �∑
�=1

�−1∑
�=1

% �̀%T� (\�+1 − \�_�)
��+1
�/� .

(16)

Note that

% �̀%T� = −
4'Z − D − R�Z

%T∗�/���%T�
⋅ ∫��

�∗�
(��/�� − T∗�/��� )((4�−1)�−�−��)/� ��,

% �̀%T� = \(4��−�−��)/�� ,
(17)

where 
 = 1, . . . , ^ − 1. By (17) and Young’s inequality in [14],
one gets

�−1∑
�=1

% �̀%T� (T

�
�+1 − T∗
��+1) ≤

�−1∑
�=1

�−1∑
�=1
��,�,1\4�� +

�−1∑
�=1
M�,1\4�� ,

�∑
�=1

�−1∑
�=1

% �̀%T� (\�+1 − \�_�)
��+1
�/�

≤ �∑
�=1

�−1∑
�=1
��,�,2\4�� +

�∑
�=1
M�,2\4�� ,

(18)

where �1,�,1 = �1,�,2 = 0, ��,�,1, ��,�,2, M�,1 and M�,2 are positive
constants.

Substituting (18) into (16), one gets

L � (T�) = −�−2∑
�=1
(_(��+�)/�

� − �−1∑
�=�+1

(��,�,1 + ��,�,1)

− M�,1 − M�,2)\4�� − (_(��−1+�)/�
�−1 − ��,�−1,2 − M�−1,1

− M�−1,2) \4��−1 + \(4��−�−��)/�� (V
� − T∗
��+1)
− (_(��+�)/�

� − M�,2) \4�� .

(19)

Choosing

_� = (1 + �−1∑
�=�+1

(��,�,1 + ��,�,1) + M�,1 + M�,2)
�/(��+�) ,

^ = 1, . . . , � − 2,
_�−1 = (1 + ��,�−1,2 + M�−1,1 + M�−1,2)�/(��−1+�) ,
_� = (1 + M�,2)�/(��+�) ,

(20)

one has

L � (T�) ≤ − �∑
�=1
\4�� + \(4��−�−��)/�� (V
� − T∗
��+1) . (21)

Step 2 (output-feedback controller design for nominal non-
linear system (13)). Since T2, . . . , T� are unmeasurable, we
construct a homogeneous observer:

̇*� = −'�−1T̂
�−1� ,
T̂� = (*� + '�−1T̂�−1)��/��−1 ,

(22)

where '�−1 is a constant gainwhich can be selected by a similar
manner in [22], ^ = 2, . . . , �, and T̂1 = T1. By replacing T� withT̂� in T∗�+1, one obtains the output-feedback controller:

V (T̂) = −_� (T̂�/��� + _�−1T̂�/��−1�−1 + ⋅ ⋅ ⋅
+ _�−1_�−2 ⋅ ⋅ ⋅ _1T�/�11 )��+1/� , (23)

where T̂ = (T1, T̂2, . . . , T̂�)�. Choose
f (*2, . . . , *�)
= �∑

�=2
∫�(4��−	−
�−1)/
��

�(4��−	−
�−1)/
�−1�

(���−1/(4��−�−��−1) − ��) ��, (24)

where �� = *� + '�−1T�−1.

e following design procedure proceeds in the similar

way as (22)–(35) in [22]. One can obtain

L (T1, . . . , T�, *2, . . . , *�) ≤ −12 (
�∑

�=1
\4�� +

�∑
�=2
<4�� ) , (25)

where <� = (T
�−1� −T̂
�−1� )�/(��
�−1), 
 = 2, . . . , �, and (T1, . . . , T�,*2, . . . , *�) =  �(T1, . . . , T�) + f(*2, . . . , *�).

e construction of (T1, . . . , T�, *2, . . . , *�) indicates that (T1, . . . , T�, *2, . . . , *�) is positive de�nite and proper with

respect to i = (T1, . . . , T�, *2, . . . , *�)�.
Hence, (25) implies that the closed-loop system described

by the compact form

�i = 5 (i) ��
= (T
12 , . . . , T
�−1� , V
� (T̂) , �+1, . . . , 2�−1)� �� (26)

is globally asymptotically stable, where � = −'�−�T̂
�−��−�+1, 
 =� + 1, . . . , 2� − 1.
By introducing the dilation weight

Δ = (R1, R2, . . . , R�⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
for �1 ,...,��

, R1, R2, . . . , R�−1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
for �2 ,...,��

) , (27)

we know that (26) is homogeneous of degree D.
Step 3 (homogeneous output-feedback controller design for
(9)). For system (12), we construct a homogeneous observer:

̇*� = −U'�−1T̂
�−1� ,
T̂� = (*� + '�−1T̂�−1)��/��−1 ,

^ = 2, . . . , �,
(28)
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where '1, . . . , '�−1 are de�ned in (22). We use the output-
feedback controller with the same structure as (23); speci�-
cally, V (T̂) = −_� (T̂�/��� + _�−1T̂�/��−1�−1 + ⋅ ⋅ ⋅

+ _�−1_�−2 ⋅ ⋅ ⋅ _1T�/�11 )��+1/� . (29)

Considering the closed-loop system (12), (28)-(29) can be
written as�i = U5 (i) �� + q�(�) (i) �� + r�

�(�) (i) ��, (30)

where

q�(�) (i) = (1,�(�) (�1) , 2,�(�) (�2)U�2 , . . . , �,�(�) (��)U�� , 0,
. . . , 0)� ,

r�(�) (i) = (�1,�(�) (�1) , �2,�(�) (�2)U�2 , . . . , ��,�(�) (��)U�� ,
0, . . . , 0)� .

(31)

Now, we state the main results in this paper.

�eorem 6. If Assumption 4 holds for the stochastic high-
order nonlinear system (9), with (11) and (28), under the out-
put-feedback controller (29) with U > U∗ = max{((&0 +&̃0)/&0)1/�, 1}, where &0, &̃0, &0, and � are positive constants, then
one has the following:

(1) For every �(�0) = �0 ∈ R
� and �(�0) = 
0 ∈ �, the

closed-loop system has a solution �(�) = �(�0, 
0; �,�(�)), unique up to equivalence.
(2) For any �0 ∈ R

� and 
0 ∈ �, the solution of the closed-
loop systems is almost surely asymptotically stable.

Proof. By the de�nition of  , we can conclude that

 � = inf
�≥�0 ,|�|>�

 (i (�)) @→ ∞ ⇐⇒ ? @→∞. (32)

From (21) and (25), considering that  (i) and 5(i) are
homogeneous of degree 4'Z−D and D, respectively, one obtains

% %i5 (i) ≤ −&0 ‖i‖4��Δ (33)

for a constant &0 > 0.
In view of Assumption 4, U > 1, one getsNNNNNNNNN
�,�(�) (��)U��

NNNNNNNNN ≤ vU
1−��

�∑
 =1

NNNNNT NNNNN(��+�)/�� ≤ vU1−�� ‖i‖��+�Δ , (34)

where v, v, and �� are positive constants. By (34), noting that% /%i� is homogeneous of degree 4'Z − D − ��, one arrives at
% %iq�(�) (i) =

�∑
�=1

% %i�
⋅ �,�(�) (��)U�� ≤ &0U1−�0 ‖i‖4��Δ , (35)

where �0 = min{��}1≤�≤� and &0 > 0 is a constant.

Similar to (35), we can obtain

12 Tr{r�(�)
%2 %i2r�

�(�)} ≤ &̃0U1−�̃0 ‖i‖4��Δ , (36)

where �̃0 > 0 and &̃0 > 0 are constants.
From (33), (35), and (36), noting that &0 is independent of&0 and &̃0, for system (30), we have

L |(30) = U% %i5 (i) + % %iq�(�) (i)
+ 12 Tr{r�(�)

%2 %i2r�
�(�)} +

�∑
s=1
��s s

≤ −U&0 ‖i‖4��Δ + (&0 + &̃0) U1−� ‖i‖4��Δ

+ �∑
s=1
��s s

≤ −U (&0 − (&0 + &̃0) U−�) ‖i‖4��Δ + �∑
s=1
��s s,

(37)

where � = min{�0, �̃0} > 0.
From the de�nition of U, one has &0 − (&0 + &̃0)U−� > 0.

By checking the controller design process, one can obtain∑�
s=1 ��s s = 0.
For any ' > 0, de�ne the �rst exit time:

*� = inf {� : � ≥ �0, |i| ≥ '} . (38)

Let �� = *� ∧ � for any � ≥ �0. |i| is bounded in the interval[�0, ��] a.s., which implies that  (i) is bounded on [�0, ��] a.s.
From (37), it can be obtained that L is also bounded on[�0, ��] a.s.

By Lemma 3, one can get

5 (Λ (��, � (��))) ≤ 5 (Λ (�0, � (�0))) + z (�� − �0) . (39)

By (32), (39), and Lemma 2, conclusion (1) holds.
With (37) and the de�nition of  , by using 
eorem 2.1

in [13], conclusion (2) holds.
Remark 7. 
eunique features of the approaches proposed in
this paper include the following:

(1) 
is paper is the �rst result about the output-feedback
control of stochastic nonlinear systems with Marko-
vian switching and uncontrollable linearizations.

(2) Since the dri� terms and di�usions terms are all
Markovian switching, a homogeneous domination
approach is developed in this paper, which can
e�ectively deal with the Markovian switching and
uncontrollable linearizations simultaneously.

5. A Simulation Example

Consider the following system with two modes. 
e Markov
process �(�) belongs to the space � = {1, 2} with generator
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Figure 1: 
e responses of closed-loop system (40)-(41).

Γ = (�
")2×2 given by �11 = −1, �12 = 1, �21 = 2, and �22 = −2.
One gets ~1 = 2/3 and ~2 = 1/3.


e system is described by

��1 = (�3
2 + 1,�(�) (�1)) �� + ��

1,�(�) (�1) ��,
��2 = (J + 2,�(�) (�2)) �� + ��

2,�(�) (�2) ��,
K = �1,

(40)

where 1,1(�1) = (1/4)�2/3
1 (sin�1)3, 2,1(�1) = (1/4)�3

2,1,2(�2) = (1/4)�2
1 sin�1,2,2(�2) = (1/3)�2sin

2�2, �1,1(�1)=(1/8)�1 sin�1, �2,1(�1) = (1/8)�1/11
2 (sin�2)2, �1,2(�2) =�4/3

1 sin�1, and �2,2(�2) = �2cos
2�2.

Here, without detailed arguments, we only state the �nal
results as follows:

̇*2 = −400 (*2 + 50�1)11/3 ,
J (�1, *2) = −226 ((*2 + 50�1)11/3 + 2�11/3

1 )35/33 . (41)

In the simulation, one chooses the initial values�1(0) = 3,�2(0) = 0.1, and *2(0) = −0.01. Figure 1 gives the responses
of (40)-(41), from which the e�ciency of the controller is
demonstrated. Figure 2 shows the runs of theMarkov process�(�).
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Figure 2: Runs of Markov process �(�).

6. Conclusions


is paper investigates the output-feedback stabilization of
stochastic nonlinear systems with Markovian switching for
the �rst time. By using the backstepping design method and
homogeneous domination technique, an output-feedback
controller is constructed to guarantee that the closed-loop
system is almost surely asymptotically stable.


ere are some related problems for further considera-
tion, for example, how to generalize the results in this paper
to more general stochastic nonlinear systems with plant and
parameter uncertainties.
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