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STABILITY OF A CONDUCTING FLUID FLOWING 

DOWN AN INCLINED PLANE IN A MAGNETIC FIELD 

Abstract 

A stability analysis is made for the laminar flow of a layer of a 

viscous and electrically conducting fluid down an inclined plane in a trans­

verse magnetic field. It is found that the effect of the magnetic field, 

revealed through the Hartmann number, is to stabilize the flow. A 

simpler and physically clearer approximate treatment of the same prob­

lem based on the principle of local balance is also given. The results 

agree quite satisfactorily with the exact analysis. 
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1. Introduction 

The stability of laminar flows of an electrically conducting fluid in 

a magnetic field has been studied fairly extensively. Among others, 

Chandrasekhar(l) has investigated the stability of flow between coaxial 

rotating cylinders with a magnetic field in the axial direction, Stuart(Z) 

investigated the stability of pressure flow between parallel planes in a paral­

lel magnetic field, while Lock(
3

) has studied the latter stability with a 

magnetic field perpendicular to the direction of motion and to the boundary 

planes. In all these cases, it is found that the presence of magnetic fields 

tends to stabilize the system. In the present paper, we shall investigate 

the effect of a magnetic field on the stability of the gravity flow of a conduct-

ing fluid down an inclined plane. The latter stability for non- conducting fluids 

has been studied by Yih(
4

) (
5

), Benjamin(
6

) and Binnie(?), and also extend­

ed by the present author to the flow of superfluids(B). It is found in general 

that the critical Reynolds number is quite low. From the study of the 

physical mechanism of this type of instability(
9

), it may be inferred that 

(l)S. Chandrasekhar, Proc. Roy. Soc. (London) A, 216, 293 (1953). 

(Z)J. T S P R S (L d ) A 221 189 (1954) . tuart, roc. oy. oc. on on , __ , . 

(
3
)R. C. Lock, Proc. Roy. Soc. (London) A, 233, 105 (1955). 

(
4

) C. -S. Yih, Proc. 2nd U.S. Nat. Congr. Appl. Mech. (ASME, N.Y. 

1955), 623. 

(
5

) C. -S. Yih, Physics of Fluids,!:_, 321 (1963). 

(
6

) T. B. Benjamin, J. Fluid Mech. 2, 554 (1957). 

(?)A. M. Binnie, J. Fluid Mech. 2, 551 (1957). 

(B)D. Y. Hsieh, PhysicsofFluids, '}_,1755(1964). 

(9 ) M. S. Plesset and D. Y. Hsieh,( in press). 
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the crucial feature is the velocity profile of the undisturbed flow. There-

fore we may expect, as indeed can be verified by analysis, that a magnetic 

field parallel to the inclined plane will have relatively slight effects on the 

stability, while a transverse magnetic field may have quite pronounced 

effects. This expectation is also in agreement with the results of Stuart(
2

) 

and Lock(
3

). Therefore, in the following, we shall only consider the 

case in which the magnetic field is in the direction perpendicular to the 

inclined plane. 

2. The Fundamental Equations 

The hydromagnetic equations for a viscous, incompressible, con-

ducting fluids are as follows. 

Maxwell's equations: 

\i'X H 
4'!T 

J = ...... c 
( 1 ) 

'V'•H=O ( 2) 

\i'X E /..L aH 
= 1Ft - c 

( 3) 

E'V'•E = e ( 4) 

Ohm's law for a moving fluid: 

J =a (E + /..L v X _H) 
- c 

( 5) 

The equation of continuity: 

( 6) 

The momentum equation: 
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av 
Ptff (7) 

and the energy equation 

au +(v·V')U= Jz 
at - (1 

(8) 

where p, p, T and U are the pressure, density, temperature and 

internal energy of the fluid; ~, IJ., cr, T) and K are the dielectric constant, 

permeability, coefficients of electrical conductivity, viscosity and thermal 

conductivity; 12 is the potential of the external force; and H, E, J, and e ---
are magnetic field, electric field, current density and charge density. In 

arriving at the above set of equations, we have assumed that the constitu-

tive and transport coefficients are constant scalars, that the displacement 

current can be neglected in Eq. ( 1), that the force due to the electric field 

may be neglected in Eq. (7) and that the Ohm's law as stated by Eq. (5), 

which neglects the convection current, may be justified. We should also 

have the equation of state which gives the expression of U in terms of p 

and T to complete the system. However, as it stands, Eq. (8) is not 

coupled with other equations; hence it can be disregarded if no information 

about U and T is desired. Likewise, Eq. (4), which is also uncoupled 

from the other equations, only serves to determine the charge density e. 

3. The Primary Flow 

The primary flow to be considered is a layer of fluid flowing in 

parallel flow on a plane making an angle e with the horizontal direction. 

An external uniform magnetic field I-i is applied in the direction perpen-

dicular to the plane. Let the thickness of the layer be h. A coordinate 
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system is chosen with the origin at the free surface of the layer as shown 

in Fig. 1. Then l2, the potential due to the gravitational force field, 

will be given by 

l2 = yg cos 6 - xg sin() (9) 

Now let us look for such an undisturb-

X 

ed system that 

Figure 1 

::... = (v(y), o , o) !! = (Hb(y), H, o) l. = (o, o, J(y)) ~ = (o,o,E) . 

The electric field and current andadditional magnetic field are introduced 

in order to satisfy the governing equations. 

Equation (5) yields 

J(y) = a(E + /..L HV(y)) 
c 

( 1 0) 

Then Eq. (7) leads to p = p(y), and 

TJV"- t.J.~a (E+ ~H v)+pgsin0=0 ( 11) 

With the introduction of the Hartmann number M = t.J.Hh 'FJ , Eq. ( 11) 
c VT1 

can be written as 

V"-

As V(-h} = V'(o) = 0 

V = /J.O" HE -
CTJ 

we obtain 

sin 6 

coshM-cosh (M f) 
V(y)=Vo coshM-1 

( 1 2) 

( 1 3) 



where 
V = (cosh M-1 )h

2 (H 
0 

M 2coshM TJ 

sin fJ- IJ.U HE) 
CTJ 

The total dis charge per unit width, incidentally, is 

Q = ro V(y)dy 
j_h 

v ( h 
= cosh ~- 1 h cosh M- M sinh M) 

h "l dQ 
w 1 e dh , if we use Eq. (14) and note the linear dependence on h 

M, is found to be 

dQ 

Clh 
=V 

0 

coshM+l 

coshM 

( 14) 

( 15) 

of 

( 16) 

We shall require that outside the fluid layer only the applied magnetic 

6 

field (0, H, 0) is present, and that the total flux of current in the z-direction 

is zero. The latter requirement leads to the condition 

so J(y)dy = 0 

-h 

while the former requires that 

b(o) = b(-h) = 0 

Equations (10), (13) and (17) then lead to 

and then Eq. ( 5) yields 

1J.HV
0 

E =---
c 

J(y) = 
UIJ.HV 

0 

c 

sinh M-M cosh M 

M(cosh M-1) 

sinhM-M cosh (M f) 
M(cosh M-1) 

Equation (1), with Eq. (18), then leads to 

( 1 7) 

( 18) 

( 1 9) 

(20) 



b(y) = 

4. The Stability Problem 

y sinh M-h sinh(~) 
M{coshM-l) 

7 

Let us superimpose a two-dimensional disturbance on the primary 

flow so that the elevation of the free surface is given by 

_ F( t) _ r ik(x-at) 
y -"" x, - '=>e 

Thus any perturbed quantity g(x, y, t) may be written as 

ik(x-at) 
g(x, y, t) "' g(y)e 

After the system is perturbed, we have v = (v , V+v , v ) , 
- X y Z 

( 22) 

(23) 

H = (Hb+H ,H+H ,H), J = (J ,J , J+J ) and E = (E ,E ,E+E ). We 
- X - y Z- X y Z .._ X y Z 

shall assume that the disturbance is small and that the squares of the 

small quantities in all the equations can be neglected. Eliminating p 

fromEq. (?)andusingEqs. (1), (2)and(6), weobtain 

v
1

v - 2k2 v 11+k4 v -ik £. [ (V -a)(v 11 -k2v ) - V"v ] 
y y y "1 y y y 

We can make the above equation non-dimensional by taking v = V tiJ, 
y 0 

(24) 

- - "K - . 
H = Htp, V = V V, a= V a, k =,-and y = hy, and substitute them 1nto 

y o o n 

the equation. Dropping bars of the newly introduced quantities to simplify 

writing, we find that Eq. (24) becomes 



where 

R= 

and 

v ph 
0 

TJ 
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(25) 

(26) 

(27) 

R and ~ are called the Reynolds number and magnetic Reynolds num-

ber respectively. Eliminating J from Eqs. ( 1) and (5), and using 
z 

Eqs. (2) and ( 3), we obtain similarly: 

(28) 

The electromagnetic fields in regions outside the fluid layer 2. re 

governed by the Maxwell equations. With the space and time variation 

given by Eq. (23), the field quantities can be readily determined for a 

medium which is conducting or non- conducting. 

The boundary conditions will contain the following features. 

(i) The normal velocity of the fluid vanishes at the bottom: 

~(-1) = 0 (29) 

(ii) The tangential velocity of the fluid vanishes at the bottom: 

~ 1 (-1) = 0 (30) 

after use of Eq. (6). 



(iii} The shearing stress vanishes at the free surface; 

on y = ~(x,t} 

or 
ikM 2 

ljJ"(o} +k~(o) + coshM-l ~ = 0 (31) 

(iv) The normal stress is continuous across the free surface: 

at y = 0 

where pr is the surface tension coefficient. Using Eq. (7), we 

then obtain 

= Zkz,1, 1+kz (rkzR + M sinhM o) r 
't' coshM-1 cot ':> 

where the relation V 
0 

= pg sin Oh
2 

'l 

coshM-1 

M s1nhM 

from Eqs. (14) and (19) has been used. 

at y = 0, ( 32) 

which is derivable 

(v) The free surface will satisfy the kinetnatic surface condition: 

ljJ(o) - ik(V -a)~ = 0 
0 

( 33) 
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(vi) The electromagnetic fields in the fluid layer will be appropri-

ately connected to those in the free space above and those in the 

material wall below. 

5. Solution for Long Waves 

In the analysis of the stability problem for non- conducting fluids (
5

), 

it is shown that the criterion for stability is essentially determined by the 
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disturbances of long wavelength. We expect this feature to remain true so 

long as the magnetic field is not too strong. When the wavelength of the 

disturbance is long compared with the depth of the fluid layer, i.e. , 

when k << l, a scheme of successive approximation can be developed. 

For the first approximation, we shall neglect all quantities of order O(k) 

in the system of differential equations and boundary conditions. Then 

Eqs. (25) and (28) become 

and 

tP IV + 
0 

ff' Ill : 0 
0 

and the boundary conditions become 

(i) 

(ii) 

(iii) 

(iv) 

and 

(v) 

lJJ (-1) = 0 
0 

lJJ 1 (-l) = 0 
0 

,~, II (o) + 
'~'o coshM-l 

ikt;, = 0 
0 

tP lll(o) + 
0 

Mz 
cp "(o) = 0 

~0 

lJJ (o) - (V -a )ikt;, = 0 
0 0 0 0 

(34) 

(35) 

( 36) 

(37) 

( 38) 

( 39) 

(40) 

where the subscript zero signifies that it is the solution for the first ap-

proximation. 

Equations (34) and (35) lead to 

(41) 

Thus the general solution is 



ljJ = A cosh My + B sinh M + C y + D 
0 0 0 y 0 0 

Now Eq. (39}, with application of Eq. (35}, becomes 

which requires 

c =0 
0 

Then Eqs. ( 36) and ( 37) lead to 

From Eq. ( 38), we get 

and from Eq. (40}, as 

ljJ =A [coshM(l+y) -1] 
0 0 

ikl; =-A coshM(coshM-1) 
0 0 

v = 1' 
0 

we obtain 

cosh M+l 
a = 

o cosh M 

11 

(42) 

( 43} 

( 44) 

(45) 

It may be noted that a 
0 

is identical with the expression of 
dQ 
dh given by 

Eq. ( 16). 

The general expression for cp can be written down immediately 
0 

from Eq. (35): 

( 46) 

The coefficients C 1 and D 1 can be readily determined, by the applica-
o 0 

tion of the boundary conditions (vi). Now for almost all conducting liquid 

of interest, the ratio ~ is extremely small. For mercury, it is about 

-7 6 
1. 5 X 10 , while for liquid sodium, it is 7. 5 X 10- . Therefore in the 

range of Reynolds number usually encountered in laminar flow, ~ is 
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very small. The value of <po' 
as may be seen easily, is in general of 

the order 0(~). Hence, as far as the stability of the flow is concerned, 

there is practically no need to obtain the explicit expression for fP • 
0 

For the next approximation, we shall take lJ; = lJI + lJI , where 
0 1 

lJI
1 

= O(k), etc., and neglect all terms that are quadratic in k in the dif-

ferential equations and boundary conditions. Keeping in mind that 

<p
0 

= 0(~) and b = 0(~), we obtain from Eqs. (25) and (28): 

lJI
1

v -Mz.lJ; 11 = ik{R [ (V-a )l)i 11 
- V 11 lJ; ] + O(R )} (47) 

1 1 o o o -M 

As 

V = coshM-coshMy 
cosh M-1 

thus with A = 1, Eq. (47) becomes 
0 

v~~ = M 2coshMy 

cosh M-1 

lJI'v M2.lJ; 11 = ikR M
2

tanh M sinh My 
1 - 1 coshM-1 

The general solution of the above equation is: 

( 48) 

ikR tanhM 
lJ;

1 
= A

1 
coshMy + B

1 
sinh My+ C

1 
y + D/ "2M coshM- 1 y coshMy 

(49) 

Now, from Eq. (28), we obtain: 

(50) 

Thus in particular, 

( 
ikR tanhM ) 

cp
1
"(o) = -R _ B

1
M + C

1 
+ ~ 

-M .::.M cosh M-1 
(51) 

The boundary condition (iv) becomes 
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Mz { 
ljJ 111 {o) + R. fP 

11 (o) = ik R[ (V -a )ljJ 1 {o)-V(o)ljJ (o)] 
1 -M 1 o o o o 

-ikr [r k 2 R + Msinh M cote]+ O(R >} . (52) 
"'o coshM-1 M 

Then Eqs. (49) and (51) together with the first order solutions lead to 

C _ ik{R sinhM 
1 - M(coshM-1) 

coshM 

Mz 
[ M sinh M cot fJ+rk2 R( cosh M-1) 1}. 

Boundary conditions (i) and (ii) yield 

A coshM- B sinhM C + D 
1 J I 1 

and 

ikR 
= -zM" 

sinhM 

cosh M-l 

(53) 

(54) 

-A MsinhM+BMcoshM+C 
1 1 1 

ikR tanhM(coshM+MsinhM) ,(
55

) 
=--zM coshM-1 

while boundary conditions (iii) and (v) are 

and 

Mz 
.1. "(o) + 
'~'1 coshM-1 

ikt; = 0 
1 

ljJ (o)- ikt; (V -a ) +ikt; a = 0 
1 1 0 0 0 1 

and they combine to give 

a = 
1 

A +D coshM 
1 1 

cosh2 M(cosh M-1) 

(56) 

(57) 

(58) 

Multiply Eq. (54)by cosh M, Eq. (55) by 
sinhM 

M 
and then add to 

obtain 

( 
sinhM) . ikRsinhM [ 

A
1

+D
1
coshM=C

1 
coshM- M +zM(coshM-1} coshM-

sinh M _sinh 2M ] 
M coshM 

(59) 
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Using Eq. (53), we then arrive at: 

a = 
1 

ik { R 

coshz.M(cosh M-1) 

tanh M ( 2. 3cosh M sinh M . hz. M) 
ZM(cosh M-l) 3cosh M- M - sm 

coshM(coshM- sinMhM)[ Ll ( ) z. ]} MsinhMcotu+ coshM-1 rk R 
Mz. 

( 60) 

6. Stability Criterions 

The flow system is stable or unstable according as the imaginary 

part of a =a +a 
0 1 

is positive or negative. For this problem, a 
0 

is 

real, while a is imaginary; therefore, the stability criterion is deter­

• 
mined by the sign of a . 

1 

It may be seen from the expres sian of a , that coefficients 
1 

associated with r and cote are all negative; this means that surface 

tension always tends to stabilize the flow while gravity will tend to stabil-

ize or distabilize the system according to whether the fluid is flowing 

down the uppers ide or the underside of the plane. 

If we neglect the effect of surface tension, we may conclude that 

the flow is stable if 

R < F(M) cot 8 (61) 

where 

F(M) = 
z. ( sinh M ) 2 cosh M cosh M - M (cosh M-1) 

2. 3 cosh M smh M _ sl'nhz.M 3 cosh M -
M 

( 62) 

F(M) is a monotonically increasing function and as a function of M is 

shown in Fig. 2. Thus we may conclude that the magnetic field tends to 
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stabilize the flow system. As M-+ 0, it may be readily verified that 

F(M)-+ ~ , thus the results agree with those of Yih(S} and Benjamin(
6

}. 

For large M, 

M-1 2M 
F(M) ~ Z(ZM- 3) e ( 63) 

The above result will not hold for very large M, since in that case, the 

stability will be most likely controlled by the shear wave disturbance 

rather than these soft waves(S), while Lock(
3

) has shown that the critical 

Reynolds number for the former type of disturbance in his problem is 

only linearly proportional to M for large M. 

7. Simple Description of the Stability Problem 

The principle of local balance(lO) has been extended to the stabil­

ity problem of laminar flow down an inclined plane (
9

). That approach 

offers a much simpler analysis and clearer physical picture while it 

retains satisfying accuracy. We shall also apply that principle to this 

problem. 

Once the primary flow is obtained, the speed of propagation of 

disturbances of long wavelength, a ,may be immediately written down 
0 

from the total discharge as expressed in Eq. (16)(ll). Thus 

=V 
0 

cosh M+l 

coshM 
(64) 

Let us now transform the coordinate system from the original (x, y) to a 

new coordinate system (x', y) by the Galilean transformation: 

(lO)M.S.Plesset and D.Y. Hsieh, Physics of Fluids,2_, 1099 (1964). 

( ll >M. J. Lighthill and G.B. Whitham, Proc. Roy. Soc. A, 229, 281 (1955). 



x' = x - a t 
0 

( 65) 
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which brings the wave disturbance of the free surface to rest. In this new 

frame of reference, the disturbance wave is given by 

or, taking the imaginary part: 

ikx' 
y = l;,e 

y = t; sinkx' 

Also in the new frame, the fluid in the layer is moving with velocity : 

U(y) = V(y) - a 
0 

=V 
0 

1-coshM cosh(My/h) 

cosh M(cosh M-l) 

( 66) 

(67) 

We now compute the pressure exerted on the ••wavy wall" (Eq. (66~) by a 

layer of incompressible inviscid fluid bounded by a rigid wall at y = -h, 

with primary velocity given by Eq. ( 67). Let the fluid velocity in the 

presence of a wavy wall be given by (U+u, v), then the momentum and con-

tinuity equation for steady flow are 

and 

au a 1 ap 
(U + u) ax + v By (U + u) = - p ax 

av av 
(U + u) ax + v ay = 

au + av = 0 
ax ay 

1 ap 

pay 

(68) 

( 69) 

(70) 

We eliminate p and u and neglect quadratic terms in u and v, and 

get 

U" -uv = 0 ( 71) 
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Now let 

v(x, y) = f(y) cos kx (7 2) 

Then Eq. (71) becomes 

(7 3) 

For long wavelength disturbance, we have kh << 1, thus we may ap-

proximate Eq. (7 3) by 

f" -
U" u f = 0 (74) 

One solution of the last equation is U, then by reduction of order, we 

obtain the general solution of Eq. (74 ): 

S
y dy' 

f = A U(y. >. + B U(y) 
0 Uz(y') 

(7 5) 

The boundary conditions at the wavy surface and the bottom require that: 

and 

where 

Thus 

where 

f = 0 

f = u kt; 
0 

at 

at 

U
0 

=U(o) 

y = -h 

y = 0 

f = kl;, [u(y) + Uciy) foY dy' l 
1 uz(y') 

( 7 6) 

(77) 

(78) 

(79) 
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For this case, as U 1 {o) = 0, the pressure applied to the wavy wall is 

readily seen from Eqs. { 68) and {70) to be: 

As 

we obtain 

p{o) = 
pU f 1 {o) 

0 

k 
sinkx 

p{o) = £i sin kx 
G 

{ 80) 

{81) 

This pressure is counterbalanced by the gravitational restoring force 

pg cos 61; sinkx in the stability problem, {cf. Fig.l), hence the critical 

condition for stability may be expressed by 

Now 

G = Ih 

0 

= 

dy 
= 

uz (y) 

g cos () 
1 

= G 

cosh 2M( cosh M-1 ) 2 

v 2 
0 

cosh2M(cosh M-1 )2 h 

r (coshM 

dy 

coshM 

dz SM 
V

2
M 0 (cosh M cosh z-1 )z 

0 

The integral is readily integrated and we obtain 

1 
G = coshM+rr/2 

As in the derivation of Eq. (32) we can now express 

g cos 6 = 
V TJ cot () 

0 M sinhM 

cosh M-1 

( 8 2) 

y 
-1) 2 

h 

( 8 3) 

(84) 



Then Eq. (82) may be expressed as 

or 

where 

Vo TJ cot 8 M sinh M 

cosh M-l = 
V 2 M sinh3 M 

0 

h cosh 2M( cosh M-1 )2(cosh M + rr/ 2) 

F'(M) cot 8 = R 

F'(M) 
= cosh

2
M(cosh M-1 )(cosh M + rr/ 2) 

sinh2 M 

The comparison between F(M) and F'(M) is shown in Fig. 2. The 

19 

(85) 

( 86) 

general agreement between F and F' over all values of M shows that 

· the above simple description reveals the essential physical mechanism 

of the instability. 

.. 



LL 

LL 

r 
r 

f 
f 

f 
f 

2 

r 
r 

'I 
r 

'I 
'/ 

F(M) 

'/ 
'/ 

'/ 

/'F'(M) 

r 

'/ 
'/ 

'I 

4 

M 

v 
'I 

r 

v 
f 

v 
f 

v 
v 

v 
f 

f 
r 

v 
'I 

6 

f 
f 

f 
f 

f 
v 

f 
f 

f 

8 

f 
f 

f 
f 

f 

Figure 2. Comparison of the critical values of R/cot e, 
as a function of the Hartmann number M, where R is 

the Reynolds number, and e is the angle of inclination 

of the plane; F is the value for this ratio obtained from 

the complete theory, and F 1 is that obtained from the 

approximate theory of local balance. 
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