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Abstract. Stability of a linear integro-differential equation with periodic coefficients
is studied. Such an equation arises in the dynamics of thin-walled viscoelastic elements of
structures under periodic compressive loading. The equation under consideration has a
specific peculiarity which makes its analysis difficult: in the absence of the integral term
it is only stable, but not asymptotically stable. Therefore, in order to derive stability
conditions we have to introduce some specific restrictions on the behavior of the kernel
of the integral operator. These restrictions are taken from the analysis of the relaxation
measures for a linear viscoelastic material.

We suggest an approach to the study of the stability based on the direct Lyapunov
method and construct new stability functionals. Employing these techniques we derive
some new sufficient stability conditions which are close enough to the necessary ones.
In particular, when the integral term vanishes, our stability conditions pass into the
well-known stability criterion for a linear differential equation with periodic coefficients.
In the general case, the proposed stability conditions have the following mechanical
meaning: a viscoelastic structure under periodic excitations is asymptotically stable if
the corresponding elastic structure is stable and the material viscosity is sufficiently large.

As an example, the stability problem is considered for a linear viscoelastic beam
compressed by periodic-in-time forces. Explicit limitations on the material parameters
are obtained which guarantee the beam stability, and the dependence of the critical
relaxation rate on the material viscosity is analysed numerically for different frequencies
of the periodic compressive load.

1. Introduction. In the past two decades a number of publications were devoted to
the study of stability of Volterra integro-differential equations; see, e.g., Burton (1983),
Corduneanu and Lakshmikantham (1980), Gripenberg et al. (1990), Hale (1977), Kol-
manovskii and Nosov (1986) and the bibliography therein.

One of the main applications of this theory is the stability of viscoelastic bodies and
thin-walled elements of structures; see, e.g., Bloom (1984), Coleman and Dill (1968),
Dafermos (1970), Dafermos and Nohel (1979), Drozdov et al. (1991), Fabrizio and Lazzari
(1991), Fabrizio and Morro (1992), MacCamy (1977), Renardy et al. (1987).
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To our knowledge, in this sphere of applications, the stability conditions have been
studied in detail for integro-differential equations with constant coefficients, but up to
now there is no general theory in the case of variable, especially periodic, coefficients.

Stability of ordinary differential equations with periodic coefficients was discussed in
detail by Erugin (1966), Malkin (1956), Mclachlan (1964), and Yakubovich and Starzhin-
skii (1975). It was shown that the periodic-in-time loads acting on a system can induce
parametric oscillations with unbounded growth of small initial perturbations. This anal-
ysis was based on the Floquet representation for the fundamental matrix of a linear
differential equation with periodic coefficients. A generalization of the Floquet theory
for functional-differential equations was proposed by Stokes (1962).

Parametric instabilities in elastic systems were studied, e.g., by Bolotin (1964), Evan-
Iwanowski (1976), and Herrmann (1967).

Some results in the stability theory for viscoelastic thin-walled elements of structures
were obtained by Belen'kaya and Judovich (1978), Cederbaum and Mond (1992), Esh-
matov and Kurbanov (1975), Matyash (1967), Stevens (1966). It is worth noting that the
stability conditions were obtained in these works either by using simplified constitutive
equations reducing the integro-differential equation to the differential one, or by applying
approximate methods (averaging techniques, multiple scales analysis, etc.).

The first attempt to derive sufficient stability conditions without any additional sim-
plifications was made by Drozdov (1993) utilizing the direct Lyapunov method. In this
paper we develop this method and derive some sufficient stability conditions close enough
to the necessary ones.

The exposition will be as follows. In Sec. 2 we formulate the stability problem and
some basic assumptions about the behavior of the kernel of the integral operator. In
Sec. 3 we construct the stability functionals and derive stability conditions. In Sec. 4
we discuss the conditions obtained and compare them with the stability conditions for
the corresponding differential equation. In Sec. 5 we consider the stability problem for
a simply supported viscoelastic beam under the action of a periodic compressive load
and analyse the influence of the periodic force on the critical rate of relaxation of the
material.

2. Formulation of the problem and basic assumptions. Let us consider the
following integro-differential equation:

u(t) + a(t)u(t) + b [ Q(t — s)u(s) ds = 0. (1)
Jo

Here u{t) : [0, oo) —» [0, oo) is an unknown function, a(t) is a positive, continuously
differentiable, periodic function with the period T, b is a positive constant, Q(t) is the
integral kernel. Denote by ao = T~l f(j a(t) dt the mean value of the function a(t). We
suppose that ao > 0.

The function Q(t) is assumed to be twice continuously differentiable and to satisfy the
following conditions:
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(i) for any t > 0:

-1 < Q(oo) < Q(t) < Q{0) = 0,
Q(t) < Q(oo) = 0,
Q(t) > Q(oo) = 0;

(ii) there exist positive constants T\ and T2 such that for any T > 0:

T^l\Q{t)\<Q{t)<T^\Q{t)\.

Equation (1) describes the mechanical behavior of viscoelastic elements of structures
under dynamic loading; cf. Drozdov et al. (1991). In these applications, the function u(t)
determines the characteristic deflection of a structure, and the function Q(t) determines
the relaxation kernel of material. The mechanical meaning of the conditions (i) and (ii)
was discussed in Drozdov and Kolmanovskii (1992).

We will employ below the following.

Lemma. Suppose that the conditions (i) and (ii) are fulfilled. Then for any t > 0:

-Q{oo) exp(-t/T\) < Q(t) - Q{oo) < -Q(oo) exp(~t/T2). (2)

Proof. Taking into account (i) we can rewrite (ii) as follows:

~T2]Q(t) < Q(t) < -T^Q(t).

Integrating this inequality from t to infinity and using (i) we find

T^[Q(t) - Q(oo)] < -Q(t) < T^l[Q(t) - Q(oo)]. (3)

Prom (3) it follows that
dt < dQ{t) dt
Ii ~ Q(t) - Q(oo) - T2- 1 1

Integration of (4) from 0 to t with the use of (i) yields (2). □
Let us consider the differential equation

u + a(t)u — 0, (5)

which corresponds to the case when the integral term in (1) vanishes. In the new variables
u\ = u(t),u2 = u{t) Eq. (5) can be written in the matrix form:

U = A(t)U, (6)

where

U u 1
U2

A(t) 0 1
-a(t) 0
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Introduce the vector-function V(t) which satisfies the adjoint differential equation

V = -A*(t)V., (7)

where the superscript asterisk denotes transpose. Let

m = $n(f) $21 (0
$12(f) $22 (t)

be the fundamental matrix for Eq. (7), i.e., the solution of (7) with the initial condition
V(0) = I, where I is the unit matrix. Here we employ nonstandard notation for elements
of the matrix $(£) in order to emphasize that the functions $4j(£) staying in any column
of this matrix satisfy independent scalar equations:

4>n = a(i)$i2, $12 = ~$n,
(8)

$21 = a(i)$ 22, $22 = $21 •

For a constant coefficient a = ao, the matrix $(£) can be represented as follows:

$(£)

Similarly, let

cos sfaot tJoq sin y/a^t
- ~ vfe sin cos yM>t (9)

$(0 = "$n (i) $2i(<)"
$12(0 $22 (t) _

be the fundamental matrix for Eq. (6). One can show that

$n(£) = $22(0, $i2(i) = —$2iW>
$2l(^) = — $12(0, $22^) = $11 (t).

(10)

Prom the Liouville theorem it follows that for any t > 0:

det <]>(£) = det <J>(£) = 1. (11)

Using this fact we can write the characteristic equation for the matrix *P(T) as follows:

X2 -h(^(T))X+l=0, (12)

where I\ is the first invariant (trace) of the matrix.
It is well known, see, e.g., Yakubovich and Starzhinskii (1975), that the zero solution

of (5) is stable if and only if all eigenvalues of the matrix $(T) are single and lie on the
unit circle. Hence, according to (12), the zero solution of (5) is stable iff

|/1($(T))|<2. (13)

Our goal is to generalize this result to the integro-differential equation (1). Namely,
we will derive conditions of asymptotic stability for the zero solution of Eq. (1), which
turn into the criterion (13) when the integral term in (1) tends to zero.
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3. Stability conditions. In this section we derive some sufficient conditions of
asymptotic stability of the zero solution of Eq. (1). In order to formulate these conditions
let us introduce the following notation. Denote by fi{t) the functions:

f\{t) = ao^)ll(^)^>12(i) + $2\(t)$22(t),

f2(t) = O0$i2(t) + $22 (*)> (14)

f3{t) = a0$211{t) + $l1{t).

Prom these formulae and (8) it follows that the functions fi (t) satisfy the linear differential
equations

f\ = a(t)f2 - /3, f2 = -2fi(t), /3 = 2a(t)/i (15)

with the initial conditions /i(0) = 0, /2(0) = 1, /3(0) = do- It can be shown that for a
constant a = ao :

fi(t)=0, f2(t) = l, /3(0 = Go-

Let a(t) — a(t) + bQ(oo). We assume that

k = mina(i) > 0. (16)
«>o

Introduce the functions

Fm max{a(f),0} /i(f) f2(t)
Flt) - a(t)b ■ F,('> - W ) ~ W

Denote their maximal and minimal values by Y. Y\, and Y2:

Y = supF(t), Yx = sup\Fi(t)\, Y2 = inf F2(t).
t> 0 t>0

Let H{t) = /q[Q(s) - Q{oo)]ds. From (2) it follows that the function H(t) is bounded.

Theorem. Suppose that the conditions (i), (ii) are fulfilled, the inequality (16) holds,

Fl < mip {;• AM+imomi } °"'y" (17)

and

7 < ' (18)

where a — 3Tf1 T|. Then the zero solution of Eq. (1) is asymptotically stable.
Proof. In order to prove this theorem we construct the Lyapunov functionals L\(t),

..., L$(t) such that the function Lq(t) is positive and nonincreasing in time.
Let us introduce the new variables

Zi = Ui$n(t) + U2$l2(t), Z2 = Ui$2i(t) + u2$22(t).
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Differentiating these expressions and using (1) and (8) we obtain

ii = -b$i2(t) [ Q(t - s)ui(s) ds, z2 = -b$22(t) [ Q{t - s)ui(s) ds. (19)
Jo J 0

Let us consider the function

L^t) = \[a0z\{t) + zl(t)\. (20)

For a constant a = ao, employing (9) we find that L\ — |[aoii2(i) + w2(i)]> i.e., it equals
the total energy of the conservative system without the integral term. Differentiation of
(20) with the use of (19) yields

L\ = -b[fi(t)u(t) + f2(t)u(t)] [ Q(t - s)u(s) ds. (21)
Jo

In order to transform the second term in (21) we introduce the functional

L2(t) = [ Q(t - s)(u(t) - u(s))2 ds - Q(t)u2(t). (22)
Jo

Differentiating (22) and using (1) and the conditions (i) we have

L2 = f Q{t — s)(u(t) — u(s))2 ds — 2ii(t) f Q{t - s)u(s) ds — Q(t)u2(t). (23)
Jo Jo

It follows from (15), (21), and (23) that the derivative of the functional

L3 = 2L1(t)-bf2(t)L2{t) (24)

can be represented as follows:

L3{t) = 2bfi(t)[L2(t) - u(t) [ Q(t — s)u(s) ds]
Jo

-bf2(t)\[t
Jo

Since

Q(t — s)(u(t) — u(s)) ds — Q(t)u (t)

—u(t)u(s) — 7}[{u(t) - u(s))2 - u2(t) - u2(s)], (25)

the latter formula has the form

L3{t) = bfi{t) 3L2{t) — j Q(t — s)u2(s) ds
Jo

~bf2(t) f Q(t — s)(u(t) — u(s))2 ds — Q(t)u2(t)
Jo

(26)



LINEAR INTEGRO-DIFFERENTIAL EQUATION 615

Let us consider now the functional

Li(t) = ^ |w(i) + bj [Q(< - s) - Q(cxd)]w(s) c?s| . (27)

Differentiating (27) and using (1) we obtain

L^it) = Li(t) |u(£) — bQ(oo)u(t) + b J Q(t — s)u(s) ds|

= —a{t)u(t)Li(t).

This relation together with (27) implies that the derivative of the functional

L5(t) = L4(t) + \a(t)u2{t) (28)

can be calculated as follows:

Ls{t) — \a{t)u2(t) - a(t)bu(t) f [Q{t — s) — Q(oo)]u(s) ds.
Jo

We transform this equation using (25) and finally obtain

2Ls(t) — a(t)u2(t) — a(t)b + J [Q(t — s) — Q(oo)]u2(s) ds

- J [Q(t - s) - Q(oo)](u(t) - u(s))2 ds j .

(29)
Let us introduce the functional

Le(t) = L3(t) + 2 f3L5(t), (30)

where f3 is a positive constant which will be determined below. It follows from (26) and
(29) that

= -a{t)b G(t)u2(t)+ f G\(t,t — s)u2 (s) ds
Jo

+ [ G2{t,t - s)(u(t) - u(s))2 ds ,
Jo

(31)
where

G(t) = (3 H(t) - i{t) 3Fi(*)QW - F2(t)Q(t),
a{t)b

G\ Ct, r) = (3[Q(t) - Q(oo)] - F1 (t)Q{r),
G2(t,r) = F2(t)Q(T) - P[Q{t) - Q(oo)] + 3Fi(£)Q(t).
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The condition (ii) and (3) imply

T^[Q(t) - Q(oo)] < Q(t) < T~l[Q(t) - Q(oo)].

We estimate the functions Gi and G2 using this inequality and (3) as follows:

Gx(t,T) > [/? - TfVi(t)|][Q(r) - Q(oo)],
G2(t,r) > [Ti2F2(t)-3Tr1\F1(t)\-f3}[Q(r)-Q(oo)}.

From these inequalities it follows that the functions Gi(t, r) and G2(t, r) are nonnegative
if

Y\ < (3Ti < 3a_1(l2 - aYi). (32)

It follows from (17) that (32) is true and we can put (3 = 3(aXi)_1(Y2 — aY1). In this
case, Eqs. (16) and (31) imply

Le{t) < —a(t)bG(t)u2(t). (33)

Substituting the expressions (24), (28) into (30) and using (20), (22), and (27) we get

L6(t) = a0z\(t)+zl(t)

6/2 (t) f Q(t - s)(u(t) — u(s))2 ds - Q(t)u2{t)
J 0 (34)

+ 0- ii(t) + b / (Q(t — s) — Q(oo))u(s) ds
Jo

a(t)u2(t)

It follows from this formula, (16), and the conditions (i) that

Lsit) /3nu2(t) (t > 0). (35)

Putting t — 0 in (34) and utilizing the initial conditions for the matrix function <3>(t) we
find

MO) = [00 + /?a(0)]u2(0) + (1 + p)ii2{ 0). (36)

Integrating (33) from 0 to t and using (35), (36) we obtain

/3nu2(t) < [ao + /3a(0)]u2(0) + (1 + /3)u2(0) + bT(t) f u2(s) ds,
Jo

where T(t) = maxo<s<ta(s)|G(s)|. This formula together with the Gronwall inequality
implies

u2{t) < ~[(a0 + /?a(0))u2(0) + (1 + /3)m2(0)]

rt / , ,t x n (37)
1+r^mlexp(rJ,r{T)dT)ds.
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Substitution of (37) into (33) yields

Le{t) < ^[(flo + /?a(0))u2(0) + (1 + (3)u2{0)]

x r (t) 1+^mlexs,{rJ,r{T>dT)d'
Integration of this inequality with the use of (36) implies that there exists a continuous,
monotonically increasing, positive function M(t) such that for any t > 0

La(t) < M(t)[(ao + (Ja(0))u2(0) + (1 + (3)u2{0)]. (38)

Since limt_+oo Q(t) = Q(oo), lim^oo Q(t) = 0 and the functions Fi(t),F2(t) are bounded,
for any e > 0 there exists to{e) > 0 such that for any t > to{e):

\G(t) - Goo(t)\ <€, (39)

where
n(+\

3Fi(t)Q(oo).Goo(t) = 0

Estimating this function we find

»(°°) - 41
a(t)b

GooW > P[H(oo) — Y — 3/3-1|Q(oo)|Y"i].

Prom this inequality, (17), and (18) it follows that there exists an e\ > 0 such that
Goo(t) > 2ei for any t > 0. Choosing e — ei and applying (39) we obtain that G(t) > e\
for t > t0{ei). This inequality and (33) imply Le(t) < -ntibu2(t) for t > io(ei)- From
this relationship and (35) it follows that

(3u2(t) + e\b f u2(s)ds
Jtnte,)

< LQ(to{e\)), t > to(ei).
rl

'*o(€l)

Estimating Le(to(ei)) with the use of (38) we finally find that for any t > £o(ei):

7'Jto(e\)

< M(to(ei))[(ao + 0a(0))u2(0) + (1 + /3)u2(0)].

(3u2(t) + eib I u2(s)ds
^o(el)

This inequality implies the theorem. □
Remark. Let us consider the exponential kernel of the integral operator

Q(t) = —X[1 - exp(-7f)], (40)

where x aTlc' 7 are constant, 0 < X < 1 > 7 > 0. In this case, the conditions (i), (ii) are
true, and the inequalities (16)-(18) can be represented as follows:

mina(t)>Xb, Y<^Y2, Y < 7^2-*. (41)t>o 6 7F2 — 3Yi 7
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4. Connection between stability of the integro-differential equation (1)
and the corresponding ordinary differential equation (5). The above stability
conditions for Eq. (1) are formulated in such a way that, at first sight, they have no
connection with the well-known stability condition (13) for Eq. (5). In this section it is
demonstrated that our conditions of asymptotic stability for Eq. (1) are fulfilled if and
only if the zero solution of (5) is stable and the functions a(t) and Q(t) satisfy some
additional conditions. We restrict ourselves to the consideration of the noncritical case
when all eigenvalues of the matrix $(T) are single.

Denote by X(t) the matrix function with the components X7J(t), and by <j>(n) the
matrix function with the components (j>i:(n). The function X(t) is determined in [0, T]
and coincides with $(i) in this interval. The function <t>(n) is determined for a nonnegative
integer n and equals <3?(nT). It can be shown that

${t) = X{t-nT)<t>(n)t nT <t<(n + 1)T. (42)

Putting t — (n + 1 )T we obtain from (43) that 4>(n + 1) = $(T)(j)(n). Since 0(0) =
$(0) = I, this equality implies that

0(n) = $"(T). (43)

Substitution of (42) into (14) yields

fi{t) = a0[Xu(t - nT)X12(t - nT)<p2n(n)

+ {Xu{t - nT)X22{t - nT) + Xi2(t - nT)X2i{t - nT))0n(n)0i2(n)

+ X21(t - nT)X22(t - nT)cj>\2(n)\

+ [Xn(i - nT)X12(t - nT)<f>2i(n)

+ (^"n(t - nT)X22{t - nT) + X12(t - nT)X2i{t - nT))<p2i(n)(/)22(n)

+ X2i(t — nT)X22{t — nT)(j)\2(n)\.

Let us consider the quadratic form

= bu(t)£2 + 2b12{t)£r) + b22(t)ri2,

where

bn(t) = Xn(t — nT)X\2(t — nT),
b\2{t) = Xn (t — nT)X22(t — nT) + X\2(t — nT)X2\(t — nT),

b22(t)=X21(t-nT)X22(t-nT).

From (6) and (11) it follows that detX(t) = detX(O) = 1 for any t G [0,T]. From (8)
it follows that there exists a sufficiently small t\ > 0 such that Xn{ti) > 0, X\2(t\) < 0.
Therefore, for t = t\ + nT, the form l{t,£,r]) is negatively defined, and there is a 6 > 0
such that l(t\ + nT, £, if) < —S(^2 + r/2). This means that

fifa + nT) < -6[a0(4>u(n) + 4>\2{n)).+ {4>22l (n) + <f>l2 (n))].
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Prom this inequality it follows that there exists a 61 > 0 such that

|/i(*i + nT)| >«(n)||2. (44)

Inequalities (43) and (44) imply

sup|/i(i)l > 6i max||$n(T)||2. (45)
t> o "

For any positive integer n, we have ||$n(T)|| > pn($(T)), where p is the spectral radius
of the matrix; cf., e.g., Horn and Johnson (1985). This inequality together with (45)
leads to the estimate

sup|/i(0I > maxp2"($(T)) = max/92n(^(T)). (46)
t>o n n

From (14) it follows that
mf/2(f)</2(0) = l. (47)

According to (46) and (47), the stability condition (17) holds only for p(ty(T)) < 1.
On the other hand, it is known, see, e.g., Yakubovich and Starzhinskii (1975), that
p(\P(T)) > 1. Therefore, the inequality (17) implies p(4'(T)) = 1. For the noncritical
case, the necessary and sufficient stability condition (13) for Eq. (5) follows from this
equality and (12). Hence, we have proved that for the noncritical case, the stability
conditions for the integro-differential equation (1) imply the stability conditions for the
corresponding differential equation (5).

Now we derive an inverse result; namely, we prove that the stability of the ordinary
differential equation (5) ensures the stability of the integro-differential equation (1) under
some assumptions about the behavior of the kernel Q(t) of the integral operator and the
periodic coefficient a(t).

The stability of the equation (5) implies the boundedness of the fundamental matrix
function $(i). This means that there exists a positive constant C\ such that for any t > 0:

|$ij(*)|<ci (i,j = 1,2).

It follows from this inequality and (14) that there exists a positive constant c2 such that
for any t > 0:

|/i(0l<c2, 0 < f2(t) < C2, 0 < < c2. (48)

Let us prove that there exists a positive constant C3 such that for any t > 0:

h{t) > c3. (49)

Suppose that this hypothesis is not true. Therefore, there exists a sequence {tm} such
that /2(im) < m~2. From this inequality and (14) it follows that

|$12(*m)| < C4m_1, I$22(tm)| < C4TO"1,
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  1 /o

where C4 = max(l,a0 ). These estimates and the condition (11):

det $(tm) = $ 11 {tm)$22{tm) - $12(<m)$2l(im) = 1

imply

1 < c4rn"1[|$n(^rn)| + |$i2(im)|]

< 2< 2c^m"1 x//3(tm).

Therefore, > [m/^c2)]2. Since this inequality contradicts (48), our assumption
is not true and the inequality (49) holds.

It follows from the formulae (48), (49) that the stability condition (13) for the ordinary
differential equation (5) yields Y\ < C2, Y? > C3. In this case, the inequality (17) can be
treated only as a restriction on the function Q(t) which guarantees asymptotic stability
of the zero solution of (1). For a given kernel Q(t) satisfying (17), the inequality (18)
can be considered as a restriction on the behavior of the coefficient a(t) which ensures
asymptotic stability.

5. Stability of a viscoelastic beam under periodic compressive load. In this
section we derive stability conditions for a rectilinear viscoelastic beam under the action
of a compressive load.

Let us consider the plane bending of a viscoelastic beam with the length I, the cross-
sectional area S, and the moment of inertia of the cross section J. At the moment t = 0,
the compressive forces P = P(t) are applied to the beam ends. Under the action of
the external forces, the beam deforms. Denote by y(t,x) the beam deflection at the
point with the longitudinal coordinate x at the moment t > 0. We suppose that (a) the
function y and its derivative are sufficiently small, and we can neglect the nonlinear terms
in the expression for the curvature of the longitudinal axis; (b) the hypothesis regarding
plane sections in the bending is fulfilled.

We assume that for a uniaxial stress state in the beam, the stress a(t) is connected
with the strain e(s) (0 < s < t) by the constitutive equation of a linear viscoelastic solid,
cf. Christensen (1982):

a(t) = E e(t) + j Q(t — s)e(s) ds
Jo

where E is the constant Young modulus and Q(t) is the relaxation measure satisfying the
conditions (i) and (ii); see Sec. 2. Some examples of the relaxation measures of polymers,
plastics, concrete, and soils are represented in Arutyunyan et al. (1987), Christensen

(1982).
It has been shown, see, e.g., Drozdov et al. (1991), that the function y{t,x) satisfies

the equation

pSy{t, x) + EJ D4y(t,x)+ [ Q{t — s)D4y(s,x) ds[ Q(t-
J 0

+ P{t)D2y(t,x) = 0 (50)



LINEAR INTEGRO-DIFFERENTIAL EQUATION 621

with the initial conditions y(0,:r) = vi(:r), y(0,x) = v^ix). Here p is the mass density,
Vi (x) is the initial deflection of the beam, V2 (x) is the initial speed of deflection, D is the
operator of differentiation with respect to x, Dy = dy/dx.

We restrict ourselves to the consideration of the simply-supported beam, when the
boundary conditions can be written as follows:

y(t, 0) = y(t, I) = 0, D2y(t, 0) = D2y(t, I) = 0.

In order to satisfy these conditions we seek the solution of Eq. (50) in the form

OO
/ \ \ , >. . 7TTIX , .y(t, x) — 2_^ un{t) Sin (51)1

Substituting (51) into (50) we obtain

pSunit) +
7r4n4EJ

lA
(y1~y^)Un^ + j Q(t - S)Unis) ds = o, (52)

where Pe = n2EJl~2 is the Euler critical force.
Suppose that the load Pit) has the form P(£) = Pq + Pi sin(fif), where Pq,Pi, and
are positive constants. In the following, the main stability region is analysed. To this

end, only the term with n = 1 is considered, and Eq. (52) implies

ii(t«) + [1 + )ttsin(u;£*)]u(f») + f Q*it* - s*)u(s„) dsr = 0, (53)
Jo

where

4 _ 4. IT _ OT -7- _ / PSli _ pi n \ - PeQit)
u-t/T, u-nr, ^-pe_p0> Q*^-Pe-P0

Let us restrict ourselves to the stability analysis for a beam made of the standard
viscoelastic material with the relaxation measure (40). Applying the Theorem to Eq.
(53) we obtain the following stability conditions:

T-1 M > PeXiPe - Po)~X, 71<7< 72, (54)

where 71 and 72 are the roots of the quadratic equation

yy272 - (3YTi + x^b + 6x^1 = o.

The boundaries of the stability region in the (x> 7)-plane are plotted in Fig. 1. The
calculations are carried out for P0 = 0.2Pe and Pi = 0.1P,. (that corresponds to ji =
0.125) and for to = 0.2 (black points), u = 0.5 (light points), and w = 0.8 (asterisks).
The numerical analysis shows that the lower boundary of the stability region is very close
to the abscissa axis practically for the whole range of w values. The upper boundary of
this region has essential maximum for \ ~ 0.35 that corresponds to half the maximal
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Fig. 1. Stability domain for a beam driven by periodic excitations.
Light points—uj = 0.2, black points—a> = 0.5, asterisks—lj = 0.8.

admissible x value. With the growth of the frequency lo, the stability region significantly
decreases and disappears for u> > 1. This means that for a fixed intensity of compressive
load a beam driven by periodic forces is stable only for sufficiently small frequencies of
periodic excitations.

6. Conclusions. We consider the stability problem for a linear integro-differential
equation (1) with periodic coefficients. Equation (1) arises in the dynamics of viscoelastic
thin-walled elements of structures. This equation has two specific properties: (a) in the
absence of the integral term it has no reserve of stability, (b) the kernel of the integral
term satisfies some restrictions following from the second law of thermodynamics, which
ensure the asymptotic stability of Eq. (1).

Using the direct Lyapunov method and constructing the stability functionals we derive
some sufficient stability conditions for Eq. (1). When the integral term vanishes, these
conditions coincide with the stability criterion for the ordinary differential equation into
which Eq. (1) turns. In the general case, the stability conditions that were suggested
mean that a viscoelastic structure is asymptotically stable under periodic loads if the
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corresponding elastic structure is stable and the rate of the stress relaxation is sufficiently
large.

As an example, we have considered the stability problem for a rectilinear viscoelastic
beam under the action of periodic compressive forces applied to the beam ends, and we
have formulated a limitation on the relaxation rate that ensures the asymptotic stability
of the beam. We have studied numerically the dependence of the critical relaxation rate
on the frequency of the periodic load.
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