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STABILITY OF A MIXED TYPE ADDITIVE,
QUADRATIC AND CUBIC FUNCTIONAL EQUATION

IN RANDOM NORMED SPACES

Madjid Eshaghi Gordji and Meysam Bavand Savadkouhi

Abstract

In this paper, we obtain the general solution and the stability result for
the following functional equation in random normed spaces (in the sense of
Sherstnev) under arbitrary t-norms

f(x + 3y) + f(x− 3y) = 9(f(x + y) + f(x− y))− 16f(x).

1 Introduction

The stability problem of functional equations originated from a question of Ulam[31]
in 1940, concerning the stability of group homomorphisms. Let (G1, .) be a group
and let (G2, ∗, d) be a metric group with the metric d(., .). Given ε > 0, does
there exist a δ > 0, such that if a mapping h : G1 → G2 satisfies the inequality
d(h(x.y), h(x) ∗ h(y)) < δ for all x, y ∈ G1, then there exists a homomorphism
H : G1 → G2 with d(h(x),H(x)) < ε for all x ∈ G1? In the other words, under what
condition does there exists a homomorphism near an approximate homomorphism?
The concept of stability for functional equation arises when we replace the functional
equation by an inequality which acts as a perturbation of the equation. In 1941,
D. H. Hyers [16] gave a first affirmative answer to the question of Ulam for Banach
spaces. Let f : E → E′ be a mapping between Banach spaces such that

‖f(x + y)− f(x)− f(y)‖ ≤ δ

for all x, y ∈ E, and for some δ > 0. Then there exists a unique additive mapping
T : E → E′ such that

‖f(x)− T (x)‖ ≤ δ

for all x ∈ E. Moreover if f(tx) is continuous in t ∈ R for each fixed x ∈ E,
then T is linear. In 1978, Th. M. Rassias [26] provided a generalization of Hyers’
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Theorem which allows the Cauchy difference to be unbounded. In 1991, Z. Gajda
[10] answered the question for the case p > 1, which was rased by Rassias. This
new concept is known as Hyers-Ulam-Rassias stability of functional equations (see
[1, 2, 4],[11, 15, 17] and [24, 25]).
The functional equation

f(x + y) + f(x− y) = 2f(x) + 2f(y). (1.1)

is related to symmetric bi-additive function. It is natural that this equation is
called a quadratic functional equation. In particular, every solution of the quadratic
equation (1.1) is said to be a quadratic function. It is well known that a function f
between real vector spaces is quadratic if and only if there exits a unique symmetric
bi-additive function B such that f(x) = B(x, x) for all x (see [1, 19]). The bi-
additive function B is given by

B(x, y) =
1
4
(f(x + y)− f(x− y)) (1.2)

Hyers-Ulam-Rassias stability problem for the quadratic functional equation (1.1)
was proved by Skof for functions f : A → B, where A is normed space and B
Banach space (see [30]). Cholewa[5] noticed that the Theorem of Skof is still true if
relevant domain A is replaced an abelian group. In the paper [8], Czerwik proved
the Hyers-Ulam-Rassias stability of the equation (1.1). Grabiec[12] has generalized
these result mentioned above.
Jun and Kim [18] introduced the following cubic functional equation

f(2x + y) + f(2x− y) = 2f(x + y) + 2f(x− y) + 12f(x) (1.3)

and they established the general solution and the generalized Hyers-Ulam-Rassias
stability for the functional equation (1.3). The function f(x) = x3 satisfies the
functional equation (1.3), which is thus called a cubic functional equation. Every
solution of the cubic functional equation is said to be a cubic function. Jun and
Kim proved that a function f between real vector spaces X and Y is a solution of
(1.3) if and only if there exits a unique function C : X ×X ×X −→ Y such that
f(x) = C(x, x, x) for all x ∈ X, and C is symmetric for each fixed one variable and
is additive for fixed two variables.
In the sequel we adopt the usual terminology, notations and conventions of the
theory of random normed spaces, as in [6, 28, 29]. Throughout this paper, ∆+

is the space of distribution functions that is, the space of all mappings F : R ∪
{−∞,∞} → [0, 1], such that F is left-continuous and non-decreasing on R, F (0) = 0
and F (+∞) = 1. D+ is a subset of ∆+ consisting of all functions F ∈ ∆+ for which
l−F (+∞) = 1, where l−f(x) denotes the left limit of the function f at the point
x, that is, l−f(x) = limt→x− f(t). The space ∆+ is partially ordered by the usual
point-wise ordering of functions, i.e., F ≤ G if and only if F (t) ≤ G(t) for all t in
R. The maximal element for ∆+ in this order is the distribution function ε0 given
by

ε0(t) =

{
0, if t ≤ 0,

1, if t > 0.
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Definition 1.1. ([28]). A mapping T : [0, 1]× [0, 1] → [0, 1] is a continuous trian-
gular norm (briefly, a continuous t-norm) if T satisfies the following conditions:
(a) T is commutative and associative;
(b) T is continuous;
(c) T (a, 1) = a for all a ∈ [0, 1];
(d) T (a, b) ≤ T (c, d) whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Typical examples of continuous t-norms are TP (a, b) = ab, TM (a, b) = min(a, b)
and TL(a, b) = max(a + b − 1, 0) (the Lukasiewicz t-norm). Recall (see [13], [14])
that if T is a t-norm and {xn} is a given sequence of numbers in [0, 1], Tn

i=1xi is
defined recurrently by T 1

i=1xi = x1 and Tn
i=1xi = T (Tn−1

i=1 xi, xn) for n ≥ 2. T∞i=nxi is
defined as T∞i=1xn+i. It is known([14]) that for the Lukasiewicz t-norm the following
implication holds:

lim
n→∞

(TL)∞i=1xn+i = 1 ⇐⇒
∞∑

n=1

(1− xn) < ∞. (1.4)

Definition 1.2. ([29]). A random normed space (briefly, RN-space) is a triple
(X,µ, T ), where X is a vector space, T is a continuous t-norm, and µ is a mapping
from X into D+ such that, the following conditions hold:
(RN1) µx(t) = ε0(t) for all t > 0 if and only if x = 0;
(RN2) µαx(t) = µx( t

|α| ) for all x ∈ X, α 6= 0;
(RN3) µx+y(t + s) ≥ T (µx(t), µy(s)) for all x, y ∈ X and t, s ≥ 0.

Every normed spaces (X, ‖.‖) defines a random noremed space (X, µ, TM ) where

µx(t) =
t

t + ‖x‖ ,

for all t > 0, and TM is the minimum t-norm. This space is called the induced
random normed space.

Definition 1.3. Let (X, µ, T ) be a RN-space.
(1) A sequence {xn} in X is said to be convergent to x in X if, for every ε > 0 and
λ > 0, there exists positive integer N such that µxn−x(ε) > 1− λ whenever n ≥ N .
(2) A sequence {xn} in X is called Cauchy sequence if, for every ε > 0 and λ > 0,
there exists positive integer N such that µxn−xm(ε) > 1− λ whenever n ≥ m ≥ N .
(3) A RN-space (X, µ, T ) is said to be complete if and only if every Cauchy sequence
in X is convergent to a point in X.

Theorem 1.4. ([28]). If (X, µ, T ) is a RN-space and {xn} is a sequence such that
xn → x, then limn→∞ µxn(t) = µx(t) almost everywhere.

The generalized Hyers-Ulam-Rassias stability of different functional equations in
random normed spaces has been recently studied in [3, 20, 21, 22, 23, 27]. Recently,
Eshaghi Gordji, Bavand Savadkouhi and Zolfaghari [9] established the stability
of mixed type additive, quadratic and cubic functional equation in quasi-Banach
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spaces.
In this paper we deal with the following functional equation:

f(x + 3y) + f(x− 3y) = 9(f(x + y) + f(x− y))− 16f(x) (1.5)

in random normed spaces.

2 Main results

From now on, we suppose that X is a real linear space, (Y, µ, T ) is a complete RN-
space and f : X → Y is a function with f(0) = 0 for which there is ρ : X×X → D+

( ρ(x, y) is denoted by ρx,y) with the property:

µf(x+3y)+f(x−3y)−9[f(x+y)+f(x−y)]+16f(x)(t) ≥ ρx,y(t) (2.1)

for all x, y ∈ X and all t > 0.

Theorem 2.1. Let f be even and let

lim
n→∞

T∞i=1(ρ0,3n+i−1x(3i+2nt)) = 1 = lim
n→∞

ρ3nx,3ny(32nt) (2.2)

for all x, y ∈ X and all t > 0, then there exist a unique quadratic mapping Q : X →
Y such that

µQ(x)−f(x)(t) ≥ T∞i=1(ρ0,3i−1x(3it)), (2.3)

for all x ∈ X and all t > 0.

Proof. Setting x = 0 in (2.1), we get

µ2f(3y)−18f(y)(t) ≥ ρ0,y(t) (2.4)

for all y ∈ X. If we replace y in (2.4) by x, we get

µf(3x)−9f(x)(t) ≥ ρ0,x(2t) ≥ ρ0,x(t)

for all x ∈ X and all t > 0. Thus we have

µ f(3x)
32

−f(x)
(t) ≥ ρ0,x(32t)

for all x ∈ X and all t > 0. Therefore,

µ f(3k+1x)

32(k+1) −
f(3kx)

32k

(t) ≥ ρ0,3kx(32(k+1)t)

for all x ∈ X and all k ∈ N. Therefore we have

µ f(3k+1x)

32(k+1) −
f(3kx)

32k

(
t

3k+1
) ≥ ρ0,3kx(3k+1t)
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for all x ∈ X, t > 0 and all k ∈ N. Thus we have

µ f(3nx)
32n −f(x)

(t) ≥ Tn−1
k=0 (µ f(3k+1x)

32(k+1) −
f(3kx)

32k

(
t

3k+1
)) ≥ Tn−1

k=0 (ρ0,3kx(3k+1t))

= Tn
i=1(ρ0,3i−1x(3it)) (2.5)

for all x ∈ X and t > 0. In order to prove the convergence of the sequence { f(3nx)
32n },

we replace x with 3mx in (2.5) to find that

µ f(3n+mx)

32(n+m) −
f(3mx)

32m

(t) ≥ Tn
i=1(ρ0,3i+m−1x(3i+2mt))

Since the right hand side of the inequality tends to 1 as m and n tend to infinity,
the sequence { f(3nx)

32n } is a Cauchy sequence. Therefore, we may define Q(x) =
limn→∞

f(3nx)
32n for all x ∈ X. Now, we show that Q is a quadratic map. Replacing

x, y with 3nx and 3ny respectively in (2.1), it follows that

µ f(3nx+3n+1y)
32n +

f(3nx−3n+1y)
32n −9[

f(3nx+3ny)
32n +

f(3nx−3ny)
32n ]+16

f(3nx)
32n

(t) ≥ ρ3nx,3ny(32nt).

Taking the limit as n →∞, we find that Q satisfies (1.5) for all x, y ∈ X. Therefore
the mapping Q : X → Y is quadratic.
To prove (2.3), take the limit as n →∞ in (2.5). Finally, to prove the uniqueness of
the quadratic function Q subject to (2.3), let us assume that there exist a quadratic
function Q′ which satisfies (2.3). Since Q(3nx) = 32nQ(x) and Q′(3nx) = 32nQ′(x)
for all x ∈ X and n ∈ N, from (2.3) it follows that

µQ(x)−Q′(x)(2t) = µQ(3nx)
32n −Q′(3nx)

32n

(2t) = µQ(3nx)−Q′(3nx)(2.32nt)

≥ T (µQ(3nx)−f(3nx)(32nt), µf(3nx)−Q′(3nx)(32nt))

≥ T (T∞i=1(ρ0,3i+n−1x(3i+2nt)), T∞i=1(ρ0,3i+n−1x(3i+2nt))) (2.6)

for all x ∈ X and all t > 0. By letting n → ∞ in above inequality, we find that
Q = Q′.

Theorem 2.2. Let f be odd and let

lim
n→∞

T∞i=1(ρ2i+n−1,2i+n−1x(2nt)) = 1 = lim
n→∞

ρ2nx,2ny(2nt) (2.7)

for all x, y ∈ X and all t > 0, then there exist a unique additive mapping A : X → Y
such that

µf(2x)−8f(x)−A(x)(t) ≥ T∞i=1(ρ2i−1x,2i−1x(t)), (2.8)

for all x ∈ X and all t > 0.

Proof. By putting y = x in (2.1), we obtain

µf(4x)−10f(2x)+16f(x)(t) ≥ ρx,x(t) (2.9)
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for all x ∈ X and t > 0. Let g : X → Y be a mapping defined by g(x) :=
f(2x)− 8f(x). Then we conclude that

µg(2x)−2g(x)(t) ≥ ρx,x(t) (2.10)

for all x ∈ X. Thus we have

µ g(2x)
2 −g(x)

(t) ≥ ρx,x(2t) (2.11)

for all x ∈ X and all t > 0. Hence,

µ g(2k+1x)
2k+1 − g(2kx)

2k

(t) ≥ ρ2kx,2kx(2k+1t)

for all x ∈ X and all k ∈ N. So we have

µ g(2k+1x)
2k+1 − g(2kx)

2k

(
t

2k+1
) ≥ ρ2kx,2kx(t)

for all x ∈ X, t > 0 and all k ∈ N. As 1 > 1
2 + 1

22 + ...+ 1
2n , by the triangle inequality

it follows that

µ g(2nx)
2n −g(x)

(t) ≥ Tn−1
k=0 (µ g(2k+1x)

2k+1 − g(2kx)
2k

(
t

2k+1
)) ≥ Tn−1

k=0 (ρ2kx,2kx(t))

= Tn
i=1(ρ2i−1x,2i−1x(t)) (2.12)

for all x ∈ X and t > 0. In order to prove the convergence of the sequence { g(2nx)
2n },

we replace x with 2mx in (2.12) to obtain

µ g(2n+mx)
2n+m − g(2mx)

2m
(t) ≥ Tn

i=1(ρ2i+m−1x,2i+m−1x(2mt)).

Since the right hand side of the inequality tends to 1 as m and n tend to in-
finity, the sequence { g(2nx)

2n } is a Cauchy sequence. Therefore, we may define
A(x) = limn→∞

g(2nx)
2n for all x ∈ X. Now, we show that A is an additive mapping.

Replacing x, y with 2nx and 2ny respectively, in (2.1), it follows that

µ f(2nx+3.2ny)
2n +

f(2nx−3.2ny)
2n −9[

f(2nx+2ny)
2n +

f(2nx−2ny)
2n ]+16

f(2nx)
2n

(t) ≥ ρ2nx,2ny(2nt).

Taking the limit as n →∞, the mapping A : X → Y is additive.
To prove (2.8), take the limit as n →∞ in (2.12). Finally, to prove the uniqueness
property of A subject to (2.8), let us assume that there exist an additive function A′

which satisfies (2.8). Since A(2nx) = 2nA(x) and A′(2nx) = 2nA′(x) for all x ∈ X
and n ∈ N, from (2.8) it follows that

µA(x)−A′(x)(2t) = µA(2nx)−A′(2nx)(2n+1t)
≥ T (µA(2nx)−g(2nx)(2nt), µg(2nx)−A′(2nx)(2nt))
≥ T (T∞i=1(ρ2i+n−1x,2i+n−1x(2nt)), T∞i=1(ρ2i+n−1x,2i+n−1x(2nt)))

for all x ∈ X and all t > 0. Taking the limit as n →∞, we find that A = A′.
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Theorem 2.3. Let f be odd and let

lim
n→∞

T∞i=1(ρ2n+i−1,2n+i−1x(23n+2it)) = 1 = lim
n→∞

ρ2nx,2ny(23nt) (2.13)

for all x, y ∈ X and all t > 0, then there exist a unique cubic mapping C : X → Y
such that

µf(2x)−2f(x)−C(x)(t) ≥ T∞i=1(ρ2i−1x,2i−1x(22it)), (2.14)

for all x ∈ X and all t > 0.

Proof. By putting y = x in (2.1), we obtain

µf(4x)−10f(2x)+16f(x)(t) ≥ ρx,x(t) (2.15)

for all x ∈ X and t > 0. Let h : X → Y be a mapping defined by h(x) :=
f(2x)− 2f(x). Then we conclude that

µh(2x)−8h(x)(t) ≥ ρx,x(t) (2.16)

for all x ∈ X. Thus we have

µh(2x)
23

−h(x)
(t) ≥ ρx,x(23t) (2.17)

for all x ∈ X and all t > 0. Hence,

µh(2k+1x)

23(k+1) −
h(2kx)

23k

(t) ≥ ρ2kx,2kx(23(k+1)t)

for all x ∈ X and all k ∈ N. So we have

µh(2k+1x)

23(k+1) −
h(2kx)

23k

(
t

2k+1
) ≥ ρ2kx,2kx(22(k+1)t)

for all x ∈ X, t > 0 and all k ∈ N. As 1 > 1
2 + 1

22 + ...+ 1
2n , by the triangle inequality

it follows that

µh(2nx)
23n −h(x)

(t) ≥ Tn−1
k=0 (µh(2k+1x)

23(k+1) −
h(2kx)

23k

(
t

2k+1
)) ≥ Tn−1

k=0 (ρ2kx,2kx(22(k+1)t))

= Tn
i=1(ρ2i−1x,2i−1x(22it)) (2.18)

for all x ∈ X and t > 0. In order to prove the convergence of the sequence {h(2nx)
23n },

we replace x with 2mx in (2.18) to obtain

µh(2n+mx)

23(n+m) −
h(2mx)

23m

(t) ≥ Tn
i=1(ρ2i+m−1x,2i+m−1x(22i+3mt)).

Since the right hand side of the inequality tends to 1 as m and n tend to infinity,
the sequence {h(2nx)

23n } is a Cauchy sequence. Therefore, we may define C(x) =
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limn→∞
h(2nx)

23n for all x ∈ X. Now, we show that C is a cubic mapping. Replacing
x, y with 2nx and 2ny respectively, in (2.1), it follows that

µ f(2nx+3.2ny)
23n +

f(2nx−3.2ny)
23n −9[

f(2nx+2ny)
23n +

f(2nx−2ny)
23n ]+16

f(2nx)
23n

(t) ≥ ρ2nx,2ny(23nt).

Taking the limit as n → ∞, we find that C satisfies (1.5) for all x, y ∈ X. Hence,
the mapping C : X → Y is cubic.
To prove (2.14), take the limit as n →∞ in (2.18). Finally, to prove the uniqueness
property of C subject to (2.14), let us assume that there exist a cubic function C ′

which satisfies (2.8). Since C(2nx) = 23nC(x) and C ′(2nx) = 23nC ′(x) for all x ∈ X
and n ∈ N, from (2.14) it follows that

µC(x)−C′(x)(2t) = µC(2nx)−C′(2nx)(23n+1t)

≥ T (µC(2nx)−h(2nx)(23nt), µh(2nx)−C′(2nx)(23nt))

≥ T (T∞i=1(ρ2i+n−1x,2i+n−1x(22i+3nt)), T∞i=1(ρ2i+n−1x,2i+n−1x(22i+3nt)))

for all x ∈ X and all t > 0. Taking the limit as n →∞, we find that C = C ′.

Theorem 2.4. Let f be odd and let

lim
n→∞

T∞i=1(ρ2n+i−1x,2n+i−1x(23n+2it)) = 1 = lim
n→∞

T∞i=1(ρ2i+n−1,2i+n−1x(2nt)) (2.19)

and
lim

n→∞
ρ2nx,2ny(23nt) = 1 = lim

n→∞
ρ2nx,2ny(2nt) (2.20)

for all x, y ∈ X and all t > 0, then there exists a unique additive mapping A : X →
Y and a unique cubic mapping C : X → Y such that

µf(x)−A(x)−C(x)(t) ≥ T (T∞i=1(ρ2i−1x,2i−1x(6t)), T∞i=1(ρ2i−1x,2i−1x(6.22it))) (2.21)

for all x ∈ X and all t > 0.

Proof. By Theorems 2.2 and 2.3, there exists a unique additive mapping A′ : X → Y
and a unique cubic mapping C ′ : X → Y such that

µf(2x)−8f(x)−A′(x)(t) ≥ T∞i=1(ρ2i−1x,2i−1x(t)),

and
µf(2x)−2f(x)−C′(x)(t) ≥ T∞i=1(ρ2i−1x,2i−1x(22it))

for all x ∈ X and all t > 0. So it follows from the last inequalities that

µf(x)+ 1
6 A′(x)− 1

6 C′(x)(t) ≥ T (T∞i=1(ρ2i−1x,2i−1x(6t)), T∞i=1(ρ2i−1x,2i−1x(6.22it)))

for all x ∈ X and all t > 0. Hence we obtain (2.21) by letting A(x) = −1
6 A′(x) and

C(x) = 1
6C ′(x) for all x ∈ X. The uniqueness property of A and C, are trivial.
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Theorem 2.5. Let

lim
n→∞

T∞i=1[T (ρ0,3n+i−1x(3i+2nt), ρ0,−3n+i−1x(3i+2nt))]

= lim
n→∞

T∞i=1[T (ρ2n+i−1x,2n+i−1x(23n+2it), ρ−2n+i−1x,−2n+i−1x(23n+2it))]

= lim
n→∞

T∞i=1[T (ρ2i+n−1x,2i+n−1x(2nt), ρ−2i+n−1x,−2i+n−1x(2nt))] = 1 (2.22)

and

lim
n→∞

T (ρ3nx,3ny(32nt), ρ−3nx,−3ny(32nt)) = lim
n→∞

T (ρ2nx,2ny(23nt), ρ−2nx,−2ny(23nt))

= lim
n→∞

T (ρ2nx,2ny(2nt), ρ−2nx,−2ny(2nt))

= 1 (2.23)

for all x, y ∈ X and all t > 0, then there exists a unique additive mapping A : X →
Y, a unique quadratic mapping Q : X → Y and a unique cubic mapping C : X → Y
such that

µf(x)−A(x)−Q(x)−C(x)(t) ≥ T{T∞i=1[T (ρ0,3i−1x(
3it

2
), ρ0,−3i−1x(

3it

2
))]

, T∞i=1{T [T (T∞i=1(ρ2i+n−1x,2i+n−1x(3t))

, T∞i=1(ρ2i+n−1x,2i+n−1x(3.22it)))
, T (T∞i=1(ρ−2i+n−1x,−2i+n−1x(3t))

, T∞i=1(ρ−2i+n−1x,−2i+n−1x(3.22it)))]}} (2.24)

for all x ∈ X and all t > 0.

Proof. Let

fe(x) =
1
2
[f(x) + f(−x)]

for all x ∈ X. Then fe(0) = 0, fe(−x) = fe(x), and

µfe(x+3y)+fe(x−3y)−9[fe(x+y)+fe(x−y)]+16fe(x)(t) ≥ T (ρx,y(t), ρ−x,−y(t))

for all x, y ∈ X. Hence, in view of Theorem 2.1, there exist a unique quadratic
function Q : X → Y such that

µfe(x)−Q(x)(t) ≥ T∞i=1[T (ρ0,3i−1x(3it), ρ0,−3i−1x(3it))]. (2.25)

Let
fo(x) =

1
2
[f(x)− f(−x)]

for all x ∈ X. Then fo(0) = 0, fo(−x) = −fo(x), and

µfo(x+3y)+fo(x−3y)−9[fo(x+y)+fo(x−y)]+16fo(x)(t) ≥ T (ρx,y(t), ρ−x,−y(t))
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for all x, y ∈ X. From Theorem 2.4, it follows that there exists a unique additive
mapping A : X → Y and a unique cubic mapping C : X → Y such that

µfo(x)−A(x)−C(x)(t) ≥ T∞i=1{T [T (T∞i=1(ρ2i+n−1x,2i+n−1x(6t)), T∞i=1(ρ2i+n−1x,2i+n−1x(6.22it)))

, T (T∞i=1(ρ−2i+n−1x,−2i+n−1x(6t)), T∞i=1(ρ−2i+n−1x,−2i+n−1x(6.22it)))]}
(2.26)

Obviously, (2.24) follows from (2.25) and (2.26).
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[22] D. Miheţ, The fixed point method for fuzzy stability of the Jensen functional
equation, Fuzzy Sets and Systems, doi:10.1016/j.fss.2008.06.014.

[23] D. Mihet, R. Saadati, and S. M. Vaezpour, The stability of the quartic func-
tional equation in random normed spaces, Acta Applicandae Mathematicae,
2009, DOI 10.1007/s10440-009-9476-7.

[24] Th. M. Rassias, On the stability of functional equations and a problem of Ulam,
Acta Math. Appl. 62 (2000), 23–130.

[25] Th. M. Rassias, On the stability of functional equations in Banach spaces, J.
Math. Anal. Appl. 251 (2000), 264–284.

[26] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc.
Amer. Math. Soc. 72 (1978), 297–300.

[27] R. Saadati, S. M. Vaezpour and Y. J. Cho, A Note to Paper On the Stability
of Cubic Mappings and Quartic Mappings in Random Normed Spaces, Journal
of Inequalities and Applications, (2009), Article ID 214530, 6 pages.

[28] B. Schweizer and A. Sklar, Probabilistic Metric Spaces, Elsevier, North Holand,
New York, 1983.



54 M. Eshaghi Gordji and M. Bavand Savadkouhi

[29] A. N. Sherstnev, On the notion of a random normed space, Dokl. Akad. Nauk
SSSR 149 (1963), 280-283 (in Russian).

[30] F. Skof, Propriet locali e approssimazione di operatori, Rend. Sem. Mat. Fis.
Milano, 53 (1983), 113-129.

[31] S. M. Ulam, Problems in modern mathematics, Chapter VI, science ed., Wiley,
New York, 1940.

Madjid Eshaghi Gordji:
Department of Mathematics, Semnan University, P.O. Box 35195-363, Semnan, Iran
Research Group of Nonlinear Analysis and Applications (RGNAA), Semnan , Iran;
Center of Excellence in Nonlinear Analysis and Applications (CENAA), Semnan
University, Iran
E-mail: madjid.eshaghi@gmail.com

Meysam Bavand Savadkouhi:
Department of Mathematics, Semnan University, P.O. Box 35195-363, Semnan,
Iran
Center of Excellence in Nonlinear Analysis and Applications (CENAA), Semnan
University, Iran

E-mail: bavand.m@gmail.com


