Journal of Informatics and Mathematical Sciences

Volume 1 (2009), Numbers 2 \& 3, pp. 81-90
(C) RGN Publications

(Invited paper)

Stability of A Sincov Type Functional Equation

Prasanna K. Sahoo

Abstract

This paper aims to study the Hyers-Ulam stability of a Sincov type functional equation $f(x, y)+f(y, z)+f(x, z)=\ell(x+y+z)$ when the domain of the functions is an abelian group and the range is a Banach space.

1. Introduction

In 1903, the Russian mathematician D. M. Sincov (see [13] and [14]) studied the functional equation

$$
\begin{equation*}
f(x, y)+f(y, z)=f(x, z) \tag{1.1}
\end{equation*}
$$

for all $x, y, z \in \mathbb{R}$ (the set of real numbers). Others like Moritz Cantor [2] and Gottlob Frege [5] (see also [6] and [7]) treated this functional equation before Sincov. The most general solution $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ of the functional equation (1.1) is given by $f(x, y)=\phi(y)-\phi(x)$, where $\phi: \mathbb{R} \rightarrow \mathbb{R}$ is an arbitrary function. The functional equation (1.1) is known as the Sincov functional equation.

The functional equation

$$
\begin{equation*}
f(x, y)+g(y, z)+h(x, z)=\ell(x+y+z) \tag{1.2}
\end{equation*}
$$

for all $x, y, z \in G$, where G is an abelian group, is a generalization of the Sincov functional equation. The following theorem was proved by the author [12].

Theorem 1.1. Suppose G and H are abelian groups written additively. Moreover, suppose the division by 2 is uniquely defined in H. The functions $f, g, h: G^{2} \rightarrow H$ and $\ell: G \rightarrow H$ satisfy the functional equation (1.2) for all $x, y, z \in G$ if and only if

$$
\begin{align*}
& \ell(x)=2 a(x)+2 q(x)+c_{1}+c_{2}+c_{3} \tag{1.3}\\
& f(x, y)=\alpha(x)-\beta(y)+a(x)+a(y)+b(x, x)+4 b(x, y)+b(y, y)+c_{1}, \tag{1.4}
\end{align*}
$$

2000 Mathematics Subject Classification.39B82.
Key words and phrases. Homomorphism; Hyers-Ulam stability; quadratic function; Sincov functional equation.

$$
\begin{align*}
& g(x, y)=\beta(x)-\gamma(y)+a(x)+a(y)+b(x, x)+4 b(x, y)+b(y, y)+c_{2}, \tag{1.5}\\
& h(x, y)=\gamma(x)-\alpha(y)+a(x)+a(y)+b(x, x)+4 b(x, y)+b(y, y)+c_{3}, \tag{1.6}
\end{align*}
$$

where $\alpha, \beta, \gamma: G \rightarrow H$ are arbitrary functions, $b: G^{2} \rightarrow H$ is a bihomomorphism, $a: G \rightarrow H$ is a homomorphism, and c_{1}, c_{2}, c_{3} are arbitrary elements in H.

The following functional equation

$$
\begin{equation*}
f(x, y)+f(y, z)+f(x, z)=\ell(x+y+z) \tag{1.7}
\end{equation*}
$$

is a special case of (1.2) and its solution can be obtained from Theorem 1.1. The general solution of (1.7) is given by

$$
\begin{align*}
& \ell(x)=2 a(x)+2 q(x)+3 c \tag{1.8}\\
& f(x, y)=\alpha(x)-\alpha(y)+a(x)+a(y)+b(x, x)+4 b(x, y)+b(y, y)+c \tag{1.9}
\end{align*}
$$

where $\alpha: G \rightarrow H$ are arbitrary function, $b: G^{2} \rightarrow H$ is a bihomomorphism, $a: G \rightarrow H$ is a homomorphism, and c is an arbitrary element in H. The functional equation (1.7) was studied by J. A. Baker [1] in 1977.

A function $Q: G \rightarrow H$ satisfying $Q(x+y)+Q(x-y)=2 Q(x)+2 Q(y)$ for all $x, y \in G$ is called a quadratic function. It is well known that a quadratic function $Q: G \rightarrow H$ can be represented as the diagonal of a symmetric bihomomorphism $b: G^{2} \rightarrow H$, that is $Q(x)=b(x, x)$. Therefore, in (1.9), $b(x, x)+4 b(x, y)+b(y, y)$ can be replaced by $2 Q(x+y)-Q(x)-Q(y)$.

2. Stability of functional equations

Given an operator T and a solution class $\{u\}$ with the property that $T(u)=0$, when does $\|T(v)\| \leq \varepsilon$ for an $\varepsilon>0$ imply that $\|u-v\| \leq \delta(\varepsilon)$ for some u and for some $\delta>0$? This problem is called the stability of the functional transformation. A great deal of work has been done in connection with the ordinary and partial differential equations. Let G be a group and H be a metric group with metric $d(\cdot, \cdot)$. S. M. Ulam [16, 17] asked given a number $\epsilon>0$ does there exist a $\delta>0$ such that if a function $f: G \rightarrow H$ satisfies the inequality $d(f(x y), f(x) f(y)) \leq \delta$ for all x, y in G, then there is a homomorphism $h: G \rightarrow H$ with $d(a(x), f(x)) \leq \epsilon$ for all x in G ? If f is a function from a normed vector space into a Banach space and satisfies $\|f(x+y)-f(x)-f(y)\| \leq \varepsilon$, D. H. Hyers [8] proved that there exists an additive function A such that $\|f(x)-A(x)\| \leq \varepsilon$. If $f(x)$ is a real continuous function of x over \mathbb{R}, and $|f(x+y)-f(x)-f(y)| \leq \varepsilon$, it was shown by D. H. Hyers and S. M. Ulam [11] that there exists a constant k such that $|f(x)-k x| \leq 2 \varepsilon$. Taking these results into account, we say that the additive Cauchy equation $f(x+y)=f(x)+f(y)$ is stable in the sense of Hyers and Ulam. The interested reader should refer to $[9,10]$ for an indepth account on the subject of stability of functional equations.

A careful examination of the proof of Hyers's theorem reveals that the proof remains true if one replaces the normed vector space by an abelian group.

Theorem 2.1. Let G be an abelian group written additively and let B be a Banach space. If a function $f: G \rightarrow B$ satisfies the inequality

$$
\|f(x+y)-f(x)-f(y)\| \leq \varepsilon
$$

for some $\varepsilon \geq 0$ and for all $x, y \in G$, then there exists a unique homomorphism $H: G \rightarrow B$ such that

$$
\|f(x)-H(x)\| \leq \varepsilon
$$

for all $x \in G$.
The Hyers-Ulam stability of the quadratic functional equation

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y) \tag{2.1}
\end{equation*}
$$

was first proved by F. Skof [15] for functions from a normed space into a Banach space. P. W. Cholewa [3] demonstrated that Skof's theorem is also valid if the relevant domain is replaced by an abelian group. Later, S. Czerwik [4] proved the Hyers-Ulam-Rassias stability of the quadratic functional equation which includes the following theorem as a special case:

Theorem 2.2. Let E be a normed space and let B be a Banach space. If a function $f: E \rightarrow B$ satisfies the inequality

$$
\|f(x+y)+f(x-y)-2 f(x)-2 f(y)\| \leq \varepsilon
$$

for some $\varepsilon \geq 0$ and for all $x, y \in E$, then there exists a unique quadratic function $Q: E \rightarrow B$ such that

$$
\|f(x)-Q(x)\| \leq \frac{1}{3}(\varepsilon+\|f(0)\|)
$$

for all $x \in E$.
The goal of this paper is to study the Hyers-Ulam stability of the functional equation (1.7) when the domain of the functions is an abelian group and the range is a Banach space.

3. Stability of the functional equation (1.7)

Theorem 3.1. Let G be an abelian group written additively and B be a Banach space. If the functions $f: G^{2} \rightarrow B$ and $\ell: G \rightarrow B$ satisfy the inequality

$$
\begin{equation*}
\|f(x, y)+f(y, z)+f(z, x)-\ell(x+y+z)\| \leq \epsilon \tag{3.1}
\end{equation*}
$$

for some $\epsilon \geq 0$ and for all $x, y, z \in G$, then there exist a unique homomorphism $A: G \rightarrow B$, a unique quadratic map $Q: G \rightarrow B$ and a function $\phi: G \rightarrow B$ such that

$$
\begin{equation*}
\|\ell(x)-2 A(x)-2 Q(x)\| \leq \frac{23}{3} \epsilon+3\|f(0,0)\| \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|f(x, y)-f_{o}(x, y)\right\| \leq \frac{49}{3} \epsilon+\|f(0,0)\| \tag{3.3}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{o}(x, y)=\phi(x)-\phi(y)+A(x)+A(y)+2 Q(x+y)-Q(x)-Q(y) . \tag{3.4}
\end{equation*}
$$

Proof. Define

$$
\begin{equation*}
g(x, y)=\frac{f(x, y)-f(y, x)}{2} \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
h(x, y)=\frac{f(x, y)+f(y, x)}{2}-\gamma \tag{3.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma=f(0,0) \tag{3.7}
\end{equation*}
$$

From (3.5) and (3.6), we obtain

$$
\begin{equation*}
f(x, y)=g(x, y)+h(x, y)+\gamma \tag{3.8}
\end{equation*}
$$

Moreover, we see that

$$
\begin{equation*}
h(x, y)=h(y, x) \tag{3.9}
\end{equation*}
$$

for all $x, y \in G$, that is h is symmetric in G. Interchanging x with y in (3.1), we have

$$
\begin{equation*}
\|f(y, x)+f(x, z)+f(z, y)-\ell(y+x+z)\| \leq \epsilon \tag{3.10}
\end{equation*}
$$

for all $x, y, z \in G$. From (3.1), (3.5) and (3.10) we obtain

$$
\begin{aligned}
& 2\|g(x, y)+g(y, z)+g(z, x)\| \\
& =\| f(x, y)-f(y, x)+f(y, z)-f(z, y)+f(z, x)-f(x, z) \\
& \quad-\ell(x+y+z)+\ell(y+x+z) \| \\
& \leq\|f(x, y)+f(y, z)+f(z, x)-\ell(x+y+z)\| \\
& \quad+\|f(y, x)+f(x, z)+f(z, y)-\ell(y+x+z)\|
\end{aligned}
$$

$$
\leq 2 \epsilon
$$

Therefore

$$
\begin{equation*}
\|g(x, y)+g(y, z)+g(z, x)\| \leq \epsilon \tag{3.11}
\end{equation*}
$$

for all $x, y, z \in G$. From (3.5) we see that

$$
\begin{equation*}
g(x, y)=-g(y, x) \tag{3.12}
\end{equation*}
$$

for all $x, y \in G$, that is g is anti-symmetric in G. Using (3.12) in (3.11) we have

$$
\begin{equation*}
\|g(x, y)-g(x, z)+g(y, z)\| \leq \epsilon \tag{3.13}
\end{equation*}
$$

for all $x, y, z \in G$. Letting $z=0$ in (3.13) we have

$$
\begin{equation*}
\|g(x, y)-g(x, 0)+g(y, 0)\| \leq \epsilon \tag{3.14}
\end{equation*}
$$

Define $\phi: G \rightarrow B$ by

$$
\begin{equation*}
\phi(x)=g(x, 0) . \tag{3.15}
\end{equation*}
$$

Then (3.14) yields

$$
\begin{equation*}
\|g(x, y)-\phi(x)+\phi(y)\| \leq \epsilon . \tag{3.16}
\end{equation*}
$$

for all $x, y \in G$. Since, by (3.6), (3.1) and (3.10)

$$
\begin{aligned}
& 2\|h(x, y)+h(y, z)+h(z, x)-\ell(x+y+z)+3 \gamma\| \\
& \left.\begin{array}{l}
=\| f(x, y)+f(y, x)+f(y, z)+f(z, y)+f(z, x)+f(x, z) \\
\quad \\
\quad \quad \ell(x+y+z)-\ell(y+x+z) \| \\
\leq\|f(x, y)+f(y, z)+f(z, x)-\ell(x+y+z)\| \\
\quad \quad+\|f(y, x)+f(x, z)+f(z, y)-\ell(y+x+z)\| \\
\leq
\end{array}\right)
\end{aligned}
$$

hence we have

$$
\begin{equation*}
\|h(x, y)+h(y, z)+h(z, x)-\ell(x+y+z)+3 \gamma\| \leq \epsilon \tag{3.17}
\end{equation*}
$$

for all $x, y, z \in G$. Next we define $F: G \rightarrow B$ by

$$
\begin{equation*}
F(x)=\ell(x)-3 \gamma . \tag{3.18}
\end{equation*}
$$

Then by (3.18), the equation (3.17) reduces to

$$
\begin{equation*}
\|h(x, y)+h(y, z)+h(z, x)-F(x+y+z)\| \leq \epsilon \tag{3.19}
\end{equation*}
$$

for all $x, y, z \in G$. Letting $z=0$ in (3.19) we obtain

$$
\begin{equation*}
\|h(x, y)+h(y, 0)+h(0, x)-F(x+y)\| \leq \epsilon . \tag{3.20}
\end{equation*}
$$

Let us define $\psi: G \rightarrow B$ by

$$
\begin{equation*}
\psi(x)=h(x, 0) . \tag{3.21}
\end{equation*}
$$

Then using the fact that h is symmetric, (3.20) can be written as

$$
\begin{equation*}
\|h(x, y)+\psi(y)+\psi(x)-F(x+y)\| \leq \epsilon \tag{3.22}
\end{equation*}
$$

for all $x, y, z \in G$. Let $z=y=0$ in (3.20), we obtain

$$
\begin{equation*}
\|h(x, 0)+h(0,0)+h(0, x)-F(x)\| \leq \epsilon . \tag{3.23}
\end{equation*}
$$

Since from (3.6) and (3.7) we see that

$$
\begin{equation*}
h(0,0)=0 \tag{3.24}
\end{equation*}
$$

the inequality (3.23) can be written as

$$
\begin{equation*}
\|2 \psi(x)-F(x)\| \leq \epsilon \tag{3.25}
\end{equation*}
$$

for all $x \in G$. Since

$$
\begin{aligned}
& \|h(x, y)+\psi(x)+\psi(y)-2 \psi(x+y)\| \\
& \quad=\|h(x, y)+\psi(x)+\psi(y)-F(x+y)+F(x+y)-2 \psi(x+y)\| \\
& \quad \leq\|h(x, y)+\psi(x)+\psi(y)-F(x+y)\|+\|2 \psi(x+y)-F(x+y)\| \\
& \quad \leq 2 \epsilon
\end{aligned}
$$

therefore

$$
\begin{equation*}
\|h(x, y)+\psi(x)+\psi(y)-2 \psi(x+y)\| \leq 2 \epsilon \tag{3.26}
\end{equation*}
$$

for all $x, y \in G$. Since

$$
\begin{aligned}
& 2\|\psi(x+y)+\psi(y+z)+\psi(z+x)-\psi(x)-\psi(y)-\psi(z)-\psi(x+y+z)\| \\
& =\| 2 \psi(x+y)-\psi(x)-\psi(y)-h(x, y)+2 \psi(y+z)-\psi(y)-\psi(z) \\
& \quad-h(y, z)+2 \psi(z+x)-\psi(z)-\psi(x)-h(z, x)-\psi(x+y+z) \\
& \quad+F(x+y+z)+h(x, y)+h(y, z)+h(z, x)-F(x+y+z) \| \\
& \leq\|h(x, y)+\psi(x)+\psi(y)-2 \psi(x+y)\| \\
& \quad+\|h(y, z)+\psi(y)+\psi(z)-2 \psi(y+z)\| \\
& \quad+\|h(z, x)+\psi(z)+\psi(x)-2 \psi(z+x)\| \\
& \quad+\|2 \psi(x+y+z)-F(x+y+z)\| \\
& \quad+\|h(x, y)+h(y, z)+h(z, x)-F(x+y+z)\| \\
& \leq 8 \epsilon
\end{aligned}
$$

therefore

$$
\begin{align*}
& \|\psi(x+y)+\psi(y+z)+\psi(z+x)-\psi(x)-\psi(y)-\psi(z)-\psi(x+y+z)\| \\
& \quad \leq 4 \epsilon \tag{3.27}
\end{align*}
$$

for all $x, y, z \in G$. Defining the functions $a, q: G \rightarrow B$ as

$$
\begin{equation*}
a(x)=\frac{\psi(x)-\psi(-x)}{2} \tag{3.28}
\end{equation*}
$$

and

$$
\begin{equation*}
q(x)=\frac{\psi(x)+\psi(-x)}{2} \tag{3.29}
\end{equation*}
$$

we see that

$$
\begin{equation*}
\psi(x)=a(x)+q(x) . \tag{3.30}
\end{equation*}
$$

Since $h(0,0)=0$, from (3.21) we see that

$$
\begin{equation*}
\psi(0)=0 \tag{3.31}
\end{equation*}
$$

Letting $z=-x-y$ in (3.27) and using (3.31) we obtain

$$
\begin{equation*}
\|\psi(x+y)+\psi(-x)+\psi(-y)-\psi(x)-\psi(y)-\psi(-x-y)\| \leq 4 \epsilon \tag{3.32}
\end{equation*}
$$

Using (3.28) in (3.32) we have

$$
\begin{equation*}
2\|a(x+y)-a(x)-a(y)\| \leq 4 \epsilon \tag{3.33}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\|a(x+y)-a(x)-a(y)\| \leq 2 \epsilon \tag{3.34}
\end{equation*}
$$

for all $x, y \in G$. Thus by Theorem 2.1, there exists a unique homomorphism $A: G \rightarrow B$ such that

$$
\begin{equation*}
\|a(x)-A(x)\| \leq 2 \epsilon \tag{3.35}
\end{equation*}
$$

for all $x \in G$.
Next, letting $z=-y$ in (3.27) we have

$$
\|\psi(x+y)+\psi(0)+\psi(x-y)-2 \psi(x)-\psi(y)-\psi(-y)\| \leq 4 \epsilon
$$

Since $\psi(0)=0$, the last inequality yields

$$
\begin{equation*}
\|\psi(x+y)+\psi(x-y)-2 \psi(x)-\psi(y)-\psi(-y)\| \leq 4 \epsilon \tag{3.36}
\end{equation*}
$$

for all $x, y \in G$. Replacing y by $-y$ and x by $-x$ in (3.36), we obtain

$$
\begin{equation*}
\|\psi(-x-y)+\psi(y-x)-2 \psi(-x)-\psi(-y)-\psi(y)\| \leq 4 \epsilon . \tag{3.37}
\end{equation*}
$$

Using (3.36) and (3.37), we see that

$$
\begin{aligned}
& 2\|q(x+y)+q(x-y)-2 q(x)-2 q(y)\| \\
& =\| \psi(x+y)+\psi(-x-y)+\psi(x-y)+\psi(-x+y)-2 \psi(x) \\
& \quad \quad-2 \psi(-x)-\psi(y)-\psi(-y)-\psi(-y)-\psi(y) \| \\
& =\|\psi(x+y)+\psi(x-y)-2 \psi(x)-\psi(y)-\psi(-y)\| \\
& \quad+\|\psi(-x-y)+\psi(-x+y)-2 \psi(-x)-\psi(-y)-\psi(y)\| \\
& \leq 8 \epsilon .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\|q(x+y)+q(x-y)-2 q(x)-2 q(y)\| \leq 4 \epsilon \tag{3.38}
\end{equation*}
$$

for all $x, y \in G$. Therefore by Theorem 2.2, there exists a unique quadratic map $Q: G \rightarrow B$ such that

$$
\begin{equation*}
\|q(x)-Q(x)\| \leq \frac{4 \epsilon+\|q(0)\|}{3} \tag{3.39}
\end{equation*}
$$

for all $x \in G$. Since $q(0)=0$, the equation (3.39) implies that

$$
\begin{equation*}
\|q(x)-Q(x)\| \leq \frac{4 \epsilon}{3} \tag{3.40}
\end{equation*}
$$

Using (3.40) and (3.29), we obtain

$$
\begin{equation*}
\left\|\frac{\psi(x)+\psi(-x)}{2}-Q(x)\right\| \leq \frac{4 \epsilon}{3} . \tag{3.41}
\end{equation*}
$$

Similarly, from (3.28) and (3.35), we have

$$
\begin{equation*}
\left\|\frac{\psi(x)-\psi(-x)}{2}-A(x)\right\| \leq 2 \epsilon \tag{3.42}
\end{equation*}
$$

Hence from (3.41) and (3.42) we obtain

$$
\begin{aligned}
& \|\psi(x)-A(x)-Q(x)\| \\
& \quad=\left\|\frac{\psi(x)-\psi(-x)}{2}-A(x)+\frac{\psi(x)+\psi(-x)}{2}-Q(x)\right\| \\
& \quad \leq\left\|\frac{\psi(x)-\psi(-x)}{2}-A(x)\right\|+\left\|\frac{\psi(x)+\psi(-x)}{2}-Q(x)\right\| \\
& \quad \leq \frac{10}{3} \epsilon .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\|\psi(x)-A(x)-Q(x)\| \leq \frac{10}{3} \epsilon \tag{3.43}
\end{equation*}
$$

Next, using (3.26) and (3.43), we compute

$$
\begin{aligned}
& \|h(x, y)-2 Q(x+y)+Q(x)+Q(y)-2 A(x+y)+A(x)+A(y)\| \\
& \quad=\| h(x, y)+2 \psi(x+y)-\psi(x)-\psi(y)-2 \psi(x+y)+\psi(x)+\psi(y) \\
& \quad-2 Q(x+y)+Q(x)+Q(y)-2 A(x+y)+A(x)+A(y) \| \\
& \leq\|h(x, y)+\psi(x)+\psi(y)-2 \psi(x+y)\| \\
& \quad+2\|\psi(x+y)-Q(x+y)-A(x+y)\| \\
& \quad+\|\psi(x)-Q(x)-A(x)\|+\|\psi(y)-Q(y)-A(y)\| \\
& \leq \frac{46}{3} \epsilon
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\|h(x, y)-2 Q(x+y)+Q(x)+Q(y)-A(x)-A(y)\| \leq \frac{46}{3} \epsilon \tag{3.44}
\end{equation*}
$$

for all $x, y \in G$. Finally, by (3.17) and (3.44), we get

$$
\|g(x, y)-\phi(x)+\phi(y)+h(x, y)-2 Q(x+y)+Q(x)+Q(y)-A(x)-A(y)+\gamma\|
$$

$$
\begin{aligned}
& \leq\|g(x, y)-\phi(x)+\phi(y)\| \\
& \quad+\|h(x, y)-2 Q(x+y)+Q(x)+Q(y)-A(x)-A(y)\|+\|\gamma\| \\
& \leq \frac{49}{3} \epsilon+\|\gamma\| .
\end{aligned}
$$

Hence we have

$$
\begin{equation*}
\left\|g(x, y)+h(x, y)+\gamma-f_{o}(x, y)\right\| \leq \frac{49}{3} \epsilon+\|\gamma\| \tag{3.45}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{o}(x, y)=\phi(x)-\phi(y)+A(x)+A(y)+2 Q(x+y)-Q(x)-Q(y) \tag{3.46}
\end{equation*}
$$

Since

$$
\begin{equation*}
f(x, y)=g(x, y)+h(x, y)+\gamma \tag{3.47}
\end{equation*}
$$

the inequality (3.45) reduces to

$$
\begin{equation*}
\left\|f(x, y)-f_{o}(x, y)\right\| \leq \frac{49}{3} \epsilon+\|\gamma\| . \tag{3.48}
\end{equation*}
$$

Similarly, using (3.25) and (3.43), we see that

$$
\begin{aligned}
& \|\ell(x)-2 A(x)-2 Q(x)\| \\
& \quad=\|\ell(x)-2 A(x)-2 Q(x)-3 \gamma+3 \gamma\| \\
& \quad=\|F(x)-2 A(x)-2 Q(x)+3 \gamma\| \\
& \quad \leq\|2 \psi(x)-F(x)\|+2\|\psi(x)-A(x)-Q(x)\|+3\|\gamma\| \\
& \quad \leq \frac{23}{3} \epsilon+3\|\gamma\|
\end{aligned}
$$

and the proof of the theorem is now complete.

References

[1] J. A. Baker, A functional equation, Solution to problem E 2607, Amer. Math. Monthly 10 (1977), 824-825.
[2] M. Cantor, Funktionalgleichungen mit drei von einander unabh ngigen ver nderlichen, Z. Math. Phys. 41 (1896), 161-163.
[3] P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76-86.
[4] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64.
[5] G. Frege, Rechungsmethoden, die sich auf eine Erweiterung des Gr ssebegriffes gr nden, Verlag Friedrich Frommann, Jena, 1874.
[6] D. Gronau, A remark on Sincov's functional equation, Notices of the South African Mathematical Society, 31 (2000), 1-8.
[7] D. Gronau, Gottlob Frege, a pioneer in iteration theory, Iteration Theory (ECIT 94) (Opava), 105-119, Grazer Math. Ber., 334, Karl-Franzens-Univ. Graz, 1997.
[8] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
[9] D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkh user 1998.
[10] D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), 125-153.
[11] D. H. Hyers and S. M. Ulam, Approximately convex functions, Proc. Bull. Amer. Math. Soc. 3 (1952), 821-828.
[12] P. K. Sahoo, On a Sincov type functional equation, Technical Report, Department of Mathematics, University of Louisville, 2009.
[13] D. M. Sincov, Notes sur la calcul fonctionnel (Russian), Bull. Soc. Phys.-Math. Kazam, 13 (1903), 48-72.
[14] D. M. Sincov, ber eine funktionalgleichung, Arch. Math. Phys. 6 (1903), 216-217.
[15] F. Skof, Propriet locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129.
[16] S. M. Ulam, Problems in Modern Mathematics, Science Editions, Wiley 1960.
[17] S. M. Ulam, A Collection of Mathematical Problems, Interscience Publishers, Inc., New York 1968.

Prasanna K. Sahoo, Department of Mathematics, University of Louisville, Louisville, Kentucky, 40292, USA.
E-mail: sahoo@louisville.edu

Received August 01, 2009
Revised August 06, 2009; September 10, 2009
Accepted November 12, 2009

